

Received 19 June 2017 Accepted 4 July 2017

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; iron chelator; isonicotinohydrazide; hydrogen bonding.

CCDC reference: 1560196

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of (*E*)-*N*'-(3-fluoro-2-hydroxybenzylidene)isonicotinohydrazide

Suwadee Jiajaroen,^a Kittipong Chainok^b and Filip Kielar^{c*}

^aDepartment of Chemistry, Faculty of Science and Technology, Thammasat University, Khlong Luang, Pathum Thani 12121, Thailand, ^bMaterials and Textile Technology, Faculty of Science and Technology, Thammasat University, Khlong Luang, Pathum Thani 12121, Thailand, and ^cDepartment of Chemistry and Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Muang, Phitsanulok 65000, Thailand. *Correspondence e-mail: filipkielar@nu.ac.th

In the title compound, $C_{13}H_{10}FN_3O_2$, the molecule has an *E* conformation with respect to the C==N bond of the hydrazone bridge. The dihedral angle between the isonicotinoyl and fluorophenol moieties is 4.03 (4)°, and an intramolecular $O-H\cdots N$ hydrogen bond generates an *S*(6) ring motif. In the crystal, molecules are linked by $N-H\cdots N$ and $C-H\cdots N$ hydrogen bonds, forming chains propagating along the *a*-axis direction. The chains are linked by $C-H\cdots O$ hydrogen bonds, resulting in the formation of layers lying parallel to the *ab* plane. The crystal structure also features $\pi-\pi$ interactions [centroid-to-centroid distance = 3.6887 (8) Å].

1. Chemical context

Hydrazone-based chelators of metal ions are interesting compounds that receive a significant amount of interest (Bendová *et al.*, 2010; Jansová *et al.*, 2014; Hrušková *et al.*, 2016). We have recently published the structures of two derivatives of the prototypical chelator from this class, salicyl aldehyde isonicotinoyl hydrazide (SIH), which were synthesized as potential sensors for metal ions (Chainok *et al.*, 2016). The structures reported have fluorine and methyl substitution in position 5 on the benzene ring. Herein, we report the crystal structure of a further analogue in this series bearing a fluorine substituent in position 3 of the benzene ring, which was synthesized in order to investigate the effect of the distance between the reporting fluorine atom and the metal chelating unit.

2. Structural commentary

The molecular structure of the title compound, with atom labelling, is presented in Fig. 1. The molecule has an E conformation with respect to the hydrazone bridge (C7=N3). The C6-N2 and C7-N3 bond lengths differ by 0.08 Å hence; these two bonds are formally double and single bonds, respectively. The molecule deviates slightly from planarity

research communications

Table 1	
Hydrogen-bond geometry	(Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
O2−H2 <i>O</i> ···N3	0.82	1.87	2.5862 (14)	145
$N2-H2N\cdots N1^{i}$	0.86	2.16	2.9851 (16)	161
$C4-H4\cdots N1^i$	0.93	2.51	3.3492 (18)	151
$C5-H5\cdots O1^{ii}$	0.93	2.37	3.2738 (17)	163

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) x, $-y + \frac{1}{2}$, $z + \frac{1}{2}$.

with an r.m.s deviation for the fitted non-hydrogen atoms of 0.062 Å. There is an intramolecular O2—H2O···N3 hydrogen bond with an S(6) ring motif present in the pyridine carbox-amide moiety, and the pyridine ring (N1/C1–C5) is approximately coplanar with the amide group (C6(=O1)N2) [dihedral angle = 8.25 (6)°]. The isonicotinoyl moiety (N1/C1–C6/O1/N2) is inclined to the fluorophenol moiety (C8-C13/O2/F1) by 4.03 (4)°.

3. Supramolecular features

In the crystal, molecules are linked by bifurcated-acceptor N2–H2N···N1ⁱ and C4–H4····N1ⁱ hydrogen bonds (Table 1), leading to the formation of zigzag chains lying parallel to the *b*-axis direction, as shown in Fig. 2. Adjacent chains are further linked *via* C5–H5···O1ⁱⁱ hydrogen bonds, forming layers parallel to the *ab* plane, as shown in Fig. 3. Within the sheets, there are π - π stacking interactions involving inversion-related molecules [Cg1··· $Cg2^i$ = 3.6887 (8) Å; Cg1 and Cg2 are the centroids of the pyridine (N1/C1–C5) and phenyl (C8–C13) rings, respectively; symmetry code: (i) –x + 1, –y + 1, –z + 1].

4. Database survey

A search of the Cambridge Structural Database (Version 5.38, latest update May 2017; Groom *et al.*, 2016) for compounds with the (*E*)-*N*-(2-hydroxybenzylidene)isonicotinohydrazide skeleton revealed 86 hits. They include the isotypic crystal structures with bromide (PORYEC; Xiong & Li, 2014), methoxy (CANCOK, Yu *et al.*, 2005; CANCOK01, Yang, 2007; CANCOK02, Xu, 2013), and hydroxy (WAFVEG; Tecer *et al.*, 2010) groups substituted at the 3-position of the phenyl ring.

Figure 1

The molecular structure of the title compound, with the atom labelling and 50% probability displacement ellipsoids. The intramolecular hydrogen bond is shown as a dashed line (see Table 1).

A view of the hydrogen-bonded chains, formed in the crystal structure of the title compound *via* bifurcated-acceptor $N-H\cdots N$ and $C-H\cdots N$ hydrogen bonds (dashed lines; Table 1).

5. Synthesis and crystallization

Isonicotinic acid hydrazide (301 mg, 2.19 mmol) and 3fluorosalicylaldehyde (338 mg, 2.69 mmol) were suspended in a 1:1 mixture of water and ethanol (6 ml). The reaction mixture was stirred at 363 K for 24 h and formation of a precipitate was observed. The reaction mixture was allowed to cool to room temperature and then filtered. The isolated solid was washed with water to give the product as a white solid (510 mg, 1.97 mmol, 90%). Colourless rod-like crystals, suitable for X-ray diffraction analysis, were grown by slow evaporation of a solution in methanol of the title compound. ¹H NMR (400 MHz, DMSO-*d*₆) *d* 6.94 (1H, *m*, CH-Ph), 7.32 (1H, dd, J = 8.8, J = 10.4 CH-Ph), 7.44 (1H, d, J = 8.4, CH-Ph), 7.85 (2H, d, J = 5.6, CH-Py), 8.70 (1H, s, CH=N), 8.81 (2H, d, J = 5.6, CH-Py), 11.40 (1H, s, NH), 12.39 (1H, s, OH). HR-MS (ES⁺) $C_{13}H_{11}FN_3O_2$ requires 260.0835 $[M + H]^+$; found 260.0830.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms bonded to C, N, and O

Part of the crystal structure of the title compound, showing the formation of the layers, parallel to the *ab* plane, formed *via* C-H···O hydrogen bonds, and the π - π interactions (dashed lines).

atoms were placed at calculated positions and refined using a riding-model approximation: N-H = 0.86 Å, O-H = 0.82 Å and C-H = 0.93 Å with $U_{iso}(H) = 1.5U_{eq}(O)$ and $1.2U_{eq}(N,C)$ for other H atoms.

Acknowledgements

The authors thank the Faculty of Science and Technology, Thammasat University, for funds to purchase the X-ray diffractometer.

Funding information

This work was supported by a National Research Council of Thailand grant provided by the Naresuan University Division of Research Administration (R2559B060).

References

- Bendová, P., Macková, E., Hašková, P., Vávrová, A., Jirkovský, E., Štěrba, M., Popelová, O., Kalinowski, D. S., Kovaříková, P., Vávrová, K., Richardson, D. R. & Šimůnek, T. (2010). *Chem. Res. Toxicol.* 23, 1105–1114.
- Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chainok, K., Makmuang, S. & Kielar, F. (2016). Acta Cryst. E72, 980– 983.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hrušková, K., Potůčková, E., Hergeselová, T., Liptáková, L., Hašková, P., Mingas, P., Kovaříková, P., Šimůnek, T. & Vávrová, K. (2016). *Eur. J. Med. Chem.* **120**, 97–110.
- Jansová, H., Macháček, M., Wang, Q., Hašková, P., Jirkovská, A., Potůčková, E., Kielar, F., Franz, K. J. & Šimůnek, T. (2014). Free Radical Biol. Med. 74, 210–221.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

Table	2	
Experi	mental	details.

Crystal data	
Chemical formula	$C_{13}H_{10}FN_3O_2$
M _r	259.24
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	296
a, b, c (Å)	7.8555 (3), 10.2748 (5), 14.9390 (7)
β (°)	92.397 (2)
$V(Å^3)$	1204.73 (9)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.11
Crystal size (mm)	$0.28 \times 0.14 \times 0.14$
Data collection	
Diffractometer	Bruker D8 QUEST CMOS
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2016)
T_{\min}, T_{\max}	0.700, 0.745
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	22872, 2475, 1769
R _{int}	0.045
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.625
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.038, 0.100, 1.04
No. of reflections	2475
No. of parameters	173
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.16, -0.17

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXL2016 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

- Tecer, E., Dege, N., Zülfikaroglu, A., Senyüz, N. & Bati, H. (2010). *Acta Cryst.* E66, 03369–03370.
- Xiong, Y. & Li, W.-H. (2014). J. Coord. Chem. 67, 3279-3287.
- Xu, J. (2013). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 43, 1329–1333.
- Yang, D.-S. (2007). J. Chem. Crystallogr. 37, 343–348.
- Yu, M., Chen, X. & Jing, Z.-L. (2005). Acta Cryst. E61, 01345-01346.

supporting information

Acta Cryst. (2017). E73, 1151-1153 [https://doi.org/10.1107/S2056989017009926]

Crystal structure of (E)-N'-(3-fluoro-2-hydroxybenzylidene)isonicotinohydrazide

Suwadee Jiajaroen, Kittipong Chainok and Filip Kielar

Computing details

Data collection: *APEX3* (Bruker, 2016); cell refinement: *SAINT* (Bruker, 2016); data reduction: *SAINT* (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2016* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

F(000) = 536

 $\theta = 3.3-26.2^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$

T = 296 K

 $D_{\rm x} = 1.429 {\rm Mg m^{-3}}$

Rod, light colourless

 $0.28 \times 0.14 \times 0.14$ mm

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 5896 reflections

 $(E) \text{-} \mathcal{N}' \text{-} (3 \text{-} Fluoro \text{-} 2 \text{-} hydroxybenzylidene) isonicotino hydrazide}$

Crystal data

C₁₃H₁₀FN₃O₂ $M_r = 259.24$ Monoclinic, $P2_1/c$ a = 7.8555 (3) Å b = 10.2748 (5) Å c = 14.9390 (7) Å $\beta = 92.397$ (2)° V = 1204.73 (9) Å³ Z = 4

Data collection

Bruker D8 OUEST CMOS	T = 0.700 $T = 0.745$
diffractometer	22872 measured reflections
Radiation source: microfocus sealed x-ray tube,	2475 independent reflections
Incoatec Iµus	1769 reflections with $I > 2\sigma(I)$
Graphite Double Bounce Multilayer Mirror	$R_{\rm int} = 0.045$
monochromator	$\theta_{\text{max}} = 26.4^{\circ}, \ \theta_{\text{min}} = 3.3^{\circ}$
Detector resolution: 10.5 pixels mm ⁻¹	$h = -9 \rightarrow 9$
φ and ω scans	$k = -12 \rightarrow 12$
Absorption correction: multi-scan	$l = -18 \rightarrow 18$
(SADABS; Bruker, 2016)	
Refinement	

Refinement on F^2 SeLeast-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ Hy $wR(F^2) = 0.100$ S = 1.04H-2475 reflections w^2 173 parameters00 restraints(Δ Primary atom site location: structure-invariant $\Delta \rho$ direct methods $\Delta \rho$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0468P)^2 + 0.1698P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.16$ e Å⁻³ $\Delta\rho_{min} = -0.17$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
F1	0.04982 (16)	0.68426 (11)	0.21940 (6)	0.0860 (4)
01	0.42340 (15)	0.25717 (10)	0.46852 (6)	0.0554 (3)
O2	0.19539 (16)	0.52442 (11)	0.33911 (7)	0.0600 (3)
H2O	0.2346	0.4824	0.3818	0.090*
N1	0.63170 (16)	0.03844 (11)	0.75111 (8)	0.0441 (3)
N2	0.34254 (15)	0.40224 (11)	0.57234 (7)	0.0403 (3)
H2N	0.3409	0.4242	0.6279	0.048*
N3	0.27004 (15)	0.47948 (11)	0.50651 (8)	0.0399 (3)
C1	0.6525 (2)	0.01892 (14)	0.66412 (10)	0.0468 (4)
H1	0.7160	-0.0527	0.6473	0.056*
C2	0.58528 (18)	0.09868 (13)	0.59763 (9)	0.0412 (3)
H2B	0.6029	0.0803	0.5378	0.049*
C3	0.49156 (17)	0.20612 (12)	0.62066 (8)	0.0351 (3)
C4	0.4691 (2)	0.22719 (14)	0.71071 (9)	0.0446 (4)
H4	0.4061	0.2981	0.7293	0.054*
C5	0.5408 (2)	0.14213 (14)	0.77255 (9)	0.0463 (4)
Н5	0.5248	0.1581	0.8329	0.056*
C6	0.41696 (18)	0.28991 (13)	0.54677 (9)	0.0386 (3)
C7	0.18964 (18)	0.58148 (13)	0.52892 (9)	0.0388 (3)
H7	0.1809	0.6025	0.5891	0.047*
C8	0.11173 (17)	0.66478 (13)	0.46000 (9)	0.0369 (3)
C9	0.11849 (19)	0.63208 (13)	0.36907 (9)	0.0415 (3)
C10	0.0421 (2)	0.71659 (16)	0.30725 (10)	0.0524 (4)
C11	-0.0379 (2)	0.82835 (16)	0.33089 (11)	0.0575 (5)
H11	-0.0862	0.8831	0.2872	0.069*
C12	-0.0460 (2)	0.85917 (15)	0.42025 (11)	0.0541 (4)
H12	-0.1014	0.9346	0.4374	0.065*
C13	0.02768 (19)	0.77830 (14)	0.48399 (10)	0.0468 (4)
H13	0.0214	0.7996	0.5443	0.056*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.1259 (10)	0.0961 (8)	0.0341 (5)	0.0010 (7)	-0.0206 (5)	0.0070 (5)
O1	0.0834 (8)	0.0553 (7)	0.0275 (5)	0.0052 (6)	0.0002 (5)	0.0019 (5)
O2	0.0887 (9)	0.0545 (7)	0.0356 (6)	0.0095 (6)	-0.0102 (6)	-0.0071 (5)
N1	0.0577 (8)	0.0394 (7)	0.0347 (6)	0.0017 (6)	-0.0025 (5)	0.0029 (5)
N2	0.0548 (7)	0.0375 (6)	0.0279 (6)	-0.0019 (5)	-0.0078(5)	0.0044 (5)
N3	0.0493 (7)	0.0360 (6)	0.0336 (6)	-0.0058 (5)	-0.0088 (5)	0.0069 (5)

supporting information

C1	0.0592 (10)	0.0391 (8)	0.0422 (8)	0.0079 (7)	0.0015 (7)	-0.0014 (6)
C2	0.0530 (9)	0.0413 (8)	0.0293 (7)	-0.0019 (7)	0.0027 (6)	-0.0033 (6)
C3	0.0411 (7)	0.0334 (7)	0.0304 (7)	-0.0078 (6)	-0.0014 (5)	0.0006 (5)
C4	0.0631 (10)	0.0387 (8)	0.0320 (7)	0.0094 (7)	0.0016 (6)	-0.0010 (6)
C5	0.0682 (10)	0.0433 (8)	0.0273 (7)	0.0049 (7)	0.0003 (7)	-0.0001 (6)
C6	0.0477 (8)	0.0391 (8)	0.0287 (7)	-0.0074 (6)	-0.0012 (6)	0.0042 (6)
C7	0.0472 (8)	0.0397 (7)	0.0291 (7)	-0.0090 (7)	-0.0049 (6)	0.0027 (6)
C8	0.0391 (7)	0.0361 (7)	0.0348 (7)	-0.0090 (6)	-0.0046 (6)	0.0042 (6)
C9	0.0498 (9)	0.0391 (7)	0.0347 (7)	-0.0084 (7)	-0.0069 (6)	0.0019 (6)
C10	0.0639 (10)	0.0603 (10)	0.0318 (7)	-0.0106 (8)	-0.0127 (7)	0.0084 (7)
C11	0.0568 (10)	0.0530 (10)	0.0610 (11)	-0.0064 (8)	-0.0178 (8)	0.0228 (8)
C12	0.0529 (9)	0.0446 (9)	0.0641 (11)	0.0022 (7)	-0.0057 (8)	0.0082 (8)
C13	0.0511 (9)	0.0451 (8)	0.0440 (8)	-0.0039 (7)	-0.0012 (7)	0.0001 (7)

Geometric parameters (Å, °)

F1-C10	1.3576 (18)	C3—C6	1.4997 (18)
O1—C6	1.2195 (16)	C4—H4	0.9300
O2—H2O	0.8200	C4—C5	1.3753 (19)
O2—C9	1.3459 (18)	С5—Н5	0.9300
N1—C1	1.3317 (19)	С7—Н7	0.9300
N1—C5	1.3290 (18)	C7—C8	1.4541 (19)
N2—H2N	0.8600	C8—C9	1.4026 (19)
N2—N3	1.3692 (15)	C8—C13	1.394 (2)
N2—C6	1.3559 (18)	C9—C10	1.386 (2)
N3—C7	1.2756 (18)	C10—C11	1.362 (2)
C1—H1	0.9300	C11—H11	0.9300
C1—C2	1.376 (2)	C11—C12	1.376 (2)
C2—H2B	0.9300	C12—H12	0.9300
C2—C3	1.3784 (19)	C12—C13	1.373 (2)
C3—C4	1.3813 (18)	C13—H13	0.9300
С9—О2—Н2О	109.5	N2—C6—C3	116.17 (11)
C5—N1—C1	116.42 (12)	N3—C7—H7	120.1
N3—N2—H2N	121.2	N3—C7—C8	119.74 (12)
C6—N2—H2N	121.2	С8—С7—Н7	120.1
C6—N2—N3	117.53 (11)	C9—C8—C7	120.86 (13)
C7—N3—N2	118.90 (12)	C13—C8—C7	120.01 (12)
N1—C1—H1	118.1	C13—C8—C9	119.13 (13)
N1—C1—C2	123.77 (13)	O2—C9—C8	123.69 (12)
C2-C1-H1	118.1	O2—C9—C10	118.77 (13)
C1—C2—H2B	120.3	C10—C9—C8	117.54 (14)
C1—C2—C3	119.32 (12)	F1-C10-C9	117.07 (15)
C3—C2—H2B	120.3	F1-C10-C11	119.78 (14)
C2—C3—C4	117.38 (12)	C11—C10—C9	123.15 (14)
C2—C3—C6	118.19 (12)	C10—C11—H11	120.5
C4—C3—C6	124.40 (13)	C10-C11-C12	119.08 (14)
C3—C4—H4	120.4	C12—C11—H11	120.5

C5-C4-C3 C5-C4-H4 N1-C5-C4 N1-C5-H5 C4-C5-H5 O1-C6-N2	119.28 (13) 120.4 123.83 (13) 118.1 118.1 122.72 (12)	C11—C12—H12 C13—C12—C11 C13—C12—H12 C8—C13—H13 C12—C13—C8 C12—C13—H13	120.1 119.86 (15) 120.1 119.4 121.22 (14) 119.4
01	121.11 (13)		
F1—C10—C11—C12 O2—C9—C10—F1	179.40 (15) 0.2 (2)	C4—C3—C6—O1 C4—C3—C6—N2	-170.67 (14) 9.1 (2)
O2—C9—C10—C11	-179.55 (14)	C5—N1—C1—C2	-0.3 (2)
N1—C1—C2—C3	0.5 (2)	C6—N2—N3—C7	175.56 (12)
N2—N3—C7—C8	-179.99 (11)	C6—C3—C4—C5	178.64 (13)
N3—N2—C6—O1	1.1 (2)	C7—C8—C9—O2	-0.1 (2)
N3—N2—C6—C3	-178.64 (11)	C7—C8—C9—C10	-179.69 (13)
N3—C7—C8—C9	2.3 (2)	C7—C8—C13—C12	179.56 (13)
N3—C7—C8—C13	-178.24 (12)	C8—C9—C10—F1	179.79 (13)
C1—N1—C5—C4	0.2 (2)	C8—C9—C10—C11	0.1 (2)
C1—C2—C3—C4	-0.5 (2)	C9—C8—C13—C12	-1.0 (2)
C1—C2—C3—C6	-178.83 (13)	C9—C10—C11—C12	-0.9 (3)
C2—C3—C4—C5	0.4 (2)	C10-C11-C12-C13	0.8 (2)
C2-C3-C6-O1	7.5 (2)	C11—C12—C13—C8	0.1 (2)
C2-C3-C6-N2	-172.75 (12)	C13—C8—C9—O2	-179.55 (13)
C3—C4—C5—N1	-0.3 (2)	C13—C8—C9—C10	0.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
02—H2 <i>O</i> ···N3	0.82	1.87	2.5862 (14)	145
$N2-H2N\cdots N1^{i}$	0.86	2.16	2.9851 (16)	161
$C4$ — $H4$ ··· $N1^{i}$	0.93	2.51	3.3492 (18)	151
C5—H5…O1 ⁱⁱ	0.93	2.37	3.2738 (17)	163

Symmetry codes: (i) -x+1, y+1/2, -z+3/2; (ii) x, -y+1/2, z+1/2.