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Lung Adenocarcinoma (LUAD) drastically influences human health. Tumor hypoxia and immunity impact hugely on the
immunotherapeutic effect of LUAD patients. This study is aimed at exploring the prognostic markers associated with hypoxia
and immunity in LUAD patients and evaluates their reliability. The relationship between hypoxia and immune-related genes
and prognoses of LUAD patients was investigated by the univariate regression analysis. Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) methods were used to reveal the enriched pathways and biological processes of
prognosis-related genes. Univariate, LASSO, and multivariate Cox regression analyses were used to construct a prognostic
signature and verify its independence. The reliability of the signature was evaluated by the Principal Component Analysis
(PCA), the Kaplan-Meier (K-M) curve, and the receiver operating characteristic (ROC) curve. Gene set enrichment analysis
(GSEA), tumor mutational burden (TMB), and single-sample GSEA (ssGSEA) further verified the performance of the
signature. Finally, a prognostic signature for LUAD was constructed based on 7 hypoxia- and immune-related genes.
According to riskScores acquired from the signature, the test set was divided into groups, where the prognosis of high-risk
patients was poor. The feature genes had good reliability, and the riskScore could be used as an independent prognostic factor
for LUAD patients. Meanwhile, high TMB scores and low immune scores were found in high-risk patients, and feature genes
were enriched in signaling pathways such as cell cycle and p53 signaling pathway. In sum, a prognostic signature based on 7
hypoxia- and immune-related genes was constructed.

1. Introduction

The morbidity and mortality of lung cancer (LC) are high
worldwide. Statistic by International Agency for Research
on Cancer (IARC) showed that 11.4% new cases of cancers
are LC, only followed by breast cancer (11.7%) [1]. In addi-
tion, the mortality of lung cancer accounts for 18%, ranking
the first globally [1]. Lung adenocarcinoma (LUAD) is the
most frequent histological subtype of LC [2]. Progress has
been made in LUAD-related research in the past decades,
but the survival rate is not noticeably improved, with 70%
of patients developing local progression or metastasis when
they were first diagnosed [3–5]. In the above conditions,
the impact of traditional interventions on patients is only
revealed after treatment, which adds patients’ pain. Hence,
the clinician needs to take the treatment sensitivity and

prognosis of patients into consideration for making further
treatment plans.

Hypoxia is a typical feature of the tumor microenviron-
ment. Cells were driven and became invasive in the hypoxia
condition in hepatocellular carcinoma, colorectal cancer,
and esophageal squamous cell carcinoma [6–8]. Evidence
has shown that with hypoxia conditions, tumor cells can
activate multiple transcription factors to further induce cell
proliferation, invasion, and apoptosis [8, 9]. This enhances
the drug resistance of tumor cells under a hypoxia environ-
ment, and hypoxia-induced cell function changes will affect
the prognoses of patients [10]. Therefore, hypoxia is deemed
to relate to drug resistance and poor treatment efficacy [11].
Research proved that a patient’s prognosis can be predicted
using hypoxia-related genes. Jiang et al. [12] confirmed that
LBH is lowly expressed in glioma under hypoxia conditions
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and causes poor prognosis. NLUCAT1 and TRB3 impact
hugely on LUAD patient’s prognosis in the hypoxia condi-
tion [13, 14]. It can be concluded that hypoxia is bound up
with the prognosis of LUAD patients.

With deep investigation being carried out, immunother-
apy has drawn more and more attention in treating lung can-
cer. In 2013, Science listed tumor immunotherapy as the top
out of 10 breakthroughs in the science field. With the develop-
ment of immunotherapy (like immune checkpoint inhibitors
(ICIs)), methods for tumor therapy are upgraded [15]. The
tumor microenvironment comprises surrounding immune
and inflammatory cells, tumor cells, tumor-related fibroblasts,
and nearby interstitial tissues, capillaries and various cytokines
and chemokines. Many immune cells are highly sensitive to
hypoxia, with their viabilities and antitumor capabilities low-
ered in such condition [16]. Lu et al. [17] revealed that proin-
flammatory cytokines (IL-13 and IL-23) and costimulatory
molecules (CD80 and CD60) are downregulated in non-
small-cell lung cancer cells, but anti-inflammatory cytokine
(IL-10) secreted from the CD1c+ DCs is promoted; thereby,
blocking the body’s antitumor immunity. Ganesan et al. [18]
analyzed purified CD8+ T cells in untreated, early NSCLC
samples by RNA sequencing. The higher the density of
tissue-resident memory T cells, the better the performance of
LUAD patients’ prognoses, but this fact is irrelevant with the
density of cytotoxic T lymphocytes.

Meanwhile, immunotherapy was also affected by hyp-
oxia. Presently, the goal of immunotherapy is to induce
and enhance cytotoxic T lymphocyte (CTL) effect [19]. In
spite of that, hypoxia induces resistance towards CTL. The
nuclear translocation of hypoxic cancer cells HIF-1α, STAT3
phosphorylation, and VEGF secretion inhibit specific CTL-
mediated cell lysis [20]. Additionally, Noman et al.’s study
[21] reported hypoxia-induced autophagy as a crucial factor
in CTL-mediated innate and adaptive antitumor immunity.
Johnson et al. [22] discovered that MHCII can regulate the
infiltration of T cells and respond to PD-1 sensitivity. Brooks
et al. [23] developed a prognostic classifier for the head and
neck cancer through analyzing hypoxia- and immune-
related genes. Accordingly, the development of biomarkers
based on hypoxia- and immune-related genes is meaningful
to clinicians to judge the prognosis of patients.

In recent years, risk signatures based on genes have been
widely investigated and applied to predict the prognosis of
patients with colon cancer, breast cancer, and hepatocellular
carcinoma [24, 25]. In some cancers, their prognostic perfor-
mance is even better than histopathological diagnosis and
tumor staging [24, 25]. However, few studies combined hyp-
oxia and immune characteristics to investigate their relation-
ship with the prognosis of LUAD. This study performed
bioinformatics analysis on the prognostic value of hypoxia-
and immune-related genes in LUAD, and finally constructed
and validated a prognostic risk-assessing signature based on
these 7 genes. Finally, tumor mutation burden (TMB) anal-
ysis and immune infiltration assessment were used to evalu-
ate the impact of these genes on patients at different risk
levels. This signature provides a reference to screening prog-
nostic genes for LUAD patients and to optimizing LUAD
immunotherapy.

2. Materials and Methods

2.1. Data Acquirement. We downloaded the gene expression
profiles of 594 LUAD patients from The Cancer Genome
Atlas (TCGA, https://portal.gdc.cancer.gov/) database, along
with the related clinical information and single nucleotide
variants (SNV) mutation data (VarScan2 Annotation,
including 561 samples). 243 hypoxia-related genes were
downloaded from the Molecular Signatures Database
(MSigDB; https://www.gsea-msigdb.org/gsea/msigdb/) [26].
At the same time, the expression data of 1,811 immune-
related genes were downloaded from The Immunology
Database and Analysis Portal (ImmPort, https://www
.immport.org) [27]. GSE31210 dataset downloaded from
the Gene Expression database (GEO, https://www.ncbi.nlm
.nih.gov/geo/) worked as a validation set. The expression of
mRNAs and clinical data of 266 LUAD samples were down-
loaded as well (raw data were required from GPL570). All
datasets used in this study were acquired from public data-
bases, and thus ethnical approval was not needed.

2.2. Screening and Enrichment Analysis of the Prognostic
Hypoxia- and Immune-Related Genes. To screen prognostic
hypoxia- and immune-related genes, 490 tumor samples
with survival time exceeding 30d were selected from
TCGA-LUAD dataset as the test set. The test set was inter-
sected with hypoxia- and immune-related datasets. Thereaf-
ter, univariate regression analysis (p < 0:05) was performed
with package “survival” [28] (https://cran.r-project.org/
web/packages/survival/index.html) on the dataset required.
All the gene sets were aggregated to obtain hypoxia- and
immune-related DEGs. To investigate the molecular mecha-
nism of the above-acquired genes, GO (Gene ontology) and
KEGG (Kyoto Encyclopedia of Genes and Genomes) were
adopted for enrichment analyses (q value < 0.05) using
“clusterprofile” package (CRAN-Package shadowtext
(http://r-project.org)). The results were visualized.

2.3. Construction and Evaluation of a Prognostic Signature.
LASSO regression was performed using “glmnet” package
[29] to reduce the overfitting of genes in building the signa-
ture. Multivariate Cox regression analysis was performed
with “survival” package. The genes whose LASSO regression
coefficient is not 0 were analyzed again, and finally a risk-
assessing signature was obtained. The riskScore calculation
formula was

riskScore = 〠
n

i=1
expi ∗ βi ð1Þ

In this formula, n represented the number of hypoxia-
and immune-related prognostic genes and expii represented
the expression value of the hypoxia- and immune-related
prognostic genes. βi was the coefficient in the multivariate
Cox regression analysis. Patient’s riskScore was calculated
accordingly and patients were divided into the high- and
low-risk groups with the median riskScore as the critical
value.
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“FactoMineR” package was adopted to perform Principal
Component Analysis (PCA) [30] on characteristic genes.
“Survival” and the “timeROC” packages [31] were applied
to draw the Kaplan-Meier (K-M) survival curve and receiver
operating characteristic (ROC) curve. The overall survival
(OS) of the two groups of patients was compared and ana-
lyzed. Then the AUC value of 1-year, 3-year, and 5-year
OS was calculated based on the ROC curve to evaluate the
predictive ability of the signature. GSE31210 data set was
used for verification. Finally, in order to explore whether
the riskScore has the value of independently predicting the
prognosis of LUAD patients, the riskScore was combined
with clinical information to conduct the univariate and mul-
tivariate Cox regression analyses.

2.4. Enrichment Analysis. To investigate reasons for risk-
Score divergence, gene set enrichment analysis (GSEA) was
carried out on the high- and low-risk groups. We introduced
differentially expressed genes (DEGs) to the GSEA software
and calculated the Enrichment Score (ES) by comparing
the DEGs with gene sets in KEGG pathways. In the line
graph for ES, ES > 0 indicated an upregulation of the path-
way in the high-risk group. Gene sets with FDR < 0:25 were
considered statistically significant.

2.5. TMB Analysis. To discuss the way gene mutation fre-
quency and patient’s riskScore interplayed, “GenVisR”
package [32] was used to calculate the TMB values of
the high- and low- risk groups. These values were then
subject to the Wilcoxon test using “GenVisR” package.
The mutation landscape waterfall chart of different risk
groups was drawn.

2.6. Immune Infiltration Evaluation. The immune infiltra-
tion level and patient’s riskScore were evaluated; hereby,
“estimate” package [33] and “GSVA” package [34] were uti-

lized to assess the matrix score and immune score of the
LUAD samples in the test set. And each LUAD tumor sam-
ple was evaluated through single-sample GSEA (ssGSEA).

3. Results

3.1. Obtaining Prognostic-Related Genes from Hypoxia- and
Immune-Related Genes. First, the 243 hypoxia-related genes
from the MSigDB and the 1,811 immune-related genes from
the ImmPort database were intersected with the genes with
mRNA profiles of LUAD patients in TCGA. Then, the uni-
variate Cox regression analysis was adopted to screen 65
prognostic-related hypoxia genes and 213 prognostic-
related immune genes. After merging the prognostic-
related hypoxia genes and prognostic-related immune genes,
totally, 268 prognostic-related genes were obtained
(Table S1). The GO enrichment analysis revealed gene
enrichment in regulation of innate immune response,
positive regulation of cytokine production, and T cell
activation (Figure 1(a)). KEGG results suggested that most
of these genes were enriched in cytokine-cytokine receptor
interaction, MAPK signaling pathway, chemokine signaling
pathway, Ras signaling pathway, and antigen processing
and presentation (Figure 1(b)). Integrative analyses
implicated that the 268 DEGs were mainly associated with
the body’s innate immune regulatory response.

3.2. The Construction of Risk-Assessing Hypoxia- and
Immune-Related Prognostic Signature. The feature genes
were screened from 268 DEGs by the LASSO Cox regres-
sion analysis. The genes in the range marked within the
dotted line were the best range for the identification of
signature. Seven important genes were obtained when the
LASSO regression coefficient was not 0 (Figures 2(a) and
2(b)). Multivariate Cox regression analysis was performed
on these 7 genes and the final 7 hypoxia- and immune-
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Figure 1: The results of functional enrichment analyses. (a, b) GO and KEGG enrichment analyses.
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related genes were CD74, DKK1, GAPDH, KRT18, LDHA,
S100A16, and SLC2A1. The hazard ratio (HR) values of
risk factors (DKK1, GAPDH, KRT18, LDHA, and
S100A16) were greater than 1, and the HR values of pro-
tective factors (CD74 and SLC2A1) were less than 1
(Figure 2(c)). The final LUAD signature was riskScore =
−0:09897 ∗ CD74 + 0:06688 ∗DKK1 + 0:2221 ∗GAPDH +
0:1131 ∗KRT18 + 0:3026 ∗ LDHA + 0:03997 ∗ S100A16 −
0:03507 ∗ SLC2A1.

3.3. Validation of the Prediction Ability of the 7-Gene Based
Risk-Assessing Signature. The riskScore of the LUAD sam-
ples was calculated according to the established risk-
assessing signature, and samples were divided into high-
and low-risk groups according to the median value of risk-
Score (Figure 3(a)). A scatter plot of patient’s survival time
was drawn based on the grouping. The results revealed that
as riskScore increased, patient’s survival time was shortened
and their mortality increased (Figure 3(b)). At the same
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Figure 2: Construction of hypoxia- and immune-related signature. (a) The changing trajectory of coefficients of 268 hypoxia- and immune-
related genes with the penalty function λ in the LASSO analysis. (b) The selection interval of the best penalty function λ. (c) Forest plot
manifesting the multivariate Cox regression analysis (∗p < 0:05).
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Figure 3: Continued.
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time, a heat map indicated that with the increase of the risk-
Score, the expression of DKK1, GAPDH, KRT18, LDHA,
S100A16, and SLC2A1 increased, while the expression of
CD74 decreased (Figure 3(c)). The PCA results suggested
that patients in different groups could be clustered clearly
according to the defaults (Figure 3(d)). K-M survival curve
unveiled that the prognosis of patients with low riskScore
was often better than those with high one (Figure 3(e)).
PCA and survival analysis were performed on both groups
with GSE31210 as the validation set. The results of the vali-
dation set were similar to the test set (Figures 3(f) and 3(g)).

Based on ROC curves, the AUC values of 1-, 3-, and 5-year
OS were 0.74, 0.68, and 0.62, respectively (Figure 4(a)). The
AUC values of 1-, 3-, and 5-year OS in the validation set was
0.81, 0.67, and 0.7, respectively (Figure 4(b)). The above results

revealed that the signature-based riskScore predicted the prog-
nosis of LUAD patients robustly.

In order to explore whether the riskScore could inde-
pendently assess the prognosis of LUAD patients, we com-
bined the clinical data of the patients, including age, sex,
and tumor stage, to perform the univariate Cox regression
analysis. The results revealed that the riskScore and the
traditional clinical prognostic factors T stage, N stage,
and clinical stage were prominently correlated with
patients’ OS (Figure 5(a)). Multivariate Cox regression
analysis of the above results suggested that the riskScore
and clinical stage were notably correlated with patients’
OS (Figure 5(b)). The riskScore according to the signature
were independent enough to be the prognostic factor of
LUAD.
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Figure 3: The evaluation of the prediction performance of the 7-gene based risk-assessing signature. (a) RiskScore distribution map of
LUAD samples, where green represents low risk, and red represents high risk. (b) Scatter plot manifests the distribution of survival
status in the high- and low-risk groups, where green represents survival samples, and red represents dead samples. (c) Heat map
showing the expression of 7 characteristic genes, where green means low expression, and red means high expression. (d) PCA cluster
map of test set and (f) validation set in the high- (red) and low-risk (cyan) groups. (e) The test set and (g) the K-M survival curve of the
high- (red) and low-risk (blue) groups in the validation set.
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3.4. GSEA of the High- and Low-Risk Groups. GSEA software
was utilized to explore the reason for riskScore divergency. The
results suggested that the expression of these 7 genes in the
high-risk group was remarkably enriched in p53 signaling path-
way, cell cycle, DNA replication, pyrimidine metabolism, gly-
colysis and gluconeogenesis, and glyoxylate and dicarboxylate
metabolism (Figure 6). These pathways were all related to can-
cer progression, indicating a reliable performance of the 7-gene
prognostic risk model.

3.5. Analysis of Mutation Characteristics of Genes in LUAD.
With the increasing application of immunotherapy in treating
LUAD, improving the efficiency of immunotherapy has
drawn considerable attention. At present, studies have con-
firmed that TMB works as a biomarker to verify the effective-
ness of immunotherapy. To explore the relationship between
riskScore and TMB in LUAD, we analyzed the genes in differ-
ent risk groups and found that there were differences in TMB
between the high- and low-risk groups (Figures 7(a) and 7(b)).
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Figure 4: The evaluation of 7-gene based risk-assessing signature. (a, b) ROC curves of the test and validation sets.
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Subsequently, the Wilcoxon test was performed on the TMB
values, and the results indicated a remarkable high TMB in
the high-risk group (Figure 7(c)). Hence, we speculated that
changes in gene hypoxia and immune characteristics might
affect the frequency of gene mutations.

3.6. Evaluation of Immune Infiltration. The “estimate” pack-
age was utilized to score the stromal cell components and
immune cell components of LUAD tumor samples. Tumor
purity was calculated and differentially analyzed. The results
indicated that the immune scores and estimate scores of the
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Figure 6: The 7 genes in the high- and low-risk groups were enriched in (a) cell cycle; (b) p53 signaling pathway; (c) DNA replication; (d)
pyrimidine metabolism; (e) glycolysis and gluconeogenesis; and (f) glyoxylate and dicarboxylate metabolism.
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high-risk group were significantly lower than those of the
low-risk group (Figure 8(a)). The results of ssGSEA analysis
revealed that compared with the high-risk group, the low-
risk group had higher levels of immune infiltration in aDCs,
iDCs, mast cells, B cells, neutrophils, TIL, and T helper cells
(Figure 8(b)). While the immune activities in HLA, type II
IFN response, and T cell costimulation were higher in the
low-risk group (Figure 8(c)). On the above, we concluded
relatively low immune scores of patients in the high-risk
group, which may impact the immunotherapy of LUAD.

4. Discussion

With the increasing development of high-throughput tech-
nology and research in LUAD, the treatment of LUAD has
improved, especially in immunotherapy. However, the ther-
apeutic effect and patient’s prognosis are still not optimistic.
In recent years, biomarkers have been proven to guide
patients’ diagnosis, treatment, and prognosis prediction.
Based on the TCGA database, this study analyzed the hyp-
oxia and immune characteristics of LUAD and combined
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Figure 8: Immune infiltration assessment results. (a) Differential analysis of stromal scores, immune scores, and estimate scores. (b)
Differential analysis of immune cell components. (c) Differential analysis of immune functions. Blue represents the low-risk group, and
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the two to build a prognostic-assessment signature based on
7 genes for LUAD patients.

The seven genes for constructing a risk-assessing signa-
ture for prognosis were as follows: CD74, DKK1, GAPDH,
KRT18, LDHA, S100A16, and SLC2A1, among which the
four genes CD74, DKK1, GAPDH, and S100A16 were
related to immunity. S10016A is a member of the S100A
family. Studies have found that S100A16 can inhibit the
immune infiltration of CD8+ T cells through the focal
adhesion-Ras-stimulated signaling pathway in pancreatic
cancer [35]. The study of Ou et al. [36] found that
S100A16 inhibits activities of CRC cells through the JNK/
p38 MAPK signaling pathway and subsequent EMT.
DDK1 encodes secreted proteins and regulates protein-
protein interactions [37]. Especially in myeloma cells,
DKK1 was secreted to inhibit function of osteocytes [37].
Some scholars found that multiple myeloma cells can phos-
phorylate cAMP-responsive element-binding protein
(CREB) through p38 kinase under hypoxic conditions and
drive CREB into the nucleus to activate DKK1 transcription
[38]. CD74 is a type II transmembrane glycoprotein and
becomes the proinflammatory cytokine macrophage migra-
tion inhibitor in an inflammatory environment [39]. Studies
have found that in pancreatic cancer, CD74 expression is
related to perineural infiltration and the poor prognosis of
patients after surgical resection [40]. Although GAPDH
can be stably expressed as a housekeeping protein most of
the time, there have been studies taking GAPDH as a prog-
nostic gene and a potential therapeutic target for certain
cancers [41, 42]. Thus, the immune-related genes tested in
this study were closely related to the prognosis and
immunotherapy.

KRT18, LDHA, and SLC2A1 were three characteristic
genes relating to hypoxia. Keratin 18 is one of cytoskeletal
proteins and functions in various cancers. Works found that
KRT18 facilitated the progression of gastric cancer and is
relating to the prognosis of GC patients [43]. LDHA-
encoded proteins are involved in the last step of anaerobic
glycolysis and catalyze the transformation of L-lactic acid
and NAD. Studies found that the accumulation of LDHA-
related lactic acid in melanoma can repress the function
and activity of T cells and NK cells, leading to immune
escape of tumors [44]. SLC2A1 encodes the unidirectional
protein GLUT-1 and involves in glucose transport. Studies
have uncovered that GLUT-1 is related to the cell prolifera-
tion of pancreatic cancer cells and is an important regulator
in the prognosis of patients with pancreatic cancer [45, 46].
On the above, the selected 7 genes in this study were associ-
ated with hypoxia, the tumor microenvironment, and
patient’s prognosis.

With the development of immunotherapy, people have
paid more and more attention to what characteristics of
patients could benefit from immunotherapy. Current studies
have confirmed that TMB can be a biomarker for immuno-
therapy, and immunotherapy is quite effective in patients
with high TMB [47]. The evaluation of TMB and tumor
immune infiltration is important in evaluating whether the
patient receives immunotherapy and the efficiency of immu-
notherapy. Zhang et al. [48] analyzed the head and neck

squamous cell carcinoma and found that patient’s immuno-
therapy is related to the patient’s TMB and tumor immune
infiltration, and the ICI score constructed based on tumor
immune infiltration is a predictor of immunotherapy free
from TMB. The study by Kang et al. [49] confirmed that
in melanoma, the relationship between TMB and immune
infiltration, especially the abundance of macrophages and
Tregs, could lead the prediction signature of immunother-
apy response. This study combined the riskScore with the
TMB and immune infiltration assessment of LUAD patients
and discovered high TMB scores and low immune scores in
the high-risk group. Combined with existing studies, this
study inferred that patients with a high riskScore may reflect
a relatively high TMB value and a relatively low immune
score, which is a proper condition for immunotherapy,
thereby producing a better prognosis.

However, this study also has certain limitations. First,
genetic data used in this study were based only on public
databases. The risk-assessing signature for the prognosis of
LUAD patients was constructed on the basis of the hypoxia-
or immune-related DEGs in LUAD patients. Secondly,
although TMB and immune infiltration assessment analysis
were carried out on LUAD patients, subsequent clinical tri-
als were required to verify the results of bioinformatics
analysis.

In summary, we generated a risk-assessing signature for
the prognosis of LUAD patients based on 7 hypoxia- and
immune-related genes via the LASSO and the Cox regres-
sion analysis. It predicted patient’s prognosis robustly, and
the riskScore could be regarded as an important prognostic
assessment factor independent of clinical characteristics. At
the same time, the hypoxia- and immune-related genes of
the constructed signature were likely to be potential targets
of LUAD treatment, which provided reference to determin-
ing the prognosis and making clinical treatment plans for
LUAD patients.
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