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Abstract. The relationship between the mos protoonco- 
gene protein and cAMP-dependent protein kinase 
(PKA) during the maturation of Xenopus oocytes was 
investigated. Microinjection of the PKA catalytic sub- 
unit (PKA0 into Xenopus oocytes inhibited oocyte mat- 
uration induced by the mos product but did not mark- 
edly affect the autophosphorylation activity of injected 
mos protein. By contrast, PKA~ did not inhibit matu- 
ration promoting factor (MPF) activation or germinal 
vesicle breakdown (GVBD) that was initiated by inject- 
ing crude MPF preparations. In addition, inhibiting 

endogenous PKA activity by microinjecting the PKA 
regulatory subunit (PKAr) induced oocyte maturation 
that was dependent upon the presence of the endog- 
enous mos product. Moreover, PKA~ potentiated mos 
protein-induced MPF activation in the absence of pro- 
gesterone and protein synthesis. These data are consis- 
tent with the hypothesis that progesterone-induced re- 
lease from G2/M is regulated via PKA~ and that PKA~ 
negatively regulates a downstream target that is posi- 
tively regulated by mos. 

F 
ULLY grown Xenopus oocytes are arrested in prophase 

of meiosis I and are induced to mature upon exposure 
to progesterone (29). Synthesis of the mos protoon- 

cogene product, pp39-", is required for the activation of 
maturation-promoting factor (MPF) I, an activity responsi- 
ble for coordinating the biochemical events of meiosis I and 
1I (9, 22, 39, 41). Injecting the mos product into a two-cell 
embryo arrests the injected cell at metaphase, which led to 
the identification of mos as an active component of cytostatic 
factor (CSF) (41). CSF is a calcium-sensitive activity be- 
lieved to be responsible for the arrest of an unfertilized egg 
at metaphase of meiosis II and for the stabilization of MPF 
(29, 31, 32, 41). 

The observation that mos is synthesized prior to MPF acti- 
vation during meiosis I, led us to propose that mos is an ~ini- 
tiator" and is required to activate MPF from pre-MPF (40). 
Furthermore, pp39 ~o' is required at all stages during oocyte 
maturation (9, 22). mos RNA or protein can initiate MPF 
activation when microinjected into fully grown oocytes (16, 
40, 50). Recently, using recombinant mos protein (MBP- 
mosx,), we have shown that the protooncogene product is 
both necessary and sufficient to initiate meiosis I (50). How- 
ever, injected oocytes do not progress to meiosis iI in the ab- 
sence of protein synthesis (50), even though mos is required 
during this period (9, 22). This suggests that additional pro- 
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1. Abbreviations used in this paper: CSE cytostatic factor; GVBD, germ 
vesicle breakdown; MBS, modified Barth solution; MPF, maturation 
promoting factor; PKA, protein kinase; PKI, PKA inhibitory poptide. 

teins synthesized de novo are required for meiosis H and CSF 
arrest (50). 

Progesterone markedly enhances MBP-mos~-induced 
germ vesicle breakdown (GVBD) in the absence of protein 
synthesis (50), suggesting that the hormone removes a bio- 
chemical block to MPF activation that pre-exists in the oo- 
cyte. This system provided a means for testing the biochemi- 
cal events involved in oocyte maturation in the absence of 
protein synthesis requirements, cAMP-dependent protein ki- 
nase (PICA) has been implicated as a negative regulator of 
GriM transition and it is generally believed that progester- 
one stimulation of oocytes causes a transient decrease in 
cAMP levels. This, in turn, leads to a decrease in PKA activ- 
ity and results in the dephosphorylation of a presumptive 
maturation-inhibiting phosphoprotein (44). While the role 
of cAMP and PKA in oocyte maturation is unclear (44) the 
following observations support the above hypothesis: pro- 
gesterone inhibits adenylate cyclase activity in frog oocytes 
(13, 20, 34, 36); cAMP levels decrease during oocyte matu- 
ration in several organisms including frog (24, 25, 42), star- 
fish (30), and mammals (43); the injection of phosphodi- 
esterase induces maturation (7; Foerder, C. A., T. J. Martins, 
J. A. Beavo, and E. G. Krebs. 1982. J. Cell Biol. 95:304a), 
while inhibitors of phosphodiesterase prevent maturation (7, 
37, 43); activators of adenylate cyclase cause an increase in 
cAMP levels, resulting in inhibition of Xenopus and mam- 
malian oocyte maturation (17, 34, 49); and the injection of 
either the PKA regulatory subunit (PKA~), which binds to 
and inactivates the catalytic subunit, or the PKA inhibitory 
peptide (PKI) induces maturation (26), while the catalytic 
subunit of PKA (PKA0 inhibits oocyte maturation in am- 
phibians (26) and mammals (7). 

Since progesterone influences the PKA pathway and 
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potentiates mos-induced MPF activation in the absence of 
protein synthesis, we examined the effects of the PKA 
subunits on mos function. We show that the PKAc does not 
affect MPF-induced maturation, but markedly inhibits MBP- 
mos~=-induced GVBD. By contrast, in the absence of pro- 
tein synthesis the regulatory subunit (PKA~) potentiates 
MPB-mos ~ promotion of GVBD almost as efficiently as 
progesterone. 

Materials and Methods 

Frogs and Oocytes 

Xenopus laevis females were purchased from Xenopus I (Ann Arbor, MI). 
Oocytes were surgically removed and defollicula~l by incubation in modi- 
fied Barth solution (MBS; 88 mM NaCI, 1 mM KC1, 2.5 mM NaHCO3, 
10 mM Hepes, pH 7.5, 0.82 mM MgSO4, 0.33 mM Ca[NO3]2, 0.41 mM 
CaC12) containing collagenase A (1.5 mg/ml; Boehringer Mannhr Bio- 
chemicals, Indianapolis, IN) for 2 h (18). After several washes, oocytes 
were cultured overnight in 50% Leibovitz-15 media (Giboa Laboratories, 
Grand Island, NY). 

Injections 

18 h after oocytes isolation, microinjections were performed by using an 
Aaocyte injector (ATTO Instruments, Rockville, MD) with 30 nl of one or 
several of the following: MBP-mos xe protein produced in Escherichia coli 
and isolated as described (50), protein kinase A catalytic subunit (Promega, 
Madison, Wise.), PKAc RNA transcripts synthesized in vitro as described 
(10), protein kinase A regulatory subunit (Promega, Madison, WI), and 
mos specific oligonucleotides (39) (60 ng/oocyte). The H-Ras lys12 p21 pro- 
tein was produced in andd purified from K coil (a gift of Angel Nebreda, 
National Institute of Allergy and Infectious Diseases). Oocytes were soared 
for GVBD by the appearance of a white spot at the animal pole as well as 
by manual dissection after fixation in 10% TCA. 

lmmunoprecipitations and In Vitro Kinase Assays 

Groups of 10 oocytes were homogenized in lysis buffer (150 mM NaC1, 10 
raM sodium phosphate, pH 7.2, 1 mM EDTA, 0.1% NP-40) containing 
2 mM DMSF andd clarified by centrifugation at 14,000 g for 5 rain at 4~ 
To the supernatant, 5S mAb was added, incubated 1 h, and complexed with 
10% protein A Sepharose in lysis buffer. The pellet was washed three times 
with lysis buffer, then resuspended in 50 ~1 of kinase reaction buffer (150 
mM NaCI, 10 mM Hepes, pH 7.2, 15 mM MnC12, 2 mM DTT, 10 ~M 
ATP) and incubated in the presence of 20 t~Ci of [3,-32p]ATP (New En- 
gland Nuclear, Boston, MA) for 15 min at room temperature. The pellets 
were washed twice with lysis buffer and resnspended in 2 x sample buffer, 
analyzed by SDS-PAGE buffer on a 12 % gel, and then visualized by autora- 
diograpby. 

Ribosomal Subunit $6 Phosphorylation 
Stage VI oocytes were prelabeled for 3.5 h at 20"C in MBS containing 32pi 
(0.3 mCi/mi; Amersbam Corp., Arlington Heights, IL). Oocytes were in- 
jected with either MBP-mos ~ protein alone (9 ng per oocyte) or MPB- 
mos ~e (9 rig) with the PKAc (42 ng per oocyte; Promega Biotec, Madison 
WI) and incubated in fresh MBS for 9 h at 20"C. Over this period, groups 
of 20 oocytes were harvested and homogenized in 1 ml of ribosome isolation 
buffer (50 mM Pipes, pH 7.5, 5 mM MgCI2, 5 mM KCI, 50 mM NaF, 
4 #M EDTA, 1% deoxycholate, 1% Triton X-100). Extracts were clarified 
by centrifugetion at 14,000 g for 16 h at 4"C. The ribosome pellets were 
suspended in 2x sample buffer, analyzed by SDS-PAGE on a 12% gel, and 
visualized by autoradiograpby. The ribosomal $6 subunit bands were ex- 
cised and counted. 

Histone HI Kinase Assays 

Crude MPF extracts were prepared by homogenizing groups of 10 to 20 oo- 
cytes in 20 to 40 ~,1 of extraction buffer (80raM/~-glycerophosphate, 20 
mM EGTA, 15 mM MgCI2, 20 mM Hepes, pH 7.2, 1 mM ATE 1 mM 
DTT, and 5 mM NaF). Homogenates were clarified by centrifugation at 

14,000 g for 5 min at 4~ 2/zl of the supernatant were added to 50 t~l of 
stabilization buffer (80 mM/3-glycerophosphate, 20 mM EGTA, 50 mM 
MgC12, 2.5 mM PMSF, 10 #g of leupeptin per ml, I0/~M protein kinase 
A inhibitor). The histone H1 kinase assay was performed by adding 10/~1 
of stabilized extract to 6 #1 of a mixture containing 2 t~g of histone H1 
(Sigma, St. Louis, MO), 1 mM ATE and 1.5/~Ci of [3"-32p]ATP. The reac- 
tion was incubated 15 min at room temperature, and then stopped with an 
equal volume of 2 x sample buffer. Samples were resolved by SDS-PAGE 
on a 10% gel, and then fixed and autoradiographed. 

Results 

Inhibition of mos-induced Oocyte Maturation 
by the PKA Catalytic Subunit 
PKA~ injection into Xenopus oocytes blocks progesterone- 
induced meiotic maturation (26). We tested the influence of 
PKA activity on MBP-mos xe induced maturation. MBP- 
mos xe plus increasing units of PKA~ protein were coinjected 
into fully grown oocytes (Fig. 1). At 1 ng per oocyte, PKA~ 
prevented MBP-mos xo induction of maturation in 50% of 
the oocytes (Fig. 1). Maximum inhibition was observed 
when 4 ng of PKA~ was injected per oocyte. Similar levels 
of PKAc also inhibit progesterone induced GVBD (data not 
shown). When MBP-mos xe was injected with PKA~ and 
PKAr, GVBD occurred in 92 % of oocytes, showing that the 
PKA~ inhibition was specifically abrogated by the regula- 
tory subunit. PKA~ also prevented the appearance of MPF 
and its associated histone H1 kinase activity (Figs. 1 and 2). 
Moreover, the ms oncoprotein (rasv~'~2), which also effi- 
ciently induces GVBD (4, 8) and has been shown to be an- 
tagonistic to the PKA pathway (4, 38), was also blocked by 
injection of PKA~ (Fish, S., D. Grieco, V. E. Arredimento, 
and M. E. Gottesman, unpublished data) (Fig. 2). By con- 
trast, PKA~ did not inhibit crude MPF preparations from 
efficiently inducing meiotic maturation (Fig. 2), even when 
PKA~ was injected 1 h before MPF injection (data not 
shown). These results show that PKA~ activity inhibits both 
ras or mos maturation either directly or indirectly by nega- 
tively regulating a downstream substrate. They also suggest 
that PKA~ acts as an early inhibitor of maturation, upstream 
from MPE 

Kinetics of  PKAc Inhibition during Maturation 

The period of PKA~ sensitivity was determined in maturing 
oocytes. Oocytes were either treated with progesterone or in- 
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Figure 1. Sensitivity of MBP- 
mos x  ̀ to inhibition of GVBD 
by the PKA catalytic subunit. 
Oocytes were injected with 10 
ng of MBP-mos x~ along with 
0 to 16 ng of PKAc. GVBD 
was examined 12 h later. The 
ratio of the number of oocytes 
with GVBD to the total num- 
ber injected is displayed above 
each bar. + denotes the pres- 
ence of a reagent, while - in- 
dicates its absence. 
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Figure 2. Inhibition of MBP-mos ~ and other inducers of GVBD by 
the PKA catalytic subunit. Oocytes were either treated or injected 
as indicated along with the coinjection of PKA~ (42 ng) (+) or in 
its absence (-) .  GVBD was examined 12-18 h later. The ratio of 
the number of oocytes with GVBD to the total number injected is 
displayed above each bar. Historic H1 kinase assays were performed 
on extracts from 10 appropriately injected oocytes and the auto- 
radiograph is displayed above each bar. 

jected with MBP-mos x~ protein and followed by PKA~ injec- 
tion at various times (Fig. 3 A). 50 % of the oocytes resisted 
the inhibitory effect of PKA~ when the subunit was injected 
2.5 to 3 h after progesterone treatment (Fig. 3, A and B). 
This period represents 0.56 to 0.67 GVBDs0 (a time which 
corresponds to MPF activation and protein synthesis inde- 
pendence). 50% of the MBP-mosxe-injected oocytes became 
PKA, resistant by 3.0 to 3.5 h after mos injection, or at 0.67 
to 0.77 GVBD50 (Fig. 3, A and B). The difference observed 
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Figure 3. (A) Determination of the PKA,-sensitive period. Oo- 
cytes were either exposed to progesterone (5/zg/ml) (~- -o)  or in- 
jected with MBP-mos ~ protein (10 rig) (~--~). At various times 
thereafter, 15 to 18 ooeytes were injected with PKA~ (42 rig), and 
the percentage of ooeytes that underwent GVBD was scored 7 h 
later. (B) Kinetics of GVBD induction by progesterone or MBP- 
mos ~ protein. MBP-mos ~ protein (9 ng) (~---~) was injected into 
each of 45 oocytes. Another 32 oocytes were exposed to progester- 
one (I0/zg/ml) (~- -o)  at the same time, and the two sets of oo- 
cytes were scored for GVBD as a function of time. 

Figure 4. MBP-mos ~e activa- 
tion in the presence of PKA. 
Xenopus oocytes were in- 
jected with MBP-mos ~ (9 ng 
per oocyte) with or without 
PKA~ (42 ng or 3 U per oo- 
cyte). At the indicated time, 
10 oocytes were collected and 
lysed, and MBP-mos ~ was 
immunoprecipitated with a 
Xenopus mos-specific anti- 
body. An in vitro kinase assay 
was then performed on the im- 
mune complex. 

in the times of PKA~ resistance between the two groups 
may be the result of the more synchronous nature of proges- 
terone exposure when compared to the time required for mi- 
croinjection of MBP-mos x" protein as well as the time re- 
quired for this protein to be activated (50). These data are 
consistent with those previously reported (26), but suggest 
that the PKA inhibitory effect persists in meiosis I until mat- 
uration becomes protein synthesis independent at ,,00.6 
GVBDso (40). 

PKAc Does  N o t  Inh ib i t  MBP-mos x, Act ivat ion In  Vivo 

To determine whether PKA~ inhibition of maturation results 
from inhibition of mos activity, we injected MBP-mos ~ ei- 
ther alone or with the PKA~ subunit into fully grown oo- 
cytes. We performed mos immune complex kinase assays on 
extracts prepared at various times after injection and mea- 
sured MBP-mos ~, autophosphorylation activity (50). These 
results show that MBP-mos x, autophosphorylation was not 
blocked by PKA~ and there was only a slight delay in the 
appearance of maximal activity (~0.5 h) (Fig. 4). Moreover, 
phosphorylation of MBP-mos x~ by PKA~ in vitro did not 
diminish its autophosphorylation activity (data not shown) 
even though PKA~ prevents GVBD induced by MBP-mos x= 
protein (Figs. 1 and 2). These results suggest that the target 
of PKA~ inhibition may not be the mos product but, rather, 
a substrate downstream in the meiotic initiation pathway, 
prior to GVBD. 

Inhib i t ion  o f  $6  Phosphorylat ion by PKAc  

The ribosomal subunit $6 is phosphorylated during oocyte 
maturation induced by insulin or progesterone (33) and re- 
quires endogenous mos protein function (3). We determined 
whether PKA~ has an effect on MBP-mosxe-induced $6 
phosphorylation. Oocytes were pre-labeled with 3:Pi for 
3.5 h and subsequently injected with MBP-mos Xe protein ei- 
ther alone or with the PKA~ protein. Over a period of 9 h, 
ribosomes were isolated and phosphoproteins were analyzed 
by SDS-PAGE. Again, the injection of PKA~ inhibited 
MBP-mosx~ GVBD (Fig. 5) and $6 protein phos- 
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Figure 5. Phosphorylation of $6 protein in oocytes injected with 
MBP-mos x~ and PKA catalytic subunit. One hundred 32P-labeled 
stage VI oocytes were injected with MBP-mos = alone (*), or 
MBP-mos ~ and PICA catalytic subunit (e), PKA catalytic subunit 
alone (.,), or buffer ( t) .  20 injected oocytes were harvested at the 
indicated times after injection, and phosphorylated $6 proteins in 
ribosomes were analyzed by SDS-PAGE followed by autoradiogra- 
phy. Maturation of oocytes induced by MBP-mos ~ alone ([3) and 
with PKA catalytic subunit (o) was determined for the same set of 
oocytes. 

phorylation was ~-,50% lower than in oocytes injected with 
MBP-mos ~~ alone or PKA~ alone (Fig. 5). 

The  P K A  Regulatory  S u b u n i t  Enhances  
M B P - m o s ~ - i n d u c e d  Matura t ion  

Progesterone potentiates the ability of MBP-mos ~~ to induce 
GVBD in the presence of cycloheximide. Since progesterone 
treatment of oocytes leads to reduced cAMP levels and pre- 
sumably reduced PKA activity, we determined whether 
PKA, enhances MBP-mos~~ maturation in the ab- 
sence of protein synthesis and progesterone. The concentra- 
tions of MBP-mos ~' or PKA, were titrated for their ability. 
to induce GVBD in cycloheximide-treated oocytes. The in- 
jection of 2.0 ng of MBP-mos ~~ into cycloheximide-treated 

Figure 6. Synergy between MBP-mos ~ and the PKA regulatory 
subunit in the absence of protein synthesis. Between 20 and 80 oo- 
cytes were injected with the indicated amounts of MBP-mos x~ 
and/or PKA regulatory subunit and scored for GVBD 8 to 12 h 
later. Mos ~, MBP-mos "= protein; PKA~ regulatory subunit; (7, cy- 
cloheximide (10 #g/ml); P, progesterone. 

oocytes failed to cause GVBD (Fig. 6, bar 2). 1-3 U of 
PKA,-induced GVBD (26) in 60 to 88% of untreated oo- 
cytes, respectively, while PKA, did not cause GVBD in the 
presence of cycloheximide (Fig. 6, bars 7-9) even with pro- 
gesterone present (data not shown). As previously shown, pro- 
gesterone potentiates the induction of GVBD by MBP-mos ~* 
in cycloheximide-treated oocytes (50) (Fig. 6, bar 3). When 
levels of PKAr suboptimal for inducing maturation were in- 
jected with MBP-mos "e in the presence of cycloheximide, a 
substantial increase in the percentage of oocytes undergoing 
GVBD was observed. Thus, from a baseline of 2 % for MBP- 
mos'o alone, 63, 81, and 88% GVBD was observed for 1.0, 
2.0, and 3.0 U of PKA, respectively (Fig. 6, bars 4-6). 
These data show that PKAr potentiates MBP-mos~-induced 
GVBD almost as effectively as progesterone in the absence 
of protein synthesis. 

PKA,- induced  Matura t ion  Requires  pp39  ~os Synthesis  

To determine whether the synergy between MBP-mos x~ and 
the PKA regulatory subunit is due to PKA activity function- 
ing downstream of mos or through a parallel (mutually de- 
pendent) pathway, we metabolically labeled oocytes with 
[35S]methionine and microinjected PKA,. After 4 h, the 
mos product was precipitated from oocytes using amos spe- 
cific antibody. Oocytes treated with either progesterone or 
injected with PKA~ expressed mos product indicating that 
mos synthesis was induced, while untreated oocytes did not 
express pp39 '~', (Fig. 7 A). We tested whether pp39~ is re- 
quired for PKAr induced oocyte maturation by blocking 
mos protein formation with antisense oligonucleotides (39). 
Only 3 % of the antisense injected oocytes underwent GVBD, 
while 87 % of control sense oligonucleotide injected oocytes 
matured with PKAr (Fig. 7 B). These data show that PKA 
and mos function through a mutually dependent pathway. 

Figure 7. (,I) The induction 
of pp39 ~~ synthesis in PKA~- 
injected oocytes. 50 oocytes 
were metabolically labeled 
for 3 h in MBS containing 
35S-translabel (0.5 Mci/ml), 
and then either injected with 
PKA, (R) (3.0 U), or treated 
with progesterone (P) (10 
/~g/rnl) or left untreated (U). 
After 4 h, the oocytes were 
subjected to immunoprecipi- 
tation with a mos specific anti- 
body (5S) and analyzed by 
10% SDS-PAGE. (B) The re- 
quirement for pp39 "~ synthe- 
sis in PKA~ injected oocytes. 
Fully grown oocytes were in- 
jected with either antisense 
mos oligonucteotides (39) (60 
ng/oocyte) or sense oligonu- 

cleotides (60 ng/oocyte). After one hour, these oocytes were either 
treated with progesterone or injected with PKAr (3.0 U). GVBD 
was examined externally and internally after 12-14 h. The ratio of 
ooeytes with GVBD to the number injected is displayed over each 
bar. 
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D i s c u s s i o n  

In Xenopus oocytes, the introduction of 1-4 ng of PKA~ 
blocks MPF activation initiated by progesterone or the mos 
product. However, crude MPF preparations can induce 
GVBD (Fig. 2) and meiotic progression through meiosis II 
in the presence of P I r ~  (data not shown). Since the MPF 
preparations are crude, they contain many other proteins in 
addition to the active cdc2-cyclin complex, and thus cannot 
be excluded from influencing this result. The above results 
suggested that PKA inhibits, while mos positively regulates, 
a downstream target that is upstream of MPF during meiosis 
I, but this target is either inactive or absent between meiosis 
I and II, a period requiring mos function (9, 22). Consistent 
with this idea, PKA~ prevents maturation initiated by the 
ras oncoprotein, which can induce GVBD when mos transla- 
tion is blocked (8) and in the presence of cycloheximide (1). 

The results also indicate a dual role for pp39 '~  as "initia- 
tor" and as CSF, since this inhibition only affects mos "initia- 
tor" function and not mos activity during the latter part of 
meiosis. The time period when MBP-mosxo-induced GVBD 
becomes resistant to PKA activity (0.67-0.77 GVBD50) in 
50% of oocytes corresponds to the time when GVBD be- 
comes independent of protein synthesis and MPF becomes 
activated. These results are not significantly different than 
those reported in an earlier study by Mailer and Krebs (26), 
where 50% of GVBD was insensitive to PKA~ at 2.5 h (.75 
GVBDs0). Consistent with these findings, it has recently 
been reported that when oocytes are treated with known ele- 
vators of intracellular cAMP (IBMX and cholera toxin), the 
nondegradable &90 cyclin cannot induce MPF activation, 
and in oocytes depleted of endogenous cyclins, p34 ode2 ki- 
nase is inactivated by phosphorylation on tyrosine 15 (35). 
Although the detectable decrease in cAMP levels occurs 
early in progesterone stimulated oocytes, this does not rule 
out the possibility that the target of PKA activity is involved 
in the activation of the MPF complex or possibly a compo- 
nent of the MPF complex which is already present in an inac- 
tive form. Although PKA, inhibited MBP-mos~-induced 
GVBD, it did not prevent the activation of the E. coli- 
expressed recombinant protein in vivo. It is possible that 
PKA activity inhibits the ability of pp39 ~~ to phosphory- 
late an important substrate required for MPF activation, but 
this would have to be accomplished without suppressing its 
autokinase activity. 

Ribosomal $6 protein phosphorylation is implicated in 
cell proliferation and transformation (5, 6, 46, 48). In Xeno- 
pus oocytes, the ribosomal subunit $6 is hyperphosphor- 
ylated after the initiation of meiotic maturation by progester- 
one (12, 33), insulin (11, 25), and several oncogene products 
including ras (3, 21), v-src (45), v-abl (28), and tpr-met (10). 
While hormonal stimulation of $6 phosphorylation is in- 
hibited by mos-depletion (3), $6 kinase activity induced by 
activated ras or tpr-met appears to be only partially affected 
by the lack o fmos  product (3, 10). In this study, nearly 50% 
of the ribosomal subunit $6 phosphorylation induced by 
MBP-mos ~ was suppressed by PKA activity, however, the 
remaining 50% appears to be the result of the injected PKA~. 
Thus, PKA~ inhibits $6 phosphorylation induced by mos. 

The cAMP-dependent protein kinase has been implicated 
as a negative regulator of meiosis and early mitosis in several 
organisms. Recently, inhibition of PKA has also been 

reported to play a pivotal role in the G2/M transition of 
mammalian fibroblasts (23). We have shown that MBP- 
mosx~ of the G2/M transition in cycloheximide- 
treated oocytes was potentiated by progesterone exposure, 
suggesting a possible role for the inhibition of PKA in this 
event (50). Here, we report a synergistic effect between 
PKAr and MBP-mos ~~ that enhanced the number of ooeytes 
undergoing the GJM transition in the absence of protein 
synthesis, thereby mimicking the effect of progesterone. It 
has been previously shown that during oocyte maturation 
certain substrates are hyperphosphorylated, while other pro- 
teins are dephosphorylated (27), and it has been suggested 
that these dephosphorylation events may be the result of 
PKA inactivation (23). It is possible that mos and PKA~ are 
antagonists, where mos may inactivate an inhibitor of MPF 
activation, while PKA~ phosphorylates this inhibitor or an 
activator of this inhibitor, and thereby causes its activation. 
However, it is also possible that mos may activate, while 
PKA~ inactivates, an activator of pre-MPF. We have shown 
here that PKAr requires mos synthesis to activate MPE 
Perhaps, as has been suggested (19), progesterone acts by 
releasing the brakes (in this case, inhibiting PKA activity) 
and stepping on the accelerator (mos synthesis). Curiously, 
both PKA and pp39 mos, two proteins with significant ho- 
mology (2), have been shown to associate with microtubules 
and phosphorylate tubulin in vitro (47, 51). Perhaps the an- 
tagonism between mos and PKA involves microtubule 
modification. Collectively, our results suggest that the in- 
hibitory effect of PKA is a late step in the initiation of MPF 
activation and that inactivation of PKA, along with the 
promoting activities of the mos product, leads to MPF acti- 
vation. 
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