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Themelanocortin system consists of five G protein–coupled receptors (MC1R-MC5R), the
bidirectional endogenous ligands (MSH and Agouti families), and accessory proteins
(MRAP1 and MRAP2). Accumulative studies of vertebrate species find high expression
level of melanocortin 1 receptor (MC1R) in the dermal melanocyte and elucidate the
essential roles in the skin and fur pigmentation, morphological background adaptation,
and stress response. The diploid amphibian Xenopus tropicalis (xt) has been utilized as a
fantastic animal model for embryonic development and studies of physiological cryptic
colouring and environmental adaptiveness. However, the interaction of xtMc1r signaling
with xtMrap proteins has not been assessed yet. In this study, we carried out in silico
evolutionary analysis of protein alignment and genetic phylogenetic and genomic synteny
of mc1r among various vertebrates. Ubiquitous expression of mrap1 and mrap2 and the
co-expression with mc1r transcripts in the skin were clearly observed. Co-
immunoprecipitation (ip) and fluorescent complementary approach validated the direct
functional interaction of xtMc1r with xtMrap1 or xtMrap2 proteins on the plasma
membrane. Pharmacological assay showed the improvement of the constitutive activity
and alpha melanocyte-stimulating hormone (a-MSH) stimulated plateau without dramatic
alteration of the cell surface translocation of xtMc1r in the presence of xtMrap proteins.
Overall, the pharmacological modulation of xtMc1r by dual xtMrap2 proteins elucidated
the potential role of this protein complex in the regulation of proper dermal function in
amphibian species.

Keywords: Xenopus tropicalis, amphibian, Mc1r, Mrap1, Mrap2
INTRODUCTION

The melanocortin system regulates broad physiological functions in mammals and some other
vertebrate species. It consists of five rhodopsin-like G protein–coupled receptors (melanocortin
receptor, MC1R–MC5R), the endogenous bidirectional agonistic and antagonistic ligand pairs
(melanocyte stimulating hormone, MSH, and Agouti protein families) and dimeric single
n.org June 2022 | Volume 13 | Article 8924071
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transmembrane melanocortin receptor accessory proteins (MRAP1
and MRAP2) (1–5). The MC1R is previously found in the dermal
melanocytes where its activation by a-MSH elevates downstream
tyrosinase cascades and stimulates eumelanin pigmentation of hair
follicles in multiple mammalian species (6–8). Intriguingly, insights
from large mammals suggests that the constitutive activation of
MC1R is more important for dark hair or coat color, whereas a-
MSH–induced MC1R signaling plays a key role in increases of
eumelanin production and causes skin tanning (9). The endogenous
antagonist Agouti of MC1R locally blocks the effect of a-MSH and
promotes pheomelanin expression in the fur (10, 11). Ubiquitous
ectopic over-expression of Agouti leads to a yellow coat color and
obesity syndrome in murine model (12).

In lower vertebrates, such as teleosts and amphibians, the
chronic dermal pigmentation is controlled by the developmental
differentiation of chromatoblast into various combinations of
melanophore, xanthophore, iridophore, cyanophore, etc. (13–
15). As a camouflage mechanism, the acute morphological skin
color change is bidirectionally regulated by aggregation or
dispersion of intracellular melanin. This physiological response
is caused by neuronal derived luminescent stimuli from the
surroundings to aid for the hiding and prevention of superior
predators and is simultaneously regulated by a-MSH-Mc1r and
MCH (melanin-concentrating hormone)–Mchr (melanin-
concentrating hormone receptor) signaling pathways (16–21).
We previously demonstrated the requirement of both eyes and
pineal glands for the teleostean background adaptation. In the
zebrafish, pineal AgRP2 neurons projected to the lateral tubular
nucleus, specifically antagonized zMc1r signaling and stimulated
the hypothalamic synthesis of two melanin concentrating
hormones (MCH and MCH-like) (21). Moreover, chordate
Mc1r signaling is regulated by Mrap proteins in red stingray
(Dasyatis akajei) (22) and orange-spotted grouper (Epinephelus
coioides) (23) and is strongly associated with the stress response
in the rainbow trout (Oncorhynchus mykiss) (24) and zebrafish
(Danio rerio) (25).

Xenopus tropicalis serves as an ideal model system for the skin
pigmentation and background adaptation for decades due to the
stronger adaptative capability than teleosts (26, 27). a-MSH and
Agouti, the natural Mc1r ligands, are reported to modulate
pigment-type switching in Xenopus melanophores (28, 29).
Mrap protein family functions as vital molecular chaperones
for all melaocortin receptors (30). Recently, the pharmacological
modulation and physiological roles of dual melanocortin
accessory proteins (Mrap1 and Mrap2) on the modulation of
Mc2r, Mc3r, and Mc4r signaling have been examined in the
Xenopus tropicalis and Xenopus laevis (31–34). However, the
potential physiological correlation of Mc1r with Mrap proteins
has not been fully investigated yet. In this study, we carried out
multiple in silico and biochemical approaches to explore the
evolutionary aspect of Xenopus tropicalis Mc1r (xtMc1r) and
elucidated the protein interaction and pharmacological
correlation with two Mrap proteins (xtMrap1 and xtMrap2) in
vitro. This is the first evaluation of the pharmacological profile of
melanocorin accessory proteins on modulating Mc1r signaling in
diploid amphibian species.
Frontiers in Endocrinology | www.frontiersin.org 2
METHODS AND MATERIALS

Plasmids
The nucleic acid and amino acid sequences of mc1r, mrap1, and
mrap2 were acquired from the National Center for
Biotechnology Information database and our previous study
(32). The DNA fragments of these genes were amplified from
the brain cDNA library of an adult female Xenopus tropicalis and
sub-cloned into pcDNA3.1 (+) vector with proper epitope tags at
both N- and C-terminals. All the sequences were verified by
DNA sequencing (Genewiz from Azenta Life Sciences, China).

Protein Alignments, Phylogenetics, and
Genomic Synteny Analysis
We performed in silico online Multiple Sequence ClustalW
Alignment (https://www.genome.jp/tools-bin/clustalw) with
default parameters. The phylogenetic trees of mc1r from
various vertebrates were calculated and generated by MEGA5.1
software, and the analysis for mrap1 and mrap2 was previously
reported (32). The genomic synteny and comparative analysis of
the adjacent genomic regions of mc1r in elephant shark,
zebrafish, Xenopus tropicalis, turtle, chicken, mouse, and
human was carried out on the UCSC genome browser (http://
genome.ucsc.edu/).

Tissue Distribution Analysis of xtmc1r
and xtmraps
An adult female Xenopus tropicalis (1 year old) was euthanized
with overdose of Tricaine methane sulfonate (MS‐222) with the
approved protocol by the Institutional Animal Care and Use
Committee (IACUC) of Tongji University. The total RNA of
each tissue was extracted with TRNzol Universal Reagent
(TIANGEN Biotech, Beijing, China) and reverse-transcribed
with the FastKing RT Kit (KR116, TIANGEN Biotech, Beijing,
China) to remove the residual genomic DNA contaminations.
Next, the cDNA was utilized for the following tissue distribution
analysis as previously reported (32). The b-actin was used as an
internal control. qPCR primers are as follows: xtMC1R_fw
CCCACATCAAGCTAGGGCAA; xtMC1R_rev GCCATTAG
CTTTCTGCCAGC; xtMRAP1_fw GGCACTAGCTCTG
CTCACAA; xtMRAP1_rev ACAAACATTGCAAGGCCGAC;
xtMRAP2_fw TGGGTTGGTCTTGCAGTCTT; xtMRAP2_rev
TCCTTCCAAAATCAGGCGCA; xtb-actin_fw AACCGGGA
GAAAATGACGCA; xtb-actin_rev ACAGGGACAACAC
AGCTTGG. The RT-PCR and agarose gel analysis were
repeated three times for each gene.

Western Blot and
Co-Immunoprecipitation Assay
The HEK293T cells were cultured with high glucose dulbecco’s
modified eagle medium (DMEM) containing 10% (v/v) fetal bovine
serum (Gibco, Australia) in an incubator with 5% CO2 at 37°C.
Plasmids with proper genes or empty vectors were transfected with
polyethyleneimine (PEI, Polysciences, Inc., USA). 3×HA-xtMc1r
and v5-xtmraps-flag were co-transfected, lysed, and incubated with
HA-Tag (C29F4) Rabbit mAb (Cell Signaling Technology, Inc.,
June 2022 | Volume 13 | Article 892407
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USA) overnight at 4°C. The next day, protein A+G agarose beads
(Beyotime Institute of Biotechnology, Shanghai, China) were
applied, washed, and re-suspended in native sample loading
buffer with b-mercaptoethanol (Sangon Biotech Ltd., Shanghai,
China). Samples were boiled at 95°C for 15 min, resolved with
sodium dodecyl sulfate – polyacrylamide gel electrophoresis (SDS/
PAGE) gel, and transferred to the polyvinylidene difluoride (PVDF)
membranes (Millipore Sigma Chemicals, Fisher Scientific, USA).
Next the membranes were shaken with Immunol Staining Blocking
Buffer with BSA and Triton X-100 (P0102, Beyotime Institute of
Biotechnology, Shanghai, China) for 15 min and then incubated
with 1:2,000 diluted HA-tag Rabbit mAb (Cell Signaling
Technology, Inc., USA), Mouse anti FLAG-tag mAb
(ABclonal Biotechnology Co., Ltd., China), at 4°C overnight. Next
day, the secondary peroxidase Horseradish Peroxidase (HRP)-
conjugated antibody (ABclonal Biotechnology Co., Ltd., China)
was diluted by 1:4,000 and applied for extra 2 h at room
temperature. Finally, staining of the membranes was exposed to
the enhanced chemiluminescence plus reagents (Beyotime Institute
of Biotechnology, Shanghai, China), and the images were captured
by the Amersham Imager 600 (GE Healthcare Life Sciences, USA).

Bimolecular Fluorescent
Complementation Assay
The Venus fluorescent protein was divided into two non-fluorescent
fragments, VF1 andVF2, as previously reported (32).HEK293T cells
were cultured in poly-D-lysine–coated plates (Sangon Biotech Ltd.,
Shanghai, China) and transfected with polyethyleneimine. Plates
were washedwith phosphate buffer solution and fixedwith 4% (w/v)
paraformaldehyde (Sangon Biotech Ltd., Shanghai, China) after 24 h
transfection. Cells were then permeabilized by applying 0.3% (v/v)
Tween 20 and 5% (v/v) goat serum and incubated overnight with
1:2,000 diluted FLAG-tag Mouse mAb (Cell Signaling Technology,
Inc., USA). Plates were then washed three times with phosphate
buffered saline (PBS) and incubated with 1:1,000 diluted Goat Anti-
Rabbit immunoglobulinG (IgG) (AlexaFluor 555) antibody (Abcam
plc.,UK) for 2 hat roomtemperature. Finally,GoldAntifadeReagent
with 4',6-diamidino-2-phenylindole (DAPI) (Cell Signaling
Technology, Inc., USA) was applied to stain cell nuclei, and then
theplateswere sealedwithcoverslips.Thefluorescence excitationwas
captured by the Zeiss LSM880 AiryScan ConfocalMicroscope (Jena,
Germany) with 60× oil immersion lens.

cAMP Luciferase Reporter Assay
The mc1r and mraps plasmids were transiently co-transfected at
1:0, 1:1, 1:3, and 1:6, along with the pCRE-luc reporter vector in
HEK293T cells. DMEM with 0.1% bovine serum albumin
(Sangon Biotech Ltd., Shanghai, China) was utilized to dilute
a-MSH peptide (GenScript ProBio, China) from 10−6 to 10−10.
Cells were distributed equally into 24-well plate and then
incubated with corresponding concentrations of a-MSH for
4 h at 37°C. For the antagonistic assay, cells were incubated
with EC80 dosage of a-MSH with different dilutions of AgRP
peptide (GenScript ProBio, China). The luminescence was
excited with Dual-Glo Luciferase Assay Reagent System
(Promega Biotech Co., Ltd., USA) and measured by
Frontiers in Endocrinology | www.frontiersin.org 3
Spectramax iD3 Multi-Mode Microplate reader. Each assay
was performed and replicated in triplicate for statistical analysis.

Cell-Surface Enzyme-Linked
Immunosorbent Assay
HEK293T cells were cultured in poly-D-lysine–pre-coated 24-well
plates and transfected withmc1r andmraps plasmids at ratios of 1:0,
1:1, 1:3, and 1:6. Twenty-four hours later, plates were washed with
PBSandfixedwith4%(w/v)paraformaldehyde (SangonBiotechLtd.,
Shanghai, China). Cells were then incubated with 5% (m/v) non-fat
milk (SangonBiotechLtd., Shanghai,China) inDulbecco'sPhosphate
Buffered Saline (DPBS) for 1 h at room temperature and incubated
with1:4,000dilutedHA-tagRabbitmAbs(Cell SignalingTechnology,
Inc., USA) for 2 h. Cell were washed with DPBS and incubated with
1:7,500 diluted secondary peroxidase (HRP)–conjugated antibody
(ABclonalBiotech,China) for 1 h.Finally, theTMBsubstrate solution
(Beyotime Institute of Biotechnology, Shanghai, China) was applied
and stopped by adding 2 M H2SO4. The luminescent signal was
detected and measured at OD450 by Spectramax iD3 Multi-Mode
Microplate reader. Each assay was performed and replicated in
triplicate for the following statistical analysis.

Statistical Analysis
The raw data generated from above were analyzed by GraphPad
Prism 6 (https://www.graphpad.com/). Statistical differences
between experimental conditions and control groups were
analyzed with one-way ANOVA and Tukey post-test, whereas
two independent groups were compared by the Student’s t-test
with a significance level of 0.05. Not significant (ns), ∗p < 0.05,
∗∗p < 0.01, ∗∗∗p < 0.001, and ∗∗∗∗p < 0.0001. Data were plotted
as standard error of mean ± SEM. All experiments were
replicated in triplicate and repeated at least three separate times.
RESULTS

Evolutionary Conservation and Tissue
Distribution Analysis of mc1r
First we picked mc1r genes from eight vertebrates including two
mammals (human and mouse), one bird (chicken), one reptile
(greenWestern Painted Turtle), two amphibians (Xenopus tropicalis
and European common frog), and two fishes (zebrafish and elephant
shark) and performed the protein sequence alignment analysis
(Figure 1A). Overall, the transmembrane domains (TMs 1–7),
the first and second intracellular loop, and C terminal were highly
conserved, and the whole MC1R protein showed only 30.3%
primary sequence identity in all vertebrates. The Xenopus
tropicalis Mc1r showed highest 62.8% similarity with European
common frog and lowest 51.4% similarity with human ortholog.
Next, we analyzed and generated the phylogenetic tree of all mc1rs
and found that two amphibians clustered into a separated clade as
shown in the dendrogram (Figure 1B). In addition, with the
available UCSC genome browser database, we performed genomic
synteny and monitored the arrangement of surrounding genomic
regions of mc1r in elephant shark, zebrafish, Xenopus tropicalis,
Western Painted Turtle, chicken, mouse, and human and illustrated
June 2022 | Volume 13 | Article 892407
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FIGURE 1 | Protein alignment and phylogenetic analysis of Xenopus tropicalis Mc1r. (A) Sequence alignments of xtMc1r (XP_012817790.1) and other Mc1rs from hum
(NP_032585.2), bovine (NP_776533.1), chicken (NP_001026633.1), pigeon (OPJ78282.1), turtle (XP_005308247.1), European common frog (ACA28876.1); zebrafish (N
(XP_005999265.1), red stingray (BAU98230.1), elephant shark (ENSCMIT00000036457.1), lamprey Mca receptor (XP_032816350.1), and lamprey Mcb receptor (ABB36
over 50%, 75%, and 100%, respectively. (B) Dendrogram of Mc1rs was generated by the NJ analysis with Molecular Evolutionary Genetics Analysis (MEGA) software. As
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the positional orders of key adjacent genes of Xenopus tropicalis
mc1r, in which three genes including tcf25, tubb3, and def8 were in
strict accordance with mammalian species (Figure 2). Next, we
dissected an adult female Xenopus tropicalis and examined the
transcripts of mc1r and mraps by reverse-transcription PCR (RT-
PCR) in 19 tissues. We found that the mc1r and mrap2 exhibited
ubiquitous expressional pattern and high level of mc1r transcript
was seen in the skin, eye, spleen, pancreas, kidney, and bonemarrow
(Figure 3). In summary, both genetic phylogeny and genomic
synteny investigation clarified the evolutionary conservation of
mc1r in vertebrates. The co-existence of mc1r and mraps
Frontiers in Endocrinology | www.frontiersin.org 5
transcripts in the skin and some other organs strongly suggested
the potential coordination and co-participation in the dermal and
some other unknown physiological functions.

Co-Localization and Direct Interaction of
xtMc1r and xtMrap Proteins
3HA-xtMc1r and v5-xtMrap1-flag or v5-xtMrap2-flag were co-
transfected into HEK293T cells, and a tight protein complex was
steadily observed by co-immunoprecipitation in vitro (Figure 4).
Next, we performed the bimolecular fluorescence complementation
assay to validate the actual and functional xtMc1r-xtMraps complex
FIGURE 2 | Synteny analysis of Xenopus tropicalis mc1r. Synteny mapping of mc1rs among with Callorhinchus milii (elephant shark), Danio rerio (zebrafish),
Xenopus tropicalis, Chrysemys picta bellii (turtle), Gallus gallus (chicken), Mus musculus (house mouse), and Homo sapiens (human). Positional conserved genes
among multiple species are marked with color.
FIGURE 3 | Expressional analysis of mc1r transcript in multiple tissues of Xenopus tropicalis. Expression profiles of mc1r, mrap2, and mrap2 transcript in 19 tissues
from an adult female Xenopus tropicalis. Housekeeping gene b-actin was used as an internal control.
June 2022 | Volume 13 | Article 892407
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in live cells. The complementaryVenus signalwas clearly captured on
the plasma membrane and several intracellular compartments
(Figure 5) suggesting that the non-fluorescent fragments of VF1
and VF2 physically became close to each other. Overall, our
experimental evidence confirmed the actual direct protein
interactions of xtMraps and xtMc1r.

Pharmacological Effect of xtMraps on
Modulating xtMc1r Signaling
Next, we evaluated the pharmacological profile of xtMc1r in the
presence of xtMrap proteins. Our results showed that xtMrap1
and xtMrap2 dramatically elevated the constitutive activities of
Frontiers in Endocrinology | www.frontiersin.org 6
xtMc1r (Figures 7A, B). xtMc1r showed elevated a-MSH
stimulated plateau with 1:6 ratios of xtMrap1 or xtMrap2
(Figure 6 and Table 1). Next, we assessed the inhibitory
effect of AgRP peptide on xtMc1r signaling in presence of
EC80 of a-MSH or ACTH. xtMrap1 and xtMrap2 could dose-
dependently suppress the AgRP-reduced xtMc1r signaling
(Figures 6C, D). Moreover, EC50 of each curve was
calculated and obviously altered in the presence of xtMrap1
or xtMrap2, suggesting that xtMrap proteins could affect the
sensitivity of xtMc1r to a-MSH or AgRP. Together, xtMrap
proteins exhibited dose-dependent potentiation of cAMP
responsive plateau of xtMc1r signaling.
A B

FIGURE 4 | Investigation of the direct Protein interaction of xtMraps and xtMc1r proteins in vitro. (A) Co-immunoprecipitation of the HA-xtMc1r and Flag-xtMrap1
protein complex. (B) Co-immunoprecipitation of HA-xtMc1r and Flag-xtMrap2 protein complex.
A

B

FIGURE 5 | Functional protein complex of xtMc1r and xtMraps on plasma membrane. (A) Formation of functional protein complex of xtMc1r and xtMrap1 on the
plasma membrane. (B) Formation of functional protein complex of xtMc1r and xtMrap2 on the plasma membrane. Nuclei were shown in blue (DAPI). Scale bar = 50 mm.
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A B

C D

E F

G H

FIGURE 6 | Pharmacological modulation of xtMc1r signaling by xtMrap proteins. (A–D) Dose-responsive cAMP level of a-MSH (0 M, 10−11 to 10−6 M) and ACTH (0
M, 10−11 to 10−6 M) stimulated xtMc1r in presence of different amounts of xtMrap1(A, C) and xtMrap2 (B, D). Data were represented as the mean ± SEM from three
independent experiments (E–H). The antagonistic effect of AgRP (10−11 to 10−6 M) to the EC80 dosage of a-MSH (E, F) or ACTH (G, H) induced xtMc1r signaling in
presence of different amounts of xtMrap1(E, G) or xtMrap2 (F, H). Data were represented as the mean ± SEM from three independent experiments.
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Surface Translocation of xtMc1r in
Presence of xtMrap Proteins
Next, we checked whether the cell surface translocation of xtMc1r
could be affected by the presence of xtMrap proteins. 3HA-xtMc1r
and v5-xtMraps-flag were co-transfected at ratios of 1:0, 1:1, 1:3,
and 1:6 in HEK293T cells. Enzyme-linked immunosorbent assay
was carried out to quantify the surface level of 3HA-tagged xtMc1r
proteins. As shown, the surface expression of xtMc1r did not
dramatically change in various dosages of xtMrap2 (Figure 7D)
and only elevated with high dosage of xtMrap1 proteins
(Figure 7C). Overall, these results showed that both xtMrap
proteins exhibited mild effect on the cell surface translocation
of xtMc1r.
DISCUSSION

The fur color ofmammals is regulatedby the synthesis ofmelanin in
the melanocyte. As the first discovered melanocortin receptor, the
activation of MC1R signaling by the locally secreted a-MSH in the
skin is vital for the initiation of tyrosinase-associated biochemical
reactions. In lower vertebrates, dermal pigmentation is determined
by the controlled differentiation of chromatoblast into
melanophore, xanthophore, iridophore, cyanophore, etc. The
morphological cryptic skin color adaptation, a camouflage
mechanism for animals’ hiding and prevention of natural
predators, is simultaneously regulated by acute aggregation or
dispersion of intracellular melanin aggregates triggered by
luminescent signal from the surroundings. This vital
physiological response is bidirectionally modulated by a-MSH-
Mc1r and MCH-Mchr signaling pathways. Xenopus tropicalis, a
diploid amphibious animal, serves as an ideal model system for the
skin pigmentation and background adaptation studies for decades
due to its stronger adaptative capability than teleostean species (26,
27). a-MSH and Agouti, the natural Mc1r ligands, could modulate
pigment-type switching in Xenopusmelanophores (28, 29).

Accumulated evidence found that the melanocortin system
existed only in chordate phyla, and the most ancient
melanocortin receptor was reported in the lamprey and hagfish
genomes already (35, 36). Recently, the physiological roles of
multiple melanocortin accessory proteins on the regulation of
Mc2r, Mc3r, and Mc4r signaling have been elucidated in the
diploid Xenopus tropicalis and tetraploid Xenopus laevis (30–34)
without any attention to the Mc1r. In our previous study, we had
performed the protein alignment, phylogenetic tree, and synteny
analysis ofmrap1 andmrap2, alongwithmc3randmc4r (32). In this
study, withmultiple bioinformatic and biochemical approaches, we
explored the evolutionary aspect of mc1r and other orthologs
among various vertebrates. The protein alignment, phylogenetic
tree, and genomic synteny clearly verified the closest relative of the
amphibians among eight vertebrates from selachian to mammals
(Figures 1 and 2). Like mammals, the high mRNA expression of
mc1r transcript was seen in the skin, eye, spleen, pancreas, kidney,
and bonemarrow. In accordancewith our previousfinding (32),we
observed the ubiquitous expression of mrap1 and mrap2 in 19
collected tissues (Figure 3). Importantly, co-expression of three
transcripts in the skin, the major region for exertingMc1r function
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strongly indicated the associationofMrapproteins in the regulation
of dermal function and Mc1r signaling.

As the naturally existing endogenous agonists,a-MSH or ACTH
peptide could directly activate the downstream Gas-coupled cAMP
cascades of all melanocortin receptors, along with the accessory and
regulatory effect from theMrap protein families on the cell surface (2,
37–39). However, the pharmacologicalmodulation ofMrap proteins
on every melanocortin receptor signaling differs greatly among
vertebrates. Here, in this study, we verified the direct protein
interaction, the pharmacological modulation of two xtMrap
proteins on the xtMc1r cascades upon activation by a-MSH or
inhibition by AgRP, respectively (Figures 4–6). We also confirmed
the actual existence of functional protein complex of xtMc1r-
xtMrap1 and xtMc1r-xtMrap2 on the cell surface by venus
fluorescence complementation approach (Figure 5). In addition,
xtMrap1andxtMrap2 significantly elevated the constitutive activities
without affecting the cell surface translocation of xtMc1r (Figure 7).

In lower vertebrates, especially the teleosts, Mc1r mainly
participates in the dermal melanin synthesis and melanophore
dispersion (21, 22). Interestingly, the rainbow trout mc1r transcript
is stronglyassociatedwith the stress response (24).Thedistributionof
mc1r transcript inmultiple organs indicates that itmay participate in
Frontiers in Endocrinology | www.frontiersin.org 9
other unknown physiological functions in Xenopus tropicalis.
Moreover, the angstrom resolution of cryo-EM structures of the
humanMC1R-Gs complexes have been reported recently (40).With
this technique, the structural insights of Mrap-Mc1r-Gs complex of
several species may be elucidated in the near future.

Together, we performed a comprehensive genetic and genomic
analysis of the evolutionary and functional aspect ofMc1r with two
accessory proteins in the Xenopus tropicalis. The elevation of the
ligand stimulated maximal response of xtMc1r signaling suggested
that the xtMrap proteins jointly participated in the multiple
physiological processes in the skin. The ubiquitous expression of
twomrap transcripts strongly indicated the broad distribution and
functional diversity of Mrap proteins in the Xenopus tropicalis and
impelled us to further elucidate the physiological and
pharmacological regulation on other G protein-coupled receptor
(GPCR)-associated pathways in the amphibian species.
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FIGURE 7 | Measurement of the constitutive activity and surface translocation of xtMcar by xtMrap proteins. The constitutive activity of xtMc1r in the presence of
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