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ABSTRACT
Introduction  Progressive distal symmetrical axonal 
neuropathy, a complication of diabetes mellitus (DM), has 
an unknown cause. Normal physiological metabolism and 
diabetic dysmetabolism are associated with the generation 
of γ-diketones. γ-Diketones form pyrroles with protein 
amines, notably with axonal proteins required for the 
maintenance of nerve fiber integrity, especially elongate, 
large-diameter peripheral nerve fibers innervating the 
extremities. We tested the hypothesis that neuropathy-
associated γ-diketone pyrroles are elevated in DM.
Research design and methods  We measured the urinary 
concentration of γ-diketone pyrroles in age-matched 
and gender-matched elderly (60–84 years) persons with 
(n=267) or without (n=267) indicators of DM based in a 
community population (9411 community older adults aged 
≥60 years) in Shenzhen city, Guangdong, China. We used 
statistical methods, including a generalized linear model, 
multivariate logistic regression analysis and restricted 
cubic splines, to assess linear and nonlinear relationships 
between urinary γ-diketone pyrroles and indicators of DM.
Results  Compared with healthy controls, those with DM 
had significantly higher levels of fasting blood glucose, 
glycated hemoglobin A1c, urinary ketone bodies and 
urinary γ-diketone pyrroles. The median concentration of 
urinary γ-diketone pyrrole adducts was significantly higher 
(p<0.0001) in individuals with DM (7.5 (5.4) μM) compared 
with healthy controls (5.9 (4.3) μM). Both linear and non-
linear relations were found between urinary γ-diketone 
pyrroles and indicators of DM.
Conclusions  Diabetic dysmetabolism includes increased 
generation and excretion of neuropathy-associated 
γ-diketone pyrroles. These findings form the foundation for 
studies to test whether γ-diketone pyrrole concentration 
correlates with quantitative sensory (vibration and 
temperature) and electrodiagnostic testing.

INTRODUCTION
Diabetes mellitus (DM) has been described 
as a global epidemic1 and peripheral neurop-
athy its most common complication.2 The 
prevalence rates of diabetic neuropathy in a 
large study of Chinese subjects with type 1 and 
type 2 DM were approximately 22% and 35%, 

respectively.2 Comparable rates of diabetic 
neuropathy have been recently reported in 
Barbados, Libya, Qatar and South Korea.3–6 
Approximately half of all individuals with 
DM develop a distal symmetrical and slowly 
progressive axonal polyneuropathy, with a 
stocking-and-glove distribution of sensory 
abnormalities.7 8

While the most common form of diabetic 
neuropathy is a central-peripheral distal 
axonopathy,9 which can be modeled in 
rodents by repeated systemic treatment with 

Significance of this study

What is already known about this subject?
►► Distal symmetrical large-fiber polyneuropathy fre-
quently occurs in diabetes mellitus (DM), but the 
metabolic cause is unknown. Diabetic dysmetabo-
lism increases levels of 2-hexanone, which has neu-
rotoxic potential via oxidation to the corresponding 
γ-diketone and formation of pyrroles with amines of 
axonal and other proteins.

What are the new findings?
►► We found the concentration of urinary γ-diketone 
pyrroles, which are formed from the established re-
action between protein amines and γ-diketones with 
potential to induce distal symmetrical axonal neu-
ropathy, are significantly elevated in elderly Chinese 
persons with DM.

►► This finding is consistent with the hypothesis that di-
abetic dysmetabolism is linked to the increased risk 
for large-fiber diabetic polyneuropathy.

How might these results change the focus of 
research or clinical practice?

►► If future studies show that elevated urinary γ-dike-
tone pyrroles correlate with quantitative measures 
of stocking-and-glove sensory deficit in DM, this 
may provide a non-invasive biological indicator 
of risk for distal symmetrical large-fiber diabetic 
polyneuropathy.

http://drc.bmj.com/
http://orcid.org/0000-0003-3994-2639
http://crossmark.crossref.org/dialog/?doi=10.1136/bmjdrc-2020-001575&domain=pdf&date_stamp=2020-09-10
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the γ-diketone 2,5-hexanedione (2,5-HD),10 the molec-
ular mechanisms underlying progressive axonal degener-
ation in DM are unknown.1 2,5-HD reacts with the amino 
groups of axonal (and other tissue) proteins to form 
2,5-dimethylpyrrole monomers that result in covalent 
cross-linking of derivatized proteins, including neurofila-
ment and microtubule-associated proteins. This disrupts 
longitudinal axonal transport and eventually results in 
distal axonal degeneration of elongate large-diameter 
myelinated nerve fibers.11–14

Since the serum of individuals with and without 
DM has been documented to contain 2-hexanone 
and 3-heptanone,15 both of which can undergo w-1 
oxidation to form the neurotoxic γ-diketones 2,5-HD 
and 3,6-heptanedione, respectively, that form amine 
pyrroles,15–17 we tested the novel hypothesis that elevated 
concentrations of γ-diketone pyrroles are present in 
diabetic urine.

Data reported here are consistent with this hypothesis 
and form the foundation for future studies to determine 
if there is a relationship between elevated levels of γ-dike-
tone pyrroles and quantitative measures of stocking-and-
glove neuropathy.

RESEARCH DESIGN AND METHODS
Study participants
The study included 534 participants: 267 persons with 
DM and 267 individuals serving as the control group. 
The participants were all from the baseline of the 

Shenzhen Aging-related Disorder Cohort established 
in Luohu district of Shenzhen City, Guangdong, China, 
which consists of 9411 older community members.18 The 
participants were all older individuals (aged ≥60 years) 
who responded to a questionnaire and were given a phys-
ical examination during the period from July 2017 to 
October 2018. Figure 1 shows the strict inclusion criteria 
of cases were: self-reported DM diagnosed by a physician 
plus evidence of the therapeutic use of insulin or other 
glucose-lowering agents, a fasting glucose level >7.0 mM 
and a glycated hemoglobin A1c (HbA1c) level of >6.5%. 
Inclusion criteria for healthy controls included: no self-
reported diabetes plus no use of insulin or other glucose-
lowering agents, a fasting blood level of <7.0 mM and an 
HbA1c level of <6.5%. Among the 9411 participants of 
the original cohort, 521 individuals fell in the group of 
those with DM and 4571 in the group of healthy controls. 
Among the participants with diabetes, those with missing 
samples (n=200) or missing information on cognitive 
functions (n=54) were excluded from the study. Case and 
control persons were matched at 1:1 by age and gender.

Questionnaire and physical examination
A general questionnaire administered by face-to-face 
interview was applied to all study individuals on the day 
of the physical examination. Information was collected 
on demographic characteristics (gender, birth date, 
occupation before retirement), lifestyle (active and 
passive smoking status), individual histories of chronic 

Figure 1  Subject selection. HbA1c, glycated hemoglobin A1c.
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diseases (DM but not DM-type, hypertension and coro-
nary disease) and medication history. The physical 
examination included measurements of height, weight, 
glucose level (coagulated blood) and HbA1c (EDTA-
anticoagulated whole blood) of fasting venous blood, 
and routine urinalysis (urobilinogen and ketone bodies) 
of an early-morning sample. Body weight with light 
clothing and height without shoes were measured with 
an ultrasonic electronic height-and-weight scale (Omron 
HNH-219, Kyoto, Japan). The plasma glucose level of 
fasting venous blood was determined by a biochemistry 
autoanalyzer (Hitachi 7600-010, Hitachi, Tokyo, Japan). 
The HbA1c of fasting venous blood was determined by an 
HbA1c Analyzer (Premier Hb9210, Trinity Biotech, Bray, 
Ireland). Urinalysis used a urine analyzer (URIT-500B, 
URIT Medical Electronic Group, Shenzhen, China).

Pyrrole analysis
Urine samples from the participants were collected in 
the early morning at the time of physical examination. 
Samples were stored at −20°C prior to use. Analysis of 
urinary pyrroles employed minor modifications of 
published methods.19–21 Pyrrole adducts were measured 
spectrophotometrically after reaction of 0.08 mL urine 
with 0.08 mL guanidine hydrochloride (70%) and 0.08 mL 
of Ehrlich’s reagent 3% 4-dimethylaminobenzaldehyde 
(DMBA) in the solution of 40% vol/vol methanolic 14% 
boron trifluoride and 60% vol/vol ethanol.22 Absorption 
values were measured at 526 nm with an automatic micro-
plate reader (Infinite 1000, Tecan, Switzerland). Calcu-
lations were based on a standard curve prepared with 
different concentrations of 2,5-dimethylpyrrole.

Data analysis
The Kolmogorov-Smirnov test was used to examine 
the distribution of variables. Continuous variables that 
distributed normally were expressed as a mean±SD. Non-
normally distributed variables were presented as medians 
and interquartile range (IQR) and were compared 
between two groups by the Mann-Whitney U test. Cate-
gorical variables were reported as frequencies and 
proportions; these were compared between two groups 
using the χ2 test and Fisher’s exact test if at least one cell 
had an expected count <5. Multiple linear regression 
analysis was used to determine the independent predic-
tors of concentration of pyrrole adducts. Non-linearity 
in dose-response relationships between log-transformed 
diabetic indices (fasting blood glucose or HbA1c) and 
pyrrole adducts were assessed in the restricted cubic 
splines functions in linear models. Three knots (a term 
used in cubic spline functions) were set at the 5th, 50th 
and 95th percentiles of the distributions of pyrrole 
adducts. The covariates adjusted in the non-linearity in 
dose-response relationships included: smoking, body 
mass indices (BMI), coronary disease, hypertension. 
Participants were stratified into two gender subgroups 
in dose-response analyses. The statistical analyses were 
performed using SPSS (V.26.0; SPSS, Chicago, Illinois, 

USA) and SAS V.9.4 statistical software (SAS Institute, 
Cary, North Carolina, USA). P <0.05 was considered to 
be statistically significant.

RESULTS
Characteristics of persons with and without DM are 
summarized in table  1. No significant difference was 
observed between cases and controls with respect to age, 
gender, urinary urobilinogen or occupational exposure 
to organic solvents prior to retirement. The DM group 
had significantly higher (p<0.01) levels of fasting blood 
glucose, HbA1c, urinary ketone bodies and pyrrole 
adducts than the control group. Of those with DM, 
the mean age of males (69.5 years, n=129) was higher 
(p=0.038) than females (68.5 years, n=138); no signif-
icant sex difference (p=0.80) was seen in fasting blood 
glucose levels (7.6 (4) mM and 7.5 (3) mM, respectively) 
or percentage (7.1 (2)) and of HbA1c (p=0.80).

The distribution of pyrrole adducts for both DM and 
controls is plotted in figure 2 and the key characteristics 
are summarized in table 2.

Of those with DM, mean levels of pyrrole adducts were 
higher (p<0.0001) in males (8.1 (4.5) μM) than females 
(6.7 (4.6) μM). The median concentration of pyrrole 
adducts was significantly higher and the maximum value 
was double in the DM group versus the control group 
(tables  1 and 2). Outliers (kurtosis) in the DM group 
exceeded those for controls (table 2). Higher skewness 
was also observed in the DM group (figure 2 and table 2).

The univariate linear regression model (table  3) 
showed pyrrole adduct levels were positively associated 
with age, DM, fasting blood glucose level, HbA1c and 
urinary ketone bodies. Pyrrole adduct concentration was 
also significantly associated with gender adduct concen-
tration (p<0.0001), DM (p<0.0001), fasting blood glucose 
level (p<0.0001), HbA1c (p<0.0001) and urinary ketone 
bodies (p=0.088).

The multivariate linear regression model reflects that 
pyrrole adducts remained independently associated with 
DM, fasting blood glucose and HbA1c after adjustment 
for age, gender, smoking status, hypertension and coro-
nary disease.

The dose-response relationships between pyrrole 
adducts and log-transformed diabetic indices (fasting 
blood glucose or HbA1c) were evaluated by restricted 
cubic spline analysis (figure 3). Strong overall association 
was observed for both fasting blood glucose (figure 3A, p 
for overall association <0.0001) and HbA1c (figure 3D, p 
for overall association <0.0001). Non-linear associations 
were found for both fasting blood glucose (p <0.0001) 
and HbA1c (p for non-linearity=0.0149). In the subgroup 
analysis, males and females showed an equivalent overall 
association in the dose-response relationships between 
pyrrole adducts and diabetic indices. Males showed 
higher nonlinearity (p=0.0005) than females (p=0.083) in 
the concentration-response relationship between pyrrole 
adducts and fasting blood glucose (figure  3B,C), while 
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females showed higher non-linearity (p=0.0291) than 
males (p=0.1407) in the relationship between pyrrole 
adducts and HbA1c (figure 3E,F).

DISCUSSION
We show that γ-diketone pyrrole adducts in urine 
samples of elderly Chinese individuals with DM are 
significantly elevated relative to healthy age-matched 
and gender-matched individuals. Healthy Chinese 
persons aged 21–50 years had urine pyrrole adduct 

levels approximately half those in serum.19 In rodents 
exposed to n-hexane, the highest concentration of 
pyrrole adducts was observed in kidney, followed 
by liver, brain, spinal cord, urine, sciatic nerve and 
serum.20

We observed significant linear associations between 
urinary pyrrole adduct concentrations and diabetic 
indices (DM status, fasting blood glucose levels or HbA1c 
levels). We also found significant non-linear associations 
between urinary pyrrole adduct concentrations and two 
indices of DM (fasting blood glucose or HbA1c). More-
over, male persons showed a significant non-linear associ-
ation between pyrrole adduct and fasting blood glucose 
levels, while females showed a non-linear association 
between pyrrole adducts and HbA1c. The generalizability 
of these findings is unknown.

Table 1  Descriptive statistics of the study population

Healthy control Diabetes mellitus P value

Number of participants (F/M) 267 (138/129) 267 (138/129) 1.000*

Age of participants (years) 68.3±4.9 68.3±4.9 1.000*

Disease duration – 13.0±8.4 –

Taking glucose-lowering agent (N) – 255 –

Taking insulin (N) – 42 –

Fasting blood glucose (mM) 5.4 (0.7) 8.9 (2.5) <0.0001†

HbA1c (%) 5.9 (0.5) 7.8 (1.9) <0.0001†

Urinary ketone bodies
(negative/weak positive/positive)

267 (265/2/0) 252/13/2 0.002*

Urobilinogen
(negative/weak positive/positive/strong positive)

267 (265/0/1/1) 267 (265/1/1/0) 1.000*

Occupational exposure to organic solvent (N/Y) 267 (259/8) 267 (261/6) 0.788

Smoking (never/former and current) 266 (204/62) 267 (202/65) 0.839*

BMI (<24 kg/m2/=24 kg/m2/>24 kg/m2) 265 (136/107/22) 266 (119/105/42) 0.024*

Hypertension (negative/positive) 267 (122/145) 267 (86/181) 0.002*

Coronary disease (negative/positive) 267 (156/11) 263 (236/27) 0.007*

Pyrrole adduct (μM) 5.9 (4.3) 7.5 (5.4) <0.0001†

*Differences between groups were examined by the χ2 test.
†Differences between groups were examined by Mann-Whitney U test.
BMI, body mass index; HbA1c, glycated hemoglobin A1c.

Figure 2  Violin plot of the distribution of pyrrole adducts. 
The thick black bar in the center represents the IQR and the 
white dot in the middle represents the median value. The thin 
black line extended from the thick black bar represents the 
upper (max) and lower (min) adjacent values of the data.

Table 2  Concentration of pyrrole adduct in urine samples

Healthy 
control

Diabetes 
mellitus

Geometric mean (μM) 5.5 7.2

Kurtosis 1.8 8.4

Skewness 0.9 2.2

Percentile (μM) 25 3.9 5.1

50 5.9 7.5

75 8.2 10.5

Maximum (μM) 20.5 42.6
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While the three DM-associated classical ketone bodies 
(acetoacetate, β-hydroxybutyrate and their break-
down product acetone) are well known, a much larger 
number of ketones is found in human serum, including 
2-hexanone, 3-heptanone and 2-butanone.15 3-Heptanone 
and 2-hexanone undergo w-1 oxidation (potentiated by 
2-butanone—also reported in diabetic urine) to form 
3,6-heptanedione and 2,5-HD, respectively,15–17 repeated 
treatment with which results experimentally in axonal 
neuropathy.23 Noteworthy is that classical ketone bodies 
were found in only 0.92% of the total cohort from which 
the present study population was drawn.

Since the serum of individuals with and without 
DM has been documented to contain 2-hexanone 
and 3-heptanone,15 both of which can undergo w-1 
oxidation to form the neurotoxic γ-diketones 2,5-HD 
and 3,6-heptanedione, respectively, that form amine 
pyrroles,15–17 we tested the novel hypothesis that elevated 
concentrations of γ-diketone pyrroles are present in 
diabetic urine.

Demonstration that 2,5-HD induces central-
peripheral distal axonopathy evolved from outbreaks 
of peripheral neuropathy among persons occupa-
tionally exposed to the solvent chemicals n-hexane 
or 2-hexanone in the presence or absence of 
2-butanone.23 Since n-hexane is an inexpensive and 
widely used commercial and industrial solvent,24 low 
levels are likely to be present in ambient air. Given 
that n-hexane is metabolized to 2,5-HD, an exogenous 

source might contribute to levels in human biofluids. 
One study found that 1.3% of 1200 normal Americans 
with no known occupational exposure to n-hexane had 
blood levels of the neurotoxic alkane.25 A Japanese 
study of 31 individuals with no known n-hexane expo-
sure found low levels (<0.006 mg/L) of free 2,5-HD in 
urine.26 A third reported that healthy Italians without 
occupational exposure to n-hexane had detectable 
levels of 2,5-HD in urine (0.17–0.98 mg/L), only a 
minimal part of which was considered to have derived 
from exposure to hydrocarbon-polluted air.27 Subse-
quent study of urine samples from 123 healthy Italians 
recorded a 2,5-HD reference value of 0.795 mg/L for 
men and 0.627 mg/L for women.28 A fifth, very large 
investigation of healthy Chinese people (n=8235) with 
no occupational exposure to n-hexane or 2-hexanone, 
showed a median urine 2,5-HD concentration of 
0.171 mg/L for males and 0.147 mg/L for females, 
with increasing 2,5-HD excretion with the advance of 
age.29 A sixth study of 227 Swedish persons randomly 
selected from the general population found that men 
had higher levels of 2,5-HD excretion than women 
(0.48 and 0.38 mg/L, respectively).30 In a seventh 
study, investigations of 208 male and female subjects 
aged 18–24 years revealed a median level of urinary 
pyrrole adducts of unstated origin of 0.91 nmol/mL, 
which corresponds to a concentration of 0.91 μM.31 
This compares with the present findings of a median 
urinary pyrrole adduct level of 5.9 (4.3) μM for 
elderly healthy subjects, a result that might indicate 
pyrrole levels increase with age and correlate with 
the advance of sensory loss (notably vibration percep-
tion) with age.32 Importantly, age-matched subjects 
with DM in the present study had significantly higher 
(p=0.0001) urinary pyrrole levels and with greater 
variance, that is, 7.5 (5.4) μM.

Given our study involves an elderly residential popu-
lation with no known current or recent exposure to 
exogenous 2,5-HD or its precursors, the present findings 
suggest the pyrrole-forming γ-diketone (or γ-diketones) 
arise from endogenous metabolism, in agreement with a 
previous study,27 with elevated levels associated with aging 
and in particular with diabetic dysmetabolism. This tenta-
tive conclusion should be strengthened by examination 
of a larger population over a wider age range, preferably 
in settings where airborne concentrations of n-hexane 
and 2-hexanone and serum/urine levels of γ-diketones 
are contemporaneously measured. If, as we hypothe-
size, the elevated levels of γ-diketone pyrrole adducts 
are associated with an increased risk for sensory neurop-
athy, these may be able to serve as molecular markers 
of axonopathy-associated diabetic dysmetabolism. More 
importantly, since the enzymatic mechanisms respon-
sible for the P450 oxidation of 2-hexanone to neurotoxic 
2,5-HD are understood,33 it may be possible to control 
this process and, in this way, prevent or arrest the prog-
ress of diabetic neuropathy.

Table 3  Multiple linear regression analysis of independent 
predictors of pyrrole

Β SE P value Adjust R2

Univariate analysis

 � Age 0.021 0.041 0.633 −0.001

 � Gender −0.159 0.395 <0.0001 0.024

 � Diabetes 
mellitus

0.252 2.318 <0.0001 0.062

 � Fasting 
blood 
glucose

0.167 0.071 <0.0001 0.026

 � HbA1c 0.172 0.117 <0.0001 0.028

 � Urinary 
ketone 
bodies

0.074 0.974 0.088 0.004

Multivariate analysis

 � Diabetes 
mellitus*

0.265 0.392 <0.0001 0.107

 � Fasting 
blood 
glucose*

0.169 0.073 <0.0001 0.067

 � HbA1c* 0.168 0.120 <0.0001 0.067

*Adjusted by age, gender, smoking status, BMI, hypertension, and 
coronary disease.
BMI, body mass index; HbA1c, glycated hemoglobin A1c.
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Figure 3  The restricted cubic spline for associations between indices of diabetes and concentration of pyrrole adducts. 
Dose-response curve between log-transformed fasting blood glucose and concentration of pyrrole adducts in the overall study 
population (A), male only (B) and female only (C). Dose-response curve between log-transformed glycated hemoglobin A1c 
(HbA1c) and concentration of pyrrole adducts in the overall population (D), male only (E) and female only (F). The lines represent 
adjusted ORs (solid lines) and 95% CIs (long dashed lines). The reference values were set at 5th percentiles, and the knots 
were set at 20th, 5th, 50th and 95th percentiles of the log-transformed concentrations, respectively. Adjusted factors were 
consistent with the multivariate analysis of multiple linear regression analysis. FBG, fasting blood glucose.
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The strengths and weaknesses of this study include 
the use of a sample nested in a very large and well-
characterized cohort of elderly individuals. The pyrrole 
assay procedure employed a method that has been shown 
in experimental studies to reflect 2,5-HD concentrations 
in urine, although the DMBA method is semi-quantitative 
and might underestimate total pyrrole adducts.15 While 
the method cannot identify the specific amino targets 
of pyrrolization,34 the pyrrole-forming mechanism is a 
required step for induction of 2,5-HD axonopathy.35 36 
Urinary urobilinogen could potentially interfere with 
the pyrrole assay but detectable levels were found in only 
1.52% of study subjects in the total cohort of 9411 individ-
uals, and there was no difference between subjects with 
and without DM. There was also no difference in the small 
number of persons in each group who reported prior 
occupational exposure to organic solvents, and chemi-
cals and their metabolites arising in the workplace would 
have long before disappeared from the elderly retirees 
in this study. Follow-up studies are now needed to deter-
mine if urinary pyrrole adducts correlate with the results 
of quantitative sensory (vibration and temperature) and 
electrodiagnostic testing. Correlation of elevated pyrrole 
adduct levels with sensory loss would support (but not 
prove) an etiological role for γ-diketones in the induc-
tion of DM-associated stocking-and-glove neuropathy, 
which occurs more often in males than females.37–39 We 
found that levels of urinary 2,5-dimethylpyrrole adducts 
were somewhat higher in males than females with DM, 
as reported in healthy Chinese persons aged 31–50 years 
but not those aged 18–24 years.19 31

Summary
We compared the γ-diketone pyrrole content of urine 
samples drawn from elderly Chinese individuals with 
and without DM. Urinary pyrrole levels were significantly 
elevated in individuals with DM (males>females). Both 
linear and non-linear relations were found between 
urinary pyrroles and indicators of DM. This provides 
indirect evidence that diabetic dysmetabolism gener-
ates neurotoxic γ-diketones with potential to induce 
distal symmetrical polyneuropathy. This hypothesis can 
be tested by comparing urinary γ-diketone pyrrole levels 
with indices of sensory dysfunction.
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