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Abstract

Background: Accurate de novo genome assembly has become reality with the advancements in sequencing
technology. With the ever-increasing number of de novo genome assembly tools, assessing the quality of
assemblies has become of great importance in genome research. Although many quality metrics have been
proposed and software tools for calculating those metrics have been developed, the existing tools do not produce
a unified measure to reflect the overall quality of an assembly.

Results: To address this issue, we developed the de novo Assembly Quality Evaluation Tool (dnAQET) that
generates a unified metric for benchmarking the quality assessment of assemblies. Our framework first calculates
individual quality scores for the scaffolds/contigs of an assembly by aligning them to a reference genome. Next, it
computes a quality score for the assembly using its overall reference genome coverage, the quality score
distribution of its scaffolds and the redundancy identified in it. Using synthetic assemblies randomly generated from
the latest human genome build, various builds of the reference genomes for five organisms and six de novo
assemblies for sample NA24385, we tested dnAQET to assess its capability for benchmarking quality evaluation of
genome assemblies. For synthetic data, our quality score increased with decreasing number of misassemblies and
redundancy and increasing average contig length and coverage, as expected. For genome builds, dnAQET quality
score calculated for a more recent reference genome was better than the score for an older version. To compare
with some of the most frequently used measures, 13 other quality measures were calculated. The quality score
from dnAQET was found to be better than all other measures in terms of consistency with the known quality of
the reference genomes, indicating that dnAQET is reliable for benchmarking quality assessment of de novo
genome assemblies.

Conclusions: The dnAQET is a scalable framework designed to evaluate a de novo genome assembly based on the
aggregated quality of its scaffolds (or contigs). Our results demonstrated that dnAQET quality score is reliable for
benchmarking quality assessment of genome assemblies. The dnQAET can help researchers to identify the most
suitable assembly tools and to select high quality assemblies generated.
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Background
With the introduction of Next Generation Sequencing
(NGS) technology, it is now possible to generate massive
amounts of genome sequencing data, which has enabled
the de novo assembly of genomes of the sequenced indi-
viduals [1]. Approximately a decade ago, NGS technol-
ogy enabled the sequencing of the genomes of two
individuals, James D. Watson and Craig Venter, with
relatively high coverage and generation of their diploid
de novo genome assemblies [2, 3]. This was followed by
the diploid de novo genome assemblies of an Asian indi-
vidual genome (YH), a Korean individual (AK1) and
sample NA18507, which were reported and compared to
the previously available individual genomes [4–6]. More
recently, diploid DNA sequences for seven individuals
were assembled and reported along with the software
pipeline developed for the assembly [7]. As sequencing
has become cheaper and more affordable, the challenge
of routinely applying NGS in the precision medicine era
largely rests on bioinformatics solutions, especially for
personal genome assembly in near future. For this pur-
pose, various assembly tools have been proposed and re-
ported in the literature for de novo assembly using
short-read and long-read NGS data. Some examples of
such tools are SOAPDenovo2 [8], ALLPATHS-LG [9],
ABySS [10], MaSuRCA [11] and SPAdes [12], which use
the short-read data along with long range mate-pair li-
braries, Canu [13], MECAT [14], Celera [15] and Falcon
[16], which utilize long-read data produced by platforms
such as Oxford Nanopore and PacBio to generate de
novo assemblies. As the approaches utilized in these as-
sembly tools differ, the quality of the scaffolds or contigs
(contiguous sequences) and the assemblies produced by
them also varies significantly. To address the problem of
comparing these assembly software, efforts were spent
by the Assemblathon consortium to evaluate the perfor-
mances of multiple assemblers on simulated (artificial)
data [17] and data from non-mammalian vertebrate spe-
cies [18]. Despite no package was singled out as the best
solution for genome assembly, these two studies estab-
lished some key measurements for overall quality of an
assembly. In another study [19], the authors compared
de novo assemblies generated by multiple assembly tools
for human chromosome 14 and three other organisms
with small genomes. These works established the
groundwork for some of the well-accepted metrics to
measure the quality of an assembly from multiple
perspectives.
A handful of tools have been reported in the literature

for evaluating the quality of the newly assembled ge-
nomes using these metrics. REAPR [20] is a reference-
free tool that uses the approach of aligning the reads
used for the assembly back to the assembled contigs to
generate quality metrics. On the other hand, QUAST

[21] and its improved version QUAST-LG [22] are tools
that can evaluate de novo genome assemblies in the
presence of a trusted reference genome. These tools
align contigs or scaffolds of a de novo assembly to the
chromosomes of a given refence genome and report the
quality metrics based on these alignments. They also re-
port some reference-free metrics such as N50 value, but
the main purpose of these tools is to utilize a reference
genome to generate metrics such as genome coverage ra-
tio, number of misassemblies in the contigs etc., which
are dependent on the reference genome. The main
shortcomings of them are that the quality of individual
contigs are not fully assessed and they do not generate a
single quality metric that can reflect the overall quality
of a de novo genome assembly. The multiple metrics re-
ported by these tools may contradict each other, which
can confuse the end-user when comparing and ranking
multiple assemblies. It is also possible that these metrics
may perform inconsistently across multiple assemblies
for ranking, which makes them less reliable for ranking
the assemblies in terms of their overall qualities.
To remedy this problem, we developed the de novo

Assembly Quality Evaluation Tool (dnAQET) that as-
sesses the quality of a de novo assembly using the qual-
ity scores of its individual scaffolds/contigs via
consolidation of multiple well-established metrics. To
demonstrate the effectiveness of the quality score gener-
ated by dnAQET, we applied our tool to four different
synthetically created assembly sets, each of which was
designed to evaluate one aspect of our quality score for-
mulation. The first dataset demonstrated that dnAQET’s
quality scores were better for assemblies with larger scaf-
folds. Using the second dataset, we showed that as the
number of misassemblies identified in the scaffolds of
the assemblies increased, the quality scores we assigned
to these low-quality (i.e., with more misassembly) assem-
blies decreased. The third dataset was designed to
present that the increasing reference genome coverage
of the assemblies had a positive impact on the dnA-
QET’s quality score computed for those assemblies,
which was concordant with the expectation. Finally,
using the fourth dataset we investigated how the increas-
ing redundancy in the assemblies resulted in lower dnA-
QET scores assigned to them.
We also computed the individual quality scores of

chromosomes as well as the overall quality scores for
available reference genome builds for five organisms
(four mammalian and one fish) and showed that the
quality assessment of dnAQET for these reference builds
was concordant with the expectation that a more recent
build of a reference genome should be better assembled
than an older one. Furthermore, we showed that the
well-established metrics could present contradictory re-
sults to each other using six de novo assemblies for
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sample NA24385 and our quality score was effective to
unify these metrics into a single score to reflect their
overall quality. It is also important to note that the top
performing metrics when ranking reference genome
builds did not perform well for ranking six NA24385 de
novo assemblies. On the other hand, dnAQET’s overall
quality score was very consistent in ranking the assem-
blies in both datasets, which proved its reliability for
assessing the assembly quality and its suitability to be
used as a benchmarking metric to compare de novo as-
semblies. We also showed that dnAQET is very fast,
scalable and capable of handling assemblies for large and
complex genomes such as human using a reasonable
amount of computational memory.

Results
The dnAQET framework comprises of two main steps:
(i) aligning assembled scaffolds (contigs) to a trusted ref-
erence genome and then (ii) calculating quality scores
for the scaffolds and the whole assembly. For the align-
ment step, dnAQET provides two separate alignment
tools for users to choose. The first one is the Nucmer
pipeline, from the MUMmer4 package [23], whose pre-
decessor in MUMmer3 package [24] is a very widely
used general purpose alignment tool to map long DNA
sequences. The more recently released MUMmer4 pack-
age contains a much faster and memory efficient Nuc-
mer version that can handle large genomes. The most
recent version of the Nucmer is used in dnAQET. The
second option for alignment that dnAQET offers is the
Minimap2 aligner [25], which is also a very fast pairwise
aligner for nucleotide sequences.
To enhance the computational performance, the align-

ment process is broken down into three sub-steps: (a)
partitioning of the reference genome and the assembly
files into smaller chunks, (b) aligning each partition of
the assembly against each partition of the reference gen-
ome in parallel, and finally (c) filtering the redundant
and overlapping alignments for each scaffold. After fil-
tering, the remaining alignments are used to compute
the quality scores.

Scalable alignment of scaffolds to a reference genome
The dnAQET handles alignment of scaffolds to a refer-
ence genome in a parallelized manner by partitioning
the assembly file into multiple approximately-equal sized
files and the reference genome into multiple reference
files, each containing a single chromosome (Additional
file 1: Figure S1), enabling the method to be scalable for
handling assemblies of large genomes. The total number
of partition files of an assembly can be determined by
the user, but its default value is set to one. The tool dis-
tributes the scaffolds to the user specified number of
files in such a way that the total number of base pairs

contained in each file would be similar across the parti-
tions. For partitioning the genome, dnAQET distributes
the chromosomes of the reference genome into multiple
files so that each assembly partition can be aligned to a
single chromosome independently on a High-Perform-
ance Computing (HPC) or a multi-threaded computing
environment.

Computing quality scores for scaffolds
The dnAQET parses the alignment results for each scaf-
fold and filters out the redundant and ambiguous align-
ments to obtain the longest consistent matches between
the scaffold and the reference. For this purpose, we
adapted the underlying algorithm of delta-filter utility in
the MUMmer package and implemented the same ap-
proach in dnAQET. When the alignment step is com-
pleted either using Nucmer or Minimap2, the alignment
results are scanned using appropriate parsers specifically
designed to parse data in the corresponding alignment
format. They are then converted into an internal align-
ment format to be filtered using our filtering algorithm.
Note that the filtering step is independent of the chosen
alignment tool and is applied to all alignment results no
matter what tool is used to generate them. We then
compute a quality score of an individual contig using the
set of best alignments based on the total number of
aligned base pairs in the scaffold (reward), the total
number of misassembly determined in the scaffold (pen-
alty), and the length of the scaffold (length scaling
coefficient).
The reward of a scaffold is supposed to be directly

proportional to the total number of bases that are
aligned to the reference genome by the alignment tool.
Based on this assumption, dnAQET assigns a reward
value, denoted by R(s), to a scaffold s that is equivalent
to the ratio of the total number of aligned bases to the
total number of bases in s without the scaffolding gaps.

R sð Þ ¼ Total number of aligned base pairs in s
Total number of base pairs in s−Total number of base pairs in the scaffolding gaps

In the above formulation, the total number of ambigu-
ous base pairs, which are detected to be scaffolding gaps,
are subtracted from the total size of the scaffold (see the
denominator in the above formula). This avoids im-
proper reduction of the reward of a scaffold.
The penalty assigned to a scaffold is directly related to

the misassembly, which is basically summarized as the
inconsistencies between the flanking alignments of a
scaffold and the reference. In dnAQET, we consider
three types of misassembly, which is also consistent with
the types and definitions of the misassembly reported by
previous literature [21]. These misassembly types (Fig. 1)
are described in detail below.
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Relocation, a type of misassembly in a scaffold, can
happen in two cases: two consecutive sequence segments
of the scaffold are aligned on the same chromosome
with a separation distance of more than t base pairs (Fig.
1a), or they are aligned on the same chromosome with
an overlap of more than t base pairs (Fig. 1b). The re-
location threshold t is 1000 base pairs by default and can
be adjusted by the user. A distance or overlap between
the alignments of the flanking sequences smaller than t
is not considered as a relocation. Translocation is a type
of misassembly that is observed when the two flanking
sequences of a scaffold are aligned to two different chro-
mosomes in the reference genome (Fig. 1c). Inversion is
a type of misassembly that occurs in cases where the
two flanking sequences of a scaffold are aligned in the
opposite strands of the same chromosome (Fig. 1d).
In theory, one would expect a perfect alignment of

each reference chromosome (scaffold) back to itself.
However, due to gaps (ambiguous sequences), repetitive
sequences in the reference genome and limitations of
alignment algorithms, it is still possible to observe mis-
alignment between two identical long fragment se-
quences (> 1MB), which is considered as artifact of
MUMmer and MiniMap2. Thus, dnAQET considers the
fact that some artifacts should be expected even though
a scaffold is assembled perfectly, and these artifacts
should be correlated to the length of assembled scaffold,
i.e. the longer a scaffold is, the more artifacts should be
expected.
When dnAQET processes a scaffold for computing the

penalty, it needs to decide how the misassembly detected
in this scaffold compares to the artifact expected from a
scaffold of this size (l) with a given relocation threshold
(t). The dnAQET uses a regression model to find the ex-
pected artifact given a scaffold with size, l, and a reloca-
tion threshold, t, which is used to decide the relocation

type of misassembly. For each reference chromosome,
dnAQET first randomly creates a set of artificial contigs/
scaffolds, which cover the whole chromosome with 1X
depth of coverage. Then these contigs, along with the
original reference chromosome sequence, are aligned
back to the whole reference genome. At last, the total
number of misassembly is computed for each contig/
scaffold and for each relocation threshold t in the range
[100, 10,000] with a 100 base pair increments. The com-
puted artifact is fit to the following model:

ε ¼ αcl þ βct þ kc

via least-squares regression, where ε is the artifact; αc
and βc are model parameters and kc is the intercept for
the model obtained for chromosome c. To determine
the model parameters and the intercept, dnAQET fits
the observed artifact in each of the chromosomes (scaf-
folds) of the given reference genome in the above model.
Additional file 2: Tables S1–S5 provide the computed
values for these coefficients for the chromosomes of the
latest builds of human, chimpanzee, mouse, rat and zeb-
rafish genome assemblies from University of California,
Santa Cruz (UCSC) Genome Browser web site [26].
After all model parameters for each chromosome in

the reference are identified, dnAQET computes the ex-
pected misassembly, εs, for a scaffold s as follows:

εs ¼ αcls þ βctu þ kc if αcls þ βctu þ kc
� �

> 0
0 otherwise

�

where ls denotes the length of the scaffold, tu is the re-
location threshold set by the user, αc, βc and kc are the
model coefficients computed for chromosome c, which
contains most of the alignments for scaffold s. Finally,
the penalty assigned to scaffold s by dnAQET, denoted
by P(s), is computed as follows:

Fig. 1 Illustration of misassembly types. The green and blue bars indicate two flanking sequences of a scaffold and the white bars represent
regions in a reference genome. The relocations with a distance (a) and an overlap (b) are marked with white and yellow bars under the reference
bars, respectively. Translocation is denoted by two chromosomes (c). The arrows depict the directions of strands with red to show the
inversion (d)
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P sð Þ ¼ log100 ms−εsð Þ if ms−εsð Þ > 1
0 otherwise

�

where ms represents the total number of misassembly
that dnAQET detects in the scaffold s. When the differ-
ence between the observed misassembly (ms) and the ex-
pected artifact (εs) for this scaffold with the specified
relocation threshold is less than or equal to one, there is
no penalty assigned to this scaffold. Otherwise, the loga-
rithmic value of this difference in the base of 100 is used
as the penalty to scaffold s.
The length of a scaffold is an important indication of

assembly quality. A well-assembled and high-quality
scaffold should be equal to or longer than the shortest
chromosome of the trusted reference genome, against
which the quality is computed. The length of the short-
est chromosome of reference genome G, is called length
scaling factor of G and denoted by θG. It is used as a
benchmarking value to assess the quality of a scaffold of
the de novo assembly. Thus, dnAQET incorporates a co-
efficient called length scaling coefficient of a scaffold s in
its quality score calculation formulation, which is de-
noted by L(s). This coefficient is computed with respect
to the shortest reference chromosome length (θG) using
the following equation:

L sð Þ ¼
1 if ls≥θG

−1

log10
ls
θG

� �
−1

otherwise

8>><
>>:

When the scaffold is larger than or equal to the short-
est chromosome of the reference, the length scaling co-
efficient is set to 1. This guarantees that the contigs or
scaffolds longer than the shortest chromosome are not
punished. For a scaffold shorter than the shortest
chromosome, the coefficient value increases as the scaf-
fold gets longer, finally reaching one when ls is equal to
θG. Instead of taking a simple ratio of the length of the
scaffold to the length of the shortest chromosome, dnA-
QET uses the above function not to penalize the small
to medium sized scaffolds very harshly.
After reward, penalty and length scaling coefficient are

calculated, dnAQET integrates them in an overall quality
score for scaffold s, Q(s), using below equation.

Q sð Þ ¼ L sð Þ R sð Þ
1þ P sð Þ

In case dnAQET identifies no misassembly in a
scaffold or the misassembly is negligible, the quality
score is basically equal to the alignment ratio of this
scaffold multiplied with its length scaling coefficient.
On the other hand, the quality of a scaffold decreases
with the increasing number of misassembly detected
in the scaffold.

Computing quality score for assembly
After quality scores for individual scaffolds (or contigs)
are calculated, dnAQET computes a quality score for the
whole de novo assembly using the individual quality
scores and the redundancy observed in the assembly.
There are three factors that dnAQET considers for qual-
ity score computation: (a) distribution of the quality
scores of scaffolds of an assembly, (b) the reference gen-
ome coverage provided by the scaffolds at different qual-
ity thresholds, and (c) the redundancy of the scaffolds in
the assembly.
The dnAQET framework uses the quality score distri-

bution of the scaffolds of a de novo assembly, as a com-
ponent of the final quality score. To utilize this
information, the ratio of the total number of base pairs
of the scaffolds having quality scores higher than certain
quality thresholds to the whole assembly size is first
plotted at the corresponding quality thresholds (from 0
to 1 with 0.01 increments) as a curve (see Add-
itional file 1: Figure S2A for an example). The area
under this curve is then calculated, which is denoted by
ΔA, where A represents the assembly. In the ideal case
where all scaffolds of an assembly have a perfect quality
score of 1, the area under this curve is equal to one (i.e.,
ΔA = 1). As it is not always possible to obtain perfectly
scored scaffolds in practice, the curve may reach the
maximum ratio of 1 at a lower quality threshold in most
cases. In such cases, ΔA would be much lower than one.
In this respect, ΔA value directly reflects the quality dis-
tribution of the scaffolds of a de novo assembly.
Like the cumulative scaffold quality distribution graph,

we plot the cumulative reference genome coverages of
the scaffolds that meet certain quality thresholds. This
curve presents us crucial information from two perspec-
tives: 1) how much reference genome coverage can be
reached with the scaffolds/contigs of the assembly and
2) how the reference coverage changes with quality dis-
tribution of the scaffolds of this assembly. An example
of cumulative reference genome coverage graph is given
in Additional file 1: Figure S2B.
The dnAQET framework uses the area under the cu-

mulative genome coverage ratio curve, which is denoted
by ΩA for the assembly A, as another component of the
overall quality score function to evaluate the assembly.
In case the whole reference genome is fully covered by
perfect scaffolds (i.e., scaffolds with a quality score of 1)
of the de novo assembly, the ΩA is equal to 1. When the
coverage is less than 100% or a high coverage is achieved
with low quality scaffolds, dnAQET would reflect these
less than ideal cases to the overall quality score of the
assembly, by assigning a much lower value to ΩA.
In summary, we incorporate ΩA to our quality score

scheme to distinguish two assemblies, say A1 and A2,
where both assemblies cover the same amount of the
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reference genome with different quality scaffolds. In
such a case, the one with high quality scaffolds will have
a larger area under the cumulative genome coverage
curve, hence a higher ΩA value. Thus, this component is
incorporated into the final quality score formulation and
is used to distinguish A1 and A2 in terms of their quality.
The last component of dnAQET’s assembly quality

scoring scheme is the inverted redundancy identified in
an assembly. The redundancy in an assembly is defined
as the unnecessarily repeatedly assembled sequence in
the de novo assembly when it is compared to the refer-
ence genome. An example is given in Additional file 1:
Figure S3 where two scaffolds, s1 and s2, are aligned to a
reference genome with alignments λ1 and λ2 respect-
ively. The total covered reference genome is denoted
with Φ. The overlap between these alignments is de-
noted with o, which is shared by λ1 and λ2 redundantly.
Then the total inverted redundancy ratio of a de novo
assembly, A, with set of scaffolds, A = {s1, s2,…, si} is de-
noted by ΠA and computed as:

ΠA ¼ ΦAP
si∈Aλi

where λi represents the total aligned base pairs in scaf-
fold i and ΦA represents the total covered reference gen-
ome size by all scaffolds of assembly A. The inverted
redundancy ratio is always a value between 0 and 1 for a
de novo assembly. In the optimal case, where there are
no redundant alignments, the inverted redundancy
would be equal to 1. As this ratio gets smaller, the re-
dundancy of an assembly increases, which makes the as-
sembly less desirable. Therefore, it is essential to include
such a component, which measures redundancy of an
assembly, in our quality score computation. For this rea-
son, we consider the inverse of the redundancy value of
an assembly A denoted by ΠA and incorporate it into
our formula.
The dnAQET framework computes the final quality

score for an assembly A using below equation.

Q Að Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔAΩAΠA

3
p

The final quality score is the geometric mean of the
area under the cumulative distribution curve of quality
scores of scaffolds, the area under the cumulative curve
of genome coverage and the inverted redundancy of the
de novo assembly A. These three components represent
three aspects of a desirable assembly: (i) scaffolds should
have high individual quality scores, (ii) reference genome
should be mostly covered with high quality scaffolds,
and (iii) redundancy in an assembly should be minimal.
Note that all these three values are defined to be a real
value in [0, 1], which guarantees that the quality value

obtained by taking the geometric mean would always be
a real value in the same interval.

Performance evaluation of dnAQET
To evaluate the performance of dnAQET’s quality scores
and compare them with the currently well-established
metrics, three types of data were used: (i) in-silico scaf-
fold data generated from the latest human reference
genome build (i.e., hg38) with various genome cover-
ages, numbers of misassemblies per scaffold and mean
scaffold lengths, (ii) various builds of whole genome
assemblies of five different organisms (human, mouse,
rat, chimpanzee and zebrafish) obtained from UCSC
Genome Browser website [26] and (iii) six de novo
assemblies for the sample with National Institute of
Standards and Technology (NIST) ID HG002 and
Coriell ID NA24385 from the Genome in a Bottle
(GIAB) project [27].
For in-silico performance analysis, we generated four

types of synthetic assembly datasets from human refer-
ence build hg38, where each of these datasets were de-
signed to analyze a different aspect of the quality
computation process as follows:

(i) Mean scaffold length dataset: We generated
scaffolds with randomly chosen coordinates
covering hg38 with 1X depth of coverage. The
lengths of the scaffolds were drawn from normal
distributions with mean lengths of 104, 105, 106, 107

base pairs and standard deviations of 10, 102, 103

and 104, respectively.
(ii) Misassembly dataset: We randomly created

assemblies that contain scaffolds with 0, 10, 20, 30,
40, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900
and 1000 misassemblies per scaffold from hg38.
The lengths of these scaffolds were drawn from a
normal distribution with a mean of 107 and
standard deviation of 104. Each assembly had a total
genome coverage of 1X.

(iii)Coverage dataset: Assemblies that cover 0.1X up
to 1X (with increments of 0.1X) of the hg38 build
were created randomly. We didn’t induce any
artificial misassemblies into the scaffolds. The
lengths of these scaffolds were drawn from a
normal distribution with a mean and standard
deviation of 107.

(iv)Redundancy dataset: We created assemblies that
covered the hg38 once (1X), twice (2X), three
times (3X), four times (4X) and finally five times
(5X). There were no artificially induced
misassemblies and the scaffold lengths were
normally distributed with a mean value of 107

and standard deviation of 104.
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Note that for all the above described synthetic data-
sets, we created five different assemblies for each value
of the parameter that was to be analyzed.
For testing dnAQET on human reference data, we

used fifteen builds of reference genome assemblies,
more specifically hg4, hg5, hg6, hg7, hg8, hg10, hg11,
hg12, hg13, hg15, hg16, hg17, hg18, hg19 and hg38.
The dnAQET was used to evaluate each of these gen-
ome builds against the hg38 build. Since hg38 is the
most recent reference genome, it is expected to be
the best among all these builds. Note that some of
the reference builds (such as hg1, hg2, hg3, hg9,
hg14) are missing from our study due to the unavail-
ability to download in UCSC Genome Browser data
repository.
Similarly, there were ten available builds (mm1 to

mm10) of mouse reference genome, six builds (rn1
to rn6) of rat reference genome, six builds (panTro1
to panTro6) of chimpanzee reference genome and
nine builds (danRer1, danRer2, danRer3, danRer4,
danRer5, danRer6, danRer7, danRer10 and danRer11)
of zebrafish genome. We used the latest builds
mm10, rn6, panTro6 and danRer11 as the references
for mouse, rat, chimpanzee and zebrafish, respect-
ively, against which the rest of the builds were eval-
uated by dnAQET. We calculated the quality scores
for each chromosome of the builds and for the
whole reference assemblies. Two restrictions were
imposed on the datasets: (i) only the primary chro-
mosomes of these builds were included in our ana-
lysis for the sake of simplicity and (ii) to fairly
evaluate human, mouse and rat genome builds, we
had to exclude Y chromosome from the analysis due
to the lack of availability of this chromosome for
some of the earlier builds.
When using different builds of reference genomes to

evaluate dnAQET’s scores, our hypothesis is that the qual-
ity scores of the chromosomes of a more recent build of
the reference genome of an organism should be better
than that of an older build of the reference genome of the
same organism. Moreover, the overall quality score from
dnAQET for the older builds should be lower than those
for the later builds for all the organisms used in this work.
To test dnAQET on real genome assemblies, we used

two de novo assemblies from GIAB data repository for
sample NA24385. The first assembly was created using
Celera assembler [15] and is available on GIAB ftp site
[28]. The second assembly was generated using Falcon
[16] and is available on GIAB ftp site [29]. The other four
assemblies were generated in-house using the MECAT as-
sembler [14] on the PacBio data with four different depth
of coverages namely 5X, 25X, 50X and 70X. Note that the
PacBio data was produced by the GIAB consortium and
was freely available on GIAB ftp site [30].

Quality analysis of synthetic data
We first analyzed how dnAQET’s quality score chan-
ged as the mean scaffold length of the assemblies in-
creased using the first synthetic dataset. As
demonstrated in Fig. 2a, the quality scores of the as-
semblies increased as the average size of the scaffolds
got longer. Initially, the quality scores of the assem-
blies with mean scaffold sizes of 10,000 base pairs
concentrated around 0.35 and quality values mono-
tonically increased for assemblies with larger scaffolds,
finally becoming slightly larger than 0.7 for the as-
semblies with an average of 10 million base pair scaf-
folds. In this sense, the dnAQET’s quality score is
concordant with the general assumption that an as-
sembly with larger scaffolds should be better in qual-
ity than an assembly with shorter scaffolds given that
both assemblies have same total length.
Using our second dataset, we investigated the effect

of the increasing number of misassemblies in the
dnAQET’s quality score formulation. As shown in Fig.
2b, the quality scores of the assemblies with no artifi-
cially induced misassembly were slightly larger than
0.7 but with the introduction of 10 misassemblies per
scaffold into the assembly, we observed the quality
scores dropped down to 0.55. This trend of decrease
in quality scores continued with the increasing misas-
sembly numbers, and finally quality score settled
down at 0.38 for the assemblies with 1000 misassem-
blies per scaffold. This result is concordant with the
expectation that an assembly with lower number of
misassemblies should have a higher quality than the
one with more misassemblies. In this respect, our
quality score formulation correctly characterizes the
effect of misassemblies on the quality of an assembly.
In Fig. 2c, we present the effect of increasing gen-

ome coverage in dnAQET’s quality score. As ex-
pected, the quality of an assembly with higher
genome coverage was consistently higher than that of
an assembly with lower coverage. The highest quality
scores were obtained for assemblies with 1X coverage
whereas the lowest quality scores were around 0.3 for
0.1X coverage assemblies. This result demonstrated
that dnAQET’s quality score behaved as expected for
changing genome coverage values.
Finally, we investigated the effect of the redundancy

on our quality score formulation as presented in Fig.
2d. We computed the quality scores for datasets with
1X, 2X, 3X, 4X and 5X genome coverages, where all
coverages more than 1X corresponded to redundant
assemblies. As presented in Fig. 2d, the quality scores
of the assemblies decreased as their redundancy in-
creased. This result is concordant with the hypothesis
that assemblies with unnecessary, repeated scaffolds
should be in lower quality than concise assemblies.
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Overall, these results we obtained using synthetic data
reflects the capability of dnAQET’s quality score to cap-
ture and combine different aspects of quality evaluation
into a single formula.

Quality of reference genome builds of five organisms
The quality score distribution of chromosomes for dif-
ferent builds of reference genomes for the five organisms
are given in Fig. 3. The segregation of reference genome
builds is clear for all five organisms in terms of the qual-
ity scores of chromosomes calculated by dnAQET. For
example, the quality score distributions of human refer-
ence genome builds (Fig. 3a) revealed that approximately
65% of the chromosomes in the earlier versions of hu-
man reference genome (i.e., builds hg4 to hg6) had qual-
ity scores in the range of 0.2 to 0.3. In contrast, the
quality scores of the chromosomes of the newer builds
hg7 to hg12 were improved to the range of 0.3 to 0.4
that included more than 48% of the chromosomes in the
worst case. The shift of the quality scores towards the

higher quality bins continued to reach the point where
more than 50% of the chromosomes of hg13 had quality
scores between 0.4 and 0.5. Majority of the chromo-
somes in builds hg15 and hg16 had quality scores in the
range of 0.5 to 0.7 whereas the majority of the hg17,
hg18 and hg19 chromosomes had quality scores between
0.6 and 0.8. Finally, the percentage of the high-quality
chromosomes (i.e., chromosomes with quality scores
higher than 0.8) reached to 95% for build hg38.
Similarly, we found that there was a clear segregation

between the quality scores of chromosomes of the earlier
and the most recent versions of the mouse reference ge-
nomes as presented in Fig. 3b. In the earlier versions,
such as the builds mm2 to mm6, the quality scores of
chromosomes were concentrated in the [0.3, 0.4) inter-
val. However, majority of the chromosomes of build
mm7 had quality scores in the [0.4, 0.5) bin. On the
other hand, the ratio of medium to high quality chromo-
somes (i.e., chromosomes with a quality higher than 0.5
and less than 0.8) gradually increased for builds mm8

Fig. 2 The dnAQET quality scores for synthetic datasets. The y-axis indicates the quality scores that dnAQET computed for the synthetic datasets
with varying mean scaffold length (a), number of misassemblies per scaffold (b), genome coverage (c) and redundancy (d)

Yavas et al. BMC Genomics          (2019) 20:706 Page 8 of 16



and mm9. Finally, more than 85% of the chromosomes
of the latest build mm10 had quality scores higher than
0.9.
Overall, for the five organisms, the chromosome qual-

ity scores from dnAQET were higher for more recent
builds. These results were concordant with our hypoth-
esis and evidently demonstrated that dnAQET could be
used to fairly evaluate quality of scaffolds and contigs.
Additionally, we present the individual quality scores of
the chromosomes for each genome build of the consid-
ered organisms in Additional file 1: Figure S4.
The final quality scores computed by dnAQET for the

reference genome builds for the five organisms and the
de novo assemblies of NA24385 were plotted in Fig. 4.
The quality scores of the more recent versions of the
genome builds were consistently higher than the older
builds except one case. The quality score of the zebrafish
reference genome build danRer6 had a slightly smaller
quality score than the older build danRer5. Examining
the quality scores for human reference genome builds
(Fig. 4a), we observed that the quality scores almost
monotonically increased from 0.401 for hg4 up to 0.575
for hg13. Then the quality score of hg15 jumped up to
0.676 and the quality scores stabilized at around 0.7 for
all more recent builds up to hg19, while keeping a slow

increase rate. Finally, the quality score reached 0.98 for
hg38. The dramatic quality shift between hg13 and hg15,
was concurrent with the introduction of the first finished
human genome assembly, dated April 2003 [31]. These
results clearly showed that the later versions of the hu-
man reference genome builds had higher quality scores
from dnAQET, which was very consistent with the ex-
pectation that the build quality increased with each
newly introduced build.
It is interesting to note that dnAQET gave a quality

score of 0.98 to hg38 instead of a perfect score of 1,
since hg38 was scored against itself. It was not possible
to compute a perfect score for hg38 even when it was
compared back to itself due to the ambiguous base pairs
it contains (5% of the genome) and the misassembly ob-
served due to the repetitive sequences (which may have
caused misalignment). Since dnAQET took the artifacts
due to alignment tools into consideration, it computed a
nearly perfect score for hg38 assembly. It is also import-
ant to note that the quality scores of the latest builds for
rat, chimpanzee and zebrafish genomes were remarkably
higher than those of their predecessor builds. The strik-
ing quality shift between the rat builds rn5 and rn6
could be attributed to the introduction of additional Pac-
Bio data with 10X coverage into the assembly process

Fig. 3 Heatmaps of quality scores of chromosomes and scaffolds for the reference genome builds of five organisms and the de novo assemblies
of NA24385. The x-axis depicts the builds or assemblies. The y-axis indicates the ten quality scores bins between 0 and 1. The color given in the
legend shows the percentage of the chromosomes and scaffolds that fall in the quality bin indicated by the y-axis. The quality score heatmaps
are for human (a), mouse (b), rat (c), chimpanzee (d) and zebrafish (e) reference chromosomes from specified builds and the scaffolds of de novo
assemblies for sample NA24385 (f) from six different assemblies. Note that there are 10 quality interval bins, dividing the [0, 1] range into nine
equal sized left-closed, right-open intervals and a single closed interval, which is [0.9, 1]
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[32]. Similarly, the zebrafish reference build danRer11
had a significantly higher quality score than danRer10
due to additional assemblies WGS29 (CAAK00000000.1)
and WGS32 (CZQB00000000.1) added where necessary,
to fill the gaps [33]. Finally, the quality score for the
recently introduced chimpanzee genome build pan-
Tro6 was much higher than that of panTro5 because
of the high depth of coverage (124X) data used for
the assembly and the three-stage progressive assembly
methodology which incorporated data from multiple
platforms [34].
Since there was no other tool in the literature that

could report a single quality score to unify multiple

measures for a de novo assembly, we could not directly
compare the quality scores that dnAQET computed for
these assembly builds with other tools. Consequently, we
decided to compare the rankings of the dnAQET quality
scores with the rankings from QUAST-LG metrics for
these builds. QUAST-LG could provide 37 quality met-
rics to compare multiple assemblies [22]. Except bench-
marking universal single-copy orthologs (BUSCO)
completeness and k-mer-based completeness (both met-
rics require the reads used to generate the assemblies),
the remaining 35 QUAST-LG quality metrics were cal-
culated for almost all the reference genome builds (ex-
cept metrics such as NA75, NG75, NGA50, NGA75 etc.,

Fig. 4 Quality scores for reference genome builds and de novo assemblies of NA24385. The x-axis depicts the builds or assemblies. The y-axis
indicates quality scores that dnAQET computed for the reference genome builds of human (a), mouse (b), rat (c), chimpanzee (d), zebrafish (e)
and the de novo assemblies for NA24385 (f). The yellow bars show the final quality scores Q. The lines give the area under the cumulative
scaffold quality scores distribution curve Δ (blue), the area under the cumulative genome coverage curve Ω (light brown), and the inverted
duplication ratio Π (grey)
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which could not be computed for some of the earlier
builds of zebrafish and mouse). To be consistent in our
comparison across multiple organisms, metrics that were
not reported for the reference builds of all organisms
were discarded, resulting 13 metrics that were reported
for all reference genome builds by QUAST-LG and pro-
vided a clear ranking of the builds without any ties (see
Additional file 2: Tables S6–S10 for detail).
We next computed Pearson correlation coefficients

between the rankings provided by each of these quality
metrics and the rankings of these builds (the hypothesis
for determining the ranking of the builds: the more re-
cent a build is, the better is its quality, and thus a higher
rank it has). The result given in Table 1 shows that the
rankings of the dnAQET quality scores always had the
highest Pearson correlation coefficients and were con-
sistent with the inherent rankings dictated by the hy-
pothesis. These results demonstrated that the dnAQET
quality scores reflected the quality of these genome
builds better than any of the other metrics due to its so-
phisticated design to combine different aspects of an as-
sembly into a single value.
Although the genome fraction (%) from QUAST-LG

achieved the same performance as the dnAQET qual-
ity score in terms of the rankings of genome builds
for human, mouse, rat and chimpanzee, dnAQET
quality score outperformed the genome fraction (%)
metric in ranking of the builds of zebrafish genome.
Like the genome fraction (%) metric, any single metric
from QUAST-LG (Table 1) is not able to reliably
rank the genome builds compared to dnAQET quality
score and thus is not suitable for assessing quality of
de novo assemblies as a whole. These metrics focus

only on one side of the assemblies and evaluate them
by examining from only a single perspective. For in-
stance, the genome fraction (%) just reported how
much of the reference genome was covered by a de
novo assembly without considering the quality of the
individual scaffolds. For the reference genome builds,
the total genome fraction (%) increased almost every
time for a more recent build, but this may not be the
case for other de novo assemblies. For example, one
assembly might have a slightly higher genome fraction
(%) but lower N50 (or NA50) value and higher num-
ber of misassemblies than another assembly. On an-
other case, the genome fraction (%) of multiple
assemblies may indicate a reverse ranking of the as-
semblies when they are ranked with respect to an-
other metric. Another example that demonstrated the
inconsistency of these metrics was the poor perform-
ance of metrics such as number of indels per 100kbp,
number of mismatches per 100kbp, NA50, LA50 when
they were used to rank the chimpanzee genome
builds. Although these metrics’ rankings had high
Pearson correlation coefficients when used on human,
mouse, rat and zebrafish data, they considerably failed
in correctly ranking chimpanzee genome builds.
Therefore, assessing the quality of an assembly using
one metric from QUAST-LG could not provide suffi-
cient information about its overall quality. We see a
clear need for a quality metric that unifies these mul-
tiple crucial metrics into a single quality value that
can be used to reliably assess the quality of an assem-
bly. This need was met by the meticulously designed
quality score formulation of dnAQET that united
multiple metrics into a single metric.

Table 1 The Pearson correlation coefficients between the rankings of quality scores yielded from dnAQET and QUAST-LG and the
rankings of the reference genome builds by hypothesis

Human Mouse Rat Chimpanzee Zebrafish

1. dnAQET Score 1.00 1.00 1.00 1.00 0.98

2. Genome fraction (%) 1.00 1.00 1.00 1.00 0.95

3. Total aligned length 0.97 0.99 0.94 0.94 0.75

4. # indels per 100 kbp 1.00 0.95 1.00 0.66 0.98

5. # mismatches per 100 kbp 0.99 0.99 1.00 0.49 0.98

6. NA50 1.00 0.96 1.00 0.43 0.97

7. LA50 1.00 0.96 1.00 0.43 0.97

8. # scaffold gap ext. mis. 0.99 0.96 0.94 0.43 0.97

9. # N’s per 100 kbp 0.89 0.99 0.43 1.00 0.82

10. # misassemblies 1.00 0.96 0.83 0.26 0.90

11. # local misassemblies 0.99 0.99 0.94 0.09 0.88

12. Unaligned length 0.98 0.96 1.00 0.09 0.83

13. Misass. contigs length 0.73 0.41 0.26 0.60 −0.22

14. Total length −0.64 0.36 0.54 −0.60 0.70
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Quality of six NA24385 assemblies
The quality score distributions of the contigs of the six
assemblies were plotted in in Fig. 3f. None of the six as-
semblies had any contigs with a quality score higher
than 0.8. Both MECAT assemblies generated with 50X
and 70X coverage data had contigs with quality scores
higher than 0.7 but the percentage of these contigs was
only 0.1%. From this perspective, none of the real data
assemblies had an outstanding performance in terms of
the contig quality scores. It is interesting to note that
the best performing assemblies were generated by
MECAT on the data of 70X, 50X and 25X coverages.
More than 85% of the contigs in these assemblies had
quality scores higher than 0.2. In contrast with MECAT,
Falcon and Celera assemblies only had 44 and 53% of
contigs with quality score higher than 0.2, respectively.
The overall quality scores computed by dnAQET for

the six de novo assemblies were presented in Fig. 4f. The
assemblies generated by MECAT assembler with high
coverage data (50X and 70X) had the best quality score
0.6. The Celera assembly also had a quality score of 0.58,
which is slightly lower than the scores of the leading as-
semblies. The assembly generated by MECAT using 25X
coverage had a quality score of 0.55 and followed by the
assembly from Falcon with quality score of 0.54. The
lowest quality score of 0.37 was obtained from MECAT
assembly created with 5X coverage data, which was not
surprising because it was generated with the very low
coverage data.
We also evaluated these assemblies using QUAST-LG.

The computed quality metrics were presented in Add-
itional file 2: Table S11. As mentioned before, some of
these metrics produced multiple rankings of these as-
semblies that contradict with each other. For instance,
using NA50 metric, these assemblies were ranked as
MECAT70X, MECAT50X, Falcon, Celera, MECAT25X
and MECAT5X in the decreasing order (i.e., higher the
NA50, better the assembly). However, the ranking was
completely changed to Celera, Falcon, MECAT50X,
MECAT70X, MECAT25X and finally MECAT5X when
genome fraction (%) was used as the ranking metric in
the decreasing order. When number of misassemblies
metric was used to order them, the ranking was
MECAT5X, MECAT25X, MECAT70X, MECAT50X,
Celera and Falcon, in an increasing number of misas-
semblies (i.e., lower the misassembly, better the assem-
bly). Thus, it was evident from these results that there
was a need to consolidate these metrics into a single
value, as done by dnAQET, to fairly evaluate the overall
quality of these assemblies.
Since there was no inherent ranking of these real data

assemblies available to compare the rankings of
QUAST-LG metrics with that of dnAQET scores, we
used an approach proposed in [18] to infer a reliable

ranking that would be considered closest to the ground
truth. In that study, the authors calculated the z-scores
for each metric for all assemblies in consideration, then
summed these scores and finally ranked the assemblies
based on the summed z-scores. This was called the z-
score-based ranking. To obtain the ground truth ranking
for our assemblies, we applied a similar approach to 24
metrics, which gave a clear ranking of the assemblies
without a tie and were commonly reported for all assem-
blies, computed by QUAST-LG. We calculated the z-
score for each metric and summed the z-scores for each
assembly as presented in Additional file 2: Table S11.
According to the z-score-based ranking, the ranking of
these assemblies was MECAT70X, MECAT50X,
MECAT25X, Celera, Falcon and MECAT5X in decreas-
ing order (i.e., higher the z-score, better the assembly).
The Pearson correlation coefficient between dnAQET
quality score ranking of these assemblies and the z-
score-based ranking was 0.94 whereas the QUAST-LG
metrics, namely Largest contig, N50, NG50, N75, L50,
LG50, L75, Largest alignment, NGA50 and NA75 pro-
vided the second-high correlation coefficient value,
which was 0.77. The results indicated that dnAQET’s
quality score outperformed the other metrics based on
the z-score-based ranking.

Runtime and peak memory usage
We compared the runtime and memory performances of
dnAQET with those of QUAST-LG using the human
reference genome builds and the six de novo assemblies
of sample NA24385. All the benchmarking tests were
done on a server with 125.5 gigabytes of memory run-
ning 24 cores of Intel Xeon E5–2680 v3 2.50GHz CPUs.
To be able to fairly evaluate the performance of dnA-
QET against QUAST-LG, we partitioned neither the ref-
erence genome nor the input genome builds to be
evaluated. Both dnAQET and QUAST-LG were run
using 12 threads on a single server and Minimap2 was
used as the alignment tool.
The runtime and peak memory usage of dnAQET and

QUAST-LG for the human reference genome builds and
the de novo assemblies are presented in Fig. 5. Clearly,
the runtime of dnAQET was very stable across all the
human reference genome builds and it took 1184 s at
the worst case for dnAQET to process a human refer-
ence genome build. On the other hand, QUAST-LG per-
formed poorly for the earlier builds (Fig. 5a). For
example, QUAST-LG took approximately 21.8 h to fin-
ish processing build hg4. QUAST-LG performed better
on the more recent builds and its runtime was decreased
to approximately 2500 s for the most recent builds. For
all six NA24385 assemblies, dnAQET was faster than
QUAST-LG to process the assemblies (Fig. 5b). It took
440 s for dnAQET to process the Celera assembly, which
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was the slowest performance of dnAQET for these as-
semblies. On the other hand, QUAST-LG’s best runtime
was 1686 s for MECAT5X assembly.
In terms of the peak memory usage, both tools used

more than 35 gigabytes of memory when analyzing the
human reference builds. The dnAQET’s memory usage
increased from hg8 to hg10, reaching to 36.5 gigabytes
on average, and stabilizing at this number for the later
builds. However, QUAST-LG had a steady peak memory
usage of 35 gigabytes for builds hg4 to hg13. But starting
with hg15, the peak memory usage went up, reaching

38.5 gigabytes for hg38. For NA24385 assemblies, the
peak memory usage of dnAQET stayed stable at around
30 gigabytes whereas QUAST-LG’s memory usage was
stable at around 35 gigabytes. Our results demonstrated
dnAQET outperformed QUAST-LG in terms of execu-
tion time; but both tools had comparable peak memory
usage.

Discussion
In the precision medicine era [35], to be able to develop
personal treatments, it is of great importance to detect

Fig. 5 Runtime and peak memory usage. The dnAQET (blue bars) and QUAST-LG (orange bars) runtimes to process the human reference
genome builds (a) and the six assemblies of NA24385 (b) were plotted as the bars (left y-axis). The peak memory usages (in gigabytes) were
plotted in the lines (right y-axis) for dnAQET (gray lines) and QUAST-LG (yellow lines)
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genomic mutations of an individual over the course of
life span which is mostly dependent on accurately identi-
fying the background of an individual’s personal genome
under its normal state. The current standard method for
interrogation of genetic variation using NGS data is to
map reads to a trusted reference genome and analyze
the alignments. The alternative approach is the de novo
assembly of a personal genome. Although in theory the
de novo assembly of personal genomes is very promising
to be the ideal method for the full discovery of the vari-
ation [36], there are still many challenges for it to be
used as the primary method for genomic variation detec-
tion utilizing the data generated by current NGS
technology.
Generating personal genomes at an affordable cost has

becoming a more reachable goal as the second and third
generation sequencing technologies enabling cost effi-
cient sequencing of individuals and this leads to the de-
velopment of various de novo genome assembly
methods. With the increasing number of tools, it has be-
come a crucial task to devise metrics that could evaluate
performance of the de novo assemblies generated by
these tools. In this work, we proposed a framework to
compute quality measures based on a trusted reference
genome to evaluate (i) quality of the scaffolds (or con-
tigs) of a de novo assembly and (ii) the overall quality of
a de novo assembly based on the individual qualities of
its scaffolds. Our framework combines multiple quality
indicators in the quality score calculation, including the
length of a scaffold, the total misassembly observed in a
scaffold, and the total alignment ratio of a scaffold to the
given reference genome. These metrics were carefully
amalgamated into a single quality score that assesses
quality of the scaffolds with respect to a given reference
genome. For calculation of the quality score for an as-
sembly, dnAQET considers multiple metrics including
the cumulative reference genome coverage by its scaf-
folds at different quality thresholds, the cumulative base
pair ratio of the scaffolds at different quality thresholds,
and the redundancy observed in the assembly. We care-
fully designed the integration of different quality mea-
surements so that a single quality score hints multiple
aspects of assembly quality and measures the overall
quality of an assembly.
The individual quality metrics such as NA50, genome

fraction (%), number of misassemblies etc. reported by
other tools such as QUAST-LG are not always consist-
ent to indicate the quality of an assembly, sometimes
even contradictory with each other when ranking mul-
tiple assemblies. We showed that none of these metrics
provided coherent results for both the genome reference
builds and NA24385 assembly datasets. As an example,
we consider the genome fraction (%) metric, which per-
formed well for reference genome builds but had a really

poor performance for assessing the NA24385 assemblies.
This clearly shows it is very challenging for users to se-
lect one or several of these quality metrics for comparing
multiple assemblies. Individually, each of these metrics
represents a different aspect of the quality of a de novo
assembly but it is not apparent to users how to utilize
the quality metrics obtained. Therefore, it would be
much easier for users if a single quality score could con-
solidate different quality aspects together to assess the
quality of an assembly. Our dnAQET quality score ful-
fills this need by combining multiple crucial metrics into
a single score to give an overall snapshot of the quality
of assemblies.
Using in-silico datasets, we demonstrated that the

dnAQET reported higher quality scores for assemblies
with longer scaffolds than the ones with relatively
shorter scaffolds. The quality scores of the assemblies
with lower number of misassemblies were considerably
better than the highly misassembled ones. Furthermore,
the assemblies covering a larger portion of the reference
genome (up to 1X) obtained higher quality scores than
the assemblies with lower reference coverages. Finally,
we showed that the dnAQET assigned lower quality
scores to more redundant assemblies.
The analysis on the reference genome builds of five or-

ganisms demonstrated that the chromosomes in earlier
builds of the genome assemblies exhibited lower quality
scores than the chromosomes from the later builds.
Moreover, we observed the same pattern in terms of the
quality scores for the whole assemblies: the earlier builds
had always lower quality scores than the more recent
builds. When the same reference genome was used to
compare two assemblies, dnAQET assigned a higher
quality score to the better built assembly, demonstrating
that dnAQET is an invaluable benchmarking tool for
comparing the quality of assemblies. Furthermore, our
framework’s quality score provided the best Pearson cor-
relation coefficients for ranking the genome builds of all
five organisms analyzed and the de novo assemblies of
NA24385, further indicating that dnAQET quality score
scheme reflects the quality of a de novo assembly better
than any other metric by combining multiple crucial
metrics into a single quality measure.

Conclusions
The dnAQET is a framework designed to compute qual-
ity measures to evaluate quality of both individual scaf-
folds and a whole de novo assembly. The quality score
computed by dnAQET for a scaffold combines multiple
quality indicators, including the length of a scaffold, the
total misassembly observed in a scaffold, and the total
alignment ratio of a scaffold to a given reference gen-
ome. For the assembly quality score computation, mul-
tiple metrics are integrated into a single robust and
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reliable quality score, which insinuates multiple aspects
of quality of the assembly, hence measuring the overall
quality of an assembly. In this respect, dnAQET’s quality
score is very convenient to be used as a benchmarking
metric when comparing quality of multiple assemblies.
Furthermore, dnAQET is very efficient and scalable

for assessing the quality of a de novo genome assembly.
To attain the superior performance to its competitors, it
partitions both the reference genome and the de novo
assembly into smaller parts so that each partition of the
assembly can be aligned to the reference genome parti-
tion in parallel. Using this strategy, dnAQET achieves a
high level of parallelization for the alignment step that
enables the tool to scale the quality evaluation processes
for large de novo assemblies.

Methods
The dnAQET is a Java package designed to be used in a
Unix based operating system (such as Linux, MacOS,
etc.) and it requires Java 1.7 (or a more recent version)
Runtime Environment installed. For the alignment step
of dnAQET, we used version 2.11 of Minimap2 and
4.0.0 beta2 version of Mummer4 and these versions were
included in the dnAQET package. For performance test-
ing, we used 5.0.0rc1 version of QUAST-LG and
MECAT V1.3 with their default parameters. Those were
the most recent versions of these tools at the time we
implemented dnAQET.
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