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Abstract: Resveratrol is a polyphenol that has been shown to possess many applications in different
fields of medicine. This systematic review has drawn attention to the axis between resveratrol and
human microbiota, which plays a key role in maintaining an adequate immune response that can
lead to different diseases when compromised. Resveratrol can also be an asset in new technologies,
such as gene therapy. PubMed, Cochrane Library, Scopus, Web of Science, and Google Scholar
were searched to find papers that matched our topic dating from 1 January 2017 up to 18 January
2022, with English-language restriction using the following Boolean keywords: (“resveratrol” AND
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“microbio*”). Eighteen studies were included as relevant papers matching the purpose of our
investigation. Immune response, prevention of thrombotic complications, microbiota, gene therapy,
and bone regeneration were retrieved as the main topics. The analyzed studies mostly involved
resveratrol supplementation and its effects on human microbiota by trials in vitro, in vivo, and ex
vivo. The beneficial activity of resveratrol is evident by analyzing the changes in the host’s genetic
expression and the gastrointestinal microbial community with its administration. The possibility
of identifying individual microbial families may allow to tailor therapeutic plans with targeted
polyphenolic diets when associated with microbial dysbiosis, such as inflammatory diseases of the
gastrointestinal tract, degenerative diseases, tumors, obesity, diabetes, bone tissue regeneration, and
metabolic syndrome.

Keywords: resveratrol; microbiota; microbiome; nutrition; bone regeneration; immune response;
resveratrol supplementation; genic therapy; dentistry; thrombosis

1. Introduction

Nutrition is one of the most determinative factors of health [1]. Egyptian medicine, one
of best-known of the ancient forms of medicine, held nutrition in high account for a purpose:
the Egyptian diet was measured and balanced and was considered an art for health and
healing. The basis of the diet was: flax, barley, spelt, as well as fruit and vegetables, among
which red grapes were especially consumed. Above all, red grapes were widespread in the
wealthy classes, who recognized their health and curative benefits [2]. Nutrition’s burden
in pathologies, even if not exclusive, is costly for patients in terms of health, expectations,
and quality of life. Some aliments (fruits, vegetables) have specific qualities (antioxidants,
diuretic, hypoglycemic) in the nutrition sector. These can represent significant effects that
implement and develop a high level of human health. One of these is resveratrol (RSV),
which is, interestingly, considered as the “molecule of youth” [3,4]. RSV (C14H12O3: 3, 5,
4′-trihydroxy-trans-stilbene) is a powerful natural polyphenol of the phytoalexin family.
RSV is present in the barks of some plants, seeds, nuts, peanuts, flowers, and fruits (fer-
mented grapes, mulberry, red wine, blueberries) and in a particular plant called “Japan’s
polygon” (Polygonum cuspidatum) [5]. It is found in the form of trans isomer and cis-
resveratrol. The first is more stable and has higher bioactivity compared to the second
one (six times more potent than cis). Trans-RSV remained stable for several months (pro-
tected from the lights and excepted in high pH buffers) [6–8]. The higher bioavailability of
trans-RSV increases its antioxidant, anti-inflammatory, vasoprotective, anti-mutagenic, anti-
proliferative, and anti-carcinogenic actions, making it more effective and longer-lasting [9].
RSV is not soluble in water; however, it is soluble in substances such as ethanol and
dimethyl sulfoxide. RSV is known for its anti-inflammatory, antifungal, antioxidant, an-
tithrombotic, anticoagulant, anticancer, and antiviral properties (MERS-CoV, pseudo-rabies,
Zika, influenza, Dengue, COVID-19) [10–15]. RSV is a polyphenolic sirtuin activator (SIRT-
1) that initiates the process of deacetylation of peroxisome proliferator-activated receptor-γ
coactivator (PGC-1α), which activates protein phosphatase (PPRy). PPRY takes part in
the genomic transcription of those genes that favor mitochondrial metabolism [5,7]. This
natural polyphenol takes part in multiple metabolic processes by activating SITR1, which
is present in many tissues, such as muscles, pancreas, and adipose tissues [16]. Microbiota
(MB) and microbiome (MM) have a substantial difference in meaning (Figure 1) [16,17].
MB indicates all the microorganisms (bacteria, fungi, archaea, protozoa, and viruses) that
live and colonize a specific environment in symbiosis, in physiological or pathological con-
ditions. Recent studies estimate the presence of about 38,000 billion bacteria in the human
body, mainly living in the intestinal tract. The dominant families (phyla) are Firmicutes and
Bacteroidetes [18,19]. The MM instead indicates the totality of the genetic heritage present in
the microbiota and the ability to manifest them [17]. The microbiome study has advanced
with metagenomics, which is based on the isolation and genomic sequencing of the 16S
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rRNA gene, an RNA gene specific to each bacterium responsible for ribosomes production.
Identifying these genes means tracing a single bacterial species through a computational
analysis of microorganisms, which is also helpful for studying some pathologies dominated
by specific families of microbial communities [18,20]. In particular, metagenomics allows
us to study the interaction methods of various microorganisms with the environment
(microbial ecology) and their precise role in the community [19]. The genome of microbial
communities can be studied through a targeted technology: not only sequencing (metage-
nomics) but also through the transcriptome (transcriptomics), which quantifies the whole
RNA that is transcribed by a genome (i.e., microarray technique), and the proteome (pro-
teomics), which studies the whole set of proteins synthesized by mRNA (electrophoretic
techniques, chromatographic techniques, mass spectrometry) [21,22]. The metabolome
(metabolomics) is another innovative method of studying MM and MB. However, it is
not considered an analytical method capable of tracing all the metabolites of a biological
microorganism and interacting in metabolic processes [23–25]. More and more scientific
evidence demonstrates how MB affects metabolic activity and the inflammatory state. MB
is recognized as beneficial in compromised psychological states due to its influence on the
hypothalamic–pituitary–adrenal axis and the serotoninergic system [23,26–28]. The human
MB would also intervene in the development of the immune system in the first years of
life and in the regulation of the adult immune system [24,29,30]. Eubiosis is mentioned in
conditions of equilibrium, dysbiosis in the opposite case. The administration of antibiotics
generates alterations in the MB and MM [17,20]. The onset of metabolic, cardiovascular,
inflammatory, neurological, psychic, and oncological diseases is often related to dysbiotic
conditions [26]. A recent study on the role of the oral microbiome, dysbiosis, and long
COVID was performed by metagenomic sequencing using lingual swabs from SARS-CoV-
2-infected patients [31–38]. In the oral MB of the patients with long COVID, bacteria such
as Prevotella and Villanella predominated and are known to have inflammatory activity:
Villanella strains stimulate IL-6 production, while Prevotella strains activate IL-23 and IL-1
and toll-like receptor 2 [4,39–42]. It was also found that the oral MB of patients with chronic
asthenia syndrome and myalgic encephalomyelitis was comparable to that of patients
with long COVID [43–48]. In both, Leptotrichia, Prevotella, and Fusobacteria phyla prevailed,
all with inflammatory activities. All the results demonstrate that oral MB dysbiosis may
have determined the clinical and symptomatic course of long COVID patients [49–52]. The
latest studies confirm the ability of RSV to interact with intestinal MB and derivatives
of their metabolism, such as short-chain fatty acids and intraluminal lipids, playing an
essential role in improving the clinical aspects of the metabolic syndrome [16,53–55]. In
particular, the metabolic syndrome (MS) is a recurrent disease worldwide, characterized by
hyperlipidemia, abdominal obesity, insulin resistance, and hypertension, with consequent
development of systemic inflammatory diseases, diabetes, coronary heart disease, stroke,
and cancer [56–58]. Studies show that the oral administration of RSV, activating SIRT-1,
influences both glucose metabolism and lipid metabolism, inhibiting their accumulation.
RSV inhibits the process of the formation and accumulation of fat in the white adipose
tissue, while, in glucose metabolism, it intervenes in several mechanisms [57,59]. Oral
administration of RSV in humans improves insulin secretion and insulin resistance by
protecting pancreatic β cells from oxidative stress, suppresses glucagon production af-
ter meals by improving insulin metabolism, and reduces fasting blood sugar and A1C
hemoglobin [60,61]. In the liver, SIRT-1 acts on gluconeogenesis. In tissues where SIRT-1
is present, RSV controls the insulin responses of target cells. Therefore, RSV mimics the
effects of a low-calorie diet, which improves cell turnover by slowing down the aging
process [62–64]. Studies show that there could be an interaction between GM and RSV as if
the intestinal microbiota would be the target of RSV, which regulates intestinal homeostasis
in response to oxidation processes [65–69]. Most phenolic foods are absorbed in the colon,
where they are metabolized by GM into low molecular weight phenolic compounds, such
as phenolic acids, which are better absorbed from the intestinal tract to be then conveyed to
the liver, where they undergo further biometabolizations (hydrolysis, reductions, and splits)
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and enter the circulatory system [70,71]. The rate, quantity, and type of metabolites are
closely related to the MB variety of the colon. To date, three metabolites of RSV are known:
dihydroresveratrol, 3,4′-dihydroxy-trans-stilbene, and 3,4′-dihydroxybibenzyl (lunularin)
(Figure 1) [67]. The bioactivity of RSV metabolites could be more intense than RSV itself,
and the antioxidant and anti-inflammatory bioactivity of dihydroresveratrol was detected
both in vitro and in vivo [72–75].
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In turn, as for an interdependence relationship, the phenolic derivatives control the
GM composition either for or against some microbial strains. Furthermore, it has been
observed that some Lactobacilli are proven regulators of the immune system [4], and the
qualities of Lactobacilli and Bifidobacteria modulate the gut microbiota. These microor-
ganisms limit gut permeability and favor the immune system [46]. The non-metabolized
phenols, together with other endogenous substances of the patient, act as prebiotics in-
fluencing the GM with antimicrobial activity and influencing bacterial adhesion to cell
surfaces, for example, by favoring strains of Bifidobacterium and Lactobacillus or by in-
hibiting the growth of different species of Clostridia, Lachnospiraceae, and Enterococcus
faecalis [70,76–79]. An opposite effect was obtained for Faecalibacterium prausnitzii, which
was increased compared to the control group. The properties of the prebiotic RSV, which
modifies the variability and composition of the intestinal MB, are also manifested in the
decrease in the Firmicutes/Bacteroidetes ratio, which instead is increased in obese patients
or patients with systemic diseases [80–82]. The metabolite dihydroresveratrol (Dh-RSV)
comes from the RSV fermentation in the cecum, colon, and rectum by the MB, which acts
as a drug in the human large intestine. Therefore, the beneficial effects are not only due
to RSV but also due to the products of its metabolism [76,83–86]. The administration of
RSV results in a reduced formation of Trimethylamine-N-oxide (TMAO), a metabolite of
carnitine and choline, resulting from the digestion of red meat, egg yolk, and fatty cheeses
and liver [87]. A high concentration of TMAO is considered a risk for heart attack and
stroke because it activates platelet activity predisposing to thrombosis [87]. Probably, the
traditional association that red wine with red meat-based meals acts as a cardiovascular
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prevention by limiting the production of TMAO has not been observed in white wine
consumers or abstainers. Therefore, RSV interacting with the intestinal microbiota could
be therapeutic in inflammatory bowel diseases with a systemic implication [81,88,89]. By
decreasing the production of interleukin 1 (IL-1), IL-6, C-reactive protein (inflammatory
markers), and the transcriptional activity of nuclear factor kappa B (NF-kB), which regulate
inflammatory processes and immune responses, RSV reduces inflammation even in patients
with cardiovascular diseases, showing improvements in hypertension, heart failure, and
ischemic heart disease (Figure 2) [90]. The action of the RSV on the activation of SIRT-1 has
also shown benefits on bone metabolism [91].
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inflammatory mediators’ cascade and the COX-1 and COX-2.

Some studies show that the concentration of alkaline phosphatase in serum and bone
alkaline phosphatase was increased with the administration of RSV, while the values of
serum calcium, osteocalcin (a specific marker of bone turnover), and procollagen did
not decrease. In a study conducted on type 2 diabetic patients exposed to the risk of
fracture, 500 mg/day of RSV was administered, and a reduced loss in bone density was
encountered [92,93]. Better results were found in those patients who had lower values of
calcium and 25-hydroxy vitamin D and in alcoholic beverage drinkers [91,94]. Some studies
have shown how RSV stimulates the activity, and the differentiation processes of osteoblasts
slow down the processes of osteoporosis, and, also, combined with platelet concentrates,
such as concentrated growth factors (CGF), prevent osteonecrosis from bisphosphonates,
in particular from zoledronic acid (ZOL) [95–98]. At the bone level, the administration of
RSV also prevents osteomyelitis due to Staphylococcus Aureus by avoiding damage from
the neutrophils, caused by the Panton–Valentine leukocidin toxin (PVL), and avoids the
development of thrombosis [99,100]. RSV may reduce CNS injury caused by meningitic
E. coli. In fact, in an in vivo study on mice, it was found that, in the presence of meningitic
Escherichia coli, the RSV interacting with the lipid raft of the endothelial cells of the blood–
brain barrier, blocking the signal cascade of extracellular signal-regulated protein kinase
1/2 and vascular endothelial growth factor-A (ERK1/2-VEGFA), prevented penetration
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and, therefore, infection of the central nervous system (CNS) and reduced the production of
inflammatory cytokines (Figure 3) [101,102]. The antiviral action of RSV is also due to the
activation of the intracellular signal of SIRT-1, which blocks viral infections by increasing
their resistance [103]. As for COVID-19, studies show that RSV inhibits viral entry into the
cell and its replication [4,36,104].
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Figure 3. Summary of the pathway correlated to the bacteria infection protective properties of
RSV. RSV pathways are able to produce a signals cascade involving Sirtuin 1 [SIRT-1], adenosine
monophosphate (AMP)-activated protein Kinase [AMPK] (blue arrow), liver-kinase B1 [LKB1] (grey
arrow), and peroxisome proliferator-activated receptor-γ coactivator [PGC-1α].

On the other hand, in multiple sclerosis and hepatitis C, RSV administration wors-
ens the clinical outcome [105–107]. Recent studies have suggested that RSV improves its
stability when combined with glucan. Glucans, also called biological response modifiers,
are present in the structure of yeasts, fungi, and algae’s cell walls. For more than half a
century, glucan has been recognized as having an active role as a biological immunomod-
ulator [108–111]. RSV in an aqueous solution with carboxymethyl-β-glucan inhibits the
replication of human rhinoviruses (HRVs), responsible for the common cold both in the
adult and pediatric population. Precisely, the lack of HRV’s replication seems to be associ-
ated with an RSV-induced low cytokine release [108]. Studies show how the use of nasal
spray or aerosol with RSV and carboxymethyl-β-glucan has reduced the application of
antihistamines and nasal decongestants in the allergic rhinitis common cold, improving
symptoms such as cough, rhinorrhea, nasal congestion, sneezing, sore throat, and fever.
They were also used as a prophylaxis in pediatric patients exposed to frequent respiratory
infections [49,112,113]. An interesting study revealed an inhibitory effect of RSV at the min-
imum inhibitory concentration (sub-MIC) level on Streptococcus mutans and its cariogenic
virulence, interfering with the synthesis of acids and their tolerance, on the synthesis of
extracellular polysaccharides, on the composition of the biofilm, and on the potential of
the virulence gene. For this reason, it could be considered as a product for prophylaxis
in the development of dental caries [114–117]. RSV is considered an antitumor substance
since it induces proapoptotic, antiproliferative, anti-inflammatory, and anti-angiogenic
mechanisms. One of the main anti-tumor mechanisms of RSV seems to be related to the
activation of TANK-binding kinase 1 (TBK1), whose insufficient activity would lead to
autoimmune, neurodegenerative, or oncogenic diseases [69,118–120]. Many experimental
studies recognize the immunomodulatory role and immune function of RSV [79,121–123].
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RSV modulates innate and acquired immunity by interacting with different cellular targets.
However, its properties appear to be conflicting. Its immune functions are dose-dependent:
it induces immunosuppression in high doses, while it stimulates the immune system in low
doses [124,125]. It intervenes in the immune system by activating macrophages, T cells, and
natural killer (Nk) cells with an antioxidant effect, removing reactive oxygen species (ROS),
inhibiting cyclooxygenases (Cox), and thus activating anti-inflammatory processes. As an
immunomodulator, it inhibits the proliferation of spleen cells stimulated by Concanavaline
A and interleukin-2 (Il-2) and blocks T lymphocytes and tumor necrosis factor-α (TNF-α)
to produce Il-2 and interferon-gamma (Ifnγ) and macrophages to produce Il-12 [126–128].
The RSV bioavailability is rapidly reduced after oral administration, reducing its effects.
In fact, traces of RSV are detected in plasma (5 ng/1) after 25 mg administration because
70% is absorbed by intestinal cells, and the remainder is rapidly metabolized [79,129]. As
it is not water-soluble, if administered orally, about 30% is directly eliminated without
being absorbed [130]. Therefore, to improve the bioavailability, new compounds have
been formulated with adjuvants, nanoparticles, phospholipid complexes, and liposomes to
evaluate the proper therapeutic dosage in pathological and inflammatory situations and
for prophylaxis in physiological conditions [6]. RSV did not show any side effects when
administered in the daily dose of 600 mg in chronic diseases and immunomodulatory dis-
orders [104]. Our systematic review focuses on the influence of RSV on the gut microbiota
(GM), bone metabolism, and the immune system.

2. Materials and Methods

The present systematic review has been performed in accordance to the principles
of the PRISMA and International Prospective Register of Systematic Review Registry
guidelines (n. 313242) [131]. PubMed, Cochrane Library, Scopus, Web of Science, and
Google Scholar were searched to find papers that matched our topic dating from 1 January
2017 up to 18 January 2022, with English-language restriction. The search strategy was
built by using a combination of words that matched the purpose of our investigation,
whose primary focus is the effect of resveratrol on the microbiota; hence, the following
Boolean keywords were used: (“resveratrol” and “microbio*”) (Table 1). Two independent
reviewers (A.C., F.I.) working in duplicate evaluated all suitable trials with the following
inclusion criteria: (1) studies only on human subjects; (2) open access studies that any other
researchers can retrieve without any subscription; (3) studies that analyzed the link between
resveratrol supplementation and the effects on the axis microbiota and immune system
with a particular focus on oral and intestinal microbiota; studies that did not take into
account the microbiota were excluded. Disagreements between the investigators regarding
the article’s selection were adequately discussed and resolved by adjusting the inclusion
and exclusion criteria.

Table 1. Database search indicators. No publication period limitations have been considered.

Articles screening strategy

KEYWORDS: A: “resveratrol”; B: “microbio*”Boolean Indicators:
(“A” AND “B”)Timespan: from January 2017 up to January
2022.Electronic Databases: PubMed, Cochrane Library, Scopus,
Web of Science, and Google Scholar

3. Results and Discussion
3.1. General Characteristics of the Articles Included

A total of 1450 publications were identified from the following databases, including
Pubmed (441), Google Scholar (55), Scopus (408), Cochrane (0), and Web of Science (546),
which led to 895 articles after removing duplicates (555). Five additional relevant papers
were added by searching the reference list of eligible publications. A total of 871 publica-
tions were excluded by analysis of the title and abstract. The remaining 24 articles were
successfully sought for retrieval and were added to the five papers found by reference
list, leading to 29 publications that were assessed for eligibility by the authors. Eleven
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publications were excluded in the process because they were off-topic. A final number of
18 studies were included in the review for qualitative analysis (Figure 4).
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3.2. Resveratrol and the Microbiota Modulation

In terms of RSV’s therapeutic potential and benefits, more and more research is
finding evidence of RSV’s interaction with the human MM [70,88,132]. Because the totality
of bacteria in the human body serves as one of the key regulators in maintaining the
homeostasis of many systems in our body [133], alterations in the human MB resulting
from RSV usage are also linked to metabolic changes [134]. Metabolic syndrome, which
is associated with the development of type 2 diabetes and heart disease, is defined as the
presence of three of the following metabolic changes in an individual: obesity or high
blood pressure in the central nervous system, high blood glucose, and low serum high-
density lipoprotein or high serum triglycerides [55]. RSV has been described as an effective
supplement in reducing calories, a process that aids physical activity and insulin sensitivity,
leading to increased energy consumption. RSV has also been described as inhibiting
adipogenesis, presenting fat-lowering effects [63,135]. These data make RSV a multi-
organ/anti-obesity supplement that is worth studying. Walker et al. conducted their study
on white subcutaneous adipose tissue. Adipose tissue material obtained for biopsy from
both groups was compared before and after RSV treatment, indicating that changes in the
expression of genes and expression of gene pathways are inconsiderable; genes related to
the mammalian target of rapamycin (mTOR) and SIRT-1 did not change [136]. SIRT-1 is vital
in the mitochondria’s function and biogenesis, and repressing PPARγ in adipocytes causes
lipolysis and fat loss [135,137]. Nevertheless, RSV in humans has not shown significant
effects in weight loss, waist thinning, BMI, or in reducing adipose mass [138,139]. Korsholm
et al. conducted their analysis in intracellular pathways, considering these analyses as
unbiased and more generalized than the usual tests performed on blood (Table 2).
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Table 2. Reported RSV results in obese individuals with metabolic syndrome.

Ref. Authors
(Year)

Type of the
Study/Days Aim of the Study Materials Results

[136]
Walker

et.al
2018

A pilot
randomized

placebo-controlled
clinical trial

30 days

1. If high dose RSV
improve insulin
sensitivity and glucose
tolerance in obese men
suffering insulin
resistance and the MS

2. If RSV induced changes
in the MS do they bring
about changes in gut
GM and on gene
expression of adipose
tissue

28 obese men with MS

− BMI > 30–40 kg/m2

− Insulin resistance
M ≤ 6.5 mg/kg/min
− Age 30–70 years
−Mix Caucasians and
non-Caucasians

trans-RSV vs. placebo

No significant effect on
insulin sensitivity or

glucose homeostasis but
during a 2-h oral GTT,

post hoc analysis was seen
a significant improvement
in insulin sensitivity and

glucose tolerance in
Caucasian subject

[140]
Korsholm

et.al
2017

A randomized
placebo-controlled

clinical trial
4 months

A comprehensive
metabolomic analysis of

the changes caused in
middle-aged men with

MS by RSV

66 obese men with MS

− BMI > 30 kg/m2

− Age 30–60 years
−Metabolomic
analysis on blood,
urine, adipose tissue,
and skeletal muscle
tissue

RSV vs. placebo

RSV supplementation
reduces sulfated androgen

precursors, at the same
time lipid metabolism was

affected and urinary
derivates of aromatic

amino acids reflect the
composition of gut

microbiota.

[132]
Most
et.al
2017

A randomized
double-blind

placebo-controlled
trial

12 weeks

To evaluate the effect of
combined EGCG–RSV

supplementation on gut
microbiota composition.

If changing the composition
of the microbiota brings

EGCG–RSV improves lipid
oxidation and mitochondrial

oxidative capacity.

42 obese men and
women

− BMI > 25 kg/m2

− Age 20–50 years
− Caucasian men and
women

EGCG–RSV vs.
placebo

EGCG–RSV
supplementation reduced
Bacteroidetes and tended
to reduce Fecalibacterium
in men. The composition

of men’s baseline
microbiota determined the

increase in fat oxidation
after EGCG–RSV
supplementation.

This biochemical analysis in adipose tissue found considerable increases in intracellu-
lar glycerol and free fatty acids in individuals treated with RSV. Six of the thirteen identified
lipids experienced a slight increase in individuals of the hRSV group and a slight reduction
in dehydroisoandrosterone sulfate (DHEA-S) and 4-androsten-3β, 17β-diol disulfate, which
are steroid hormones, leading to the reduction in cholesterol [26]. In MS, a person’s high
blood pressure is often present as a consequence of being overweight, and a reduction
in cholesterol may bring good results in these cases, but treatment with RSV in humans
has not provided satisfactory results either in diastolic or systolic blood pressure [10,141].
The mechanism by which RSV improves insulin sensitivity is already known: RSV acti-
vates AMPK [135], so RSV upregulates Act and insulin receptor substrate-1, which are
insulin-signaling components [142,143]. RSV reduces the expression of adipokines and
adiponectin, which regulate insulin sensitivity and retinol-binding protein 4 expression and
resistin [144,145]. However, some studies have not found positive effects of RSV on insulin
resistance and glucose homeostasis [138,146,147]. In contrast, other studies acknowledge
that RSV does not affect glucose homeostasis and insulin resistance in healthy individuals
but in individuals with middle insulin resistance, where it shows a mild action [26,148].
The primary site of postprandial glucose disposal is skeletal muscle [149], and this occurs
through the insulin-activated glucose transporter GLUT4 [150,151]. GLUT4 translocation
is reduced in insulin-resistant diabetic and prediabetic tissues [152]. Exercise and diet are
the strategies that aim to lower postprandial blood glucose in cases of insulin resistance by
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improving glucose uptake into skeletal muscle cells [153,154]; the MM has an impact on
metabolism during exercise [155], and athletes’ GM values differ from those of sedentary
people [156]. The impact of the microbial catabolism of phenols on glucose metabolism, par-
ticularly in the postprandial period, insulin responses, and type 2 diabetes, was investigated
in recent research [157] (Table 3). The effects of certain phenolic compounds on glucose
metabolism and absorption by differentiated muscle cells of the human musculoskeletal cell
line LHCN-M2 [158], which display typical muscle phenotypic markers, were investigated
in detail. The activity of IVAS isovanillic acid-3-O-sulfate, a metabolite of the gut MM, was
found to be the most effective in the study [157] (Table 3). IVAS 2 was discovered in plasma
after eating berries or cyanidin-3-O-glucoside [159,160], although its biological functions
are unknown. According to the findings, IVAS, 3-O-sulfated isovanillic acid enhanced glu-
cose transport as a phase 2 conjugate of protocatechuic acid [161]. Protocatechuic acid acted
according to a dose-dependent mechanism in the uptake of (deoxy) glucose in primary
human muscle cells [162]. Human adipocytes increased the glucose uptake by mimicking
insulin and thereby activating its receptor [163]. Protocatechuic acid and its metabolites
may affect both pathways stimulating GLUT4 translocation in L6 myotubes [164]. The
mechanism was dependent on PI3K signaling and GLUT4 translocation. IVAS also up-
regulated GLUT1 and activated Akt (Table 3). According to a study [157] (Table 4), the
action of IVAS and IVA isovanillic acid (phenolic conjugate) likely occurs on the insulin
receptor present on the surface of LHCN-M2 cells [165], and, because IVATS and insulin are
structurally similar, there may be a mechanism of competition between the two molecules
that is not yet well understood; this could be investigated in the future using molecular
docking and mutagenesis studies. This research demonstrated that conjugated catabolites,
derived from the action of the GM, affect glucose uptake and metabolism in LHCN-M2
human skeletal myotubes. Because skeletal muscle is responsible for 75% of postprandial
glucose disposal [152], it will be critical to optimize systemic glucose metabolism and
muscle function by regulating the insulin-stimulated glucose uptake in muscle cells via the
GM [157]. In Caucasian subjects, the post hoc analysis performed 2 h oral GTT speaks of
a change in results compared to non-Caucasian (Table 2). Glucose tolerance and insulin
sensitivity, according to this study, were notably improved [136]. Using RSV brings about
changes in the GM, altering the alpha and beta diversity. Specific taxa changes were also
found in persons treated with RSV [136]. Most et al. conducted the study in two groups,
polyphenols epigallocatechin-3-gallate (EGCG) and RSV (RES) in the first group and the
placebo in the other group. This study compared how the usage of polyphenol supplemen-
tation affects the intestinal bacterial flora in both males and females (Table 3). The results
showed that taking these supplements considerably reduced bacteroidetes in males but not
in women (however, this could be due to women’s usage of oral contraceptives, which was
not controlled before testing) [132]. According to some studies, polyphenols most likely
act on the adhesion of microorganisms and stimulate the growth of commensal bacteria
and inhibit pathogenic intestinal bacteria [74,81,166,167]. The selection of bacterial strains
depends on their ability to adhere to epithelial cells, production of antimicrobial substances,
and survival under simulated gastrointestinal conditions [168]. These characteristics can be
studied by in vitro cellular models of the human colon, such as Caco-2, HT 29, T-84, and
others. The co-culture of Caco-2/HT29-MTX seeded in the ratio of 9:1 (Caco-2: HT29-MTX)
mimics the ratio of Goblet cells to absorptive epithelial cells in the healthy tract [80,167,169],
including in the production of mucin. This glycoprotein may have a function in lacto-
bacilli adhesion; in fact, it serves as a rich binding network and substrate for commensal
microbiota [170]. Resveratrol improved Lactobacillus acidophilus adherence to mucin and
HT-29 cells via changes in glycoprotein expression in a recent study [171]; nevertheless,
issues remain concerning the physiological significance of the doses utilized in the model.
According to the study [172], both L. gasseri and L. Plantarum in the presence of RSV adhered
with high capacity to the in vitro Caco-2/HT29-MTX co-culture, demonstrating consistency
with numerous in vivo Lactobacillus studies; these strains colonize the intestinal mucosa
after oral administration, and, in particular, L. gasseri [173] and L. Plantarum [174] were con-
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sistently found in the feces. However, on the adhesion of any strain to the physiologically
low concentrations of RSV (4.5, 2.25, and 1.125 g mL−1) utilized in bacterial suspension,
no statistically significant findings (p 0.05) were found [172] (Table 4). RSV did not affect
the strains examined in the panel, but it cannot be ruled out that it affects other strains.
RSV raised Lactobacillus’s adhesion to mucin and HT-29 cells by up to 100 µg mL−1 in a
recent study [171] despite questions about the relevance of the physiological concentrations
used. This suggests that RSV is one of the tested polyphenols that is most efficacious in
changing surface protein expression. According to several data, polyphenols have a specific
lactobacillus strain and cell line-dependent activity [74]: Epigallocatechin boosted L. casei
adhesion 3 to Caco-2 cells, while procyanidins B1 and B2 stimulated adhesion to HT-29
cells. Furthermore, epigallocatechin gallate improved L. acidophilus adherence to Caco-2
cells [74]. This study demonstrates that, while L. gausseri has higher adherence than L.
Plantarum, the idea that RSV promotes bacterial adhesion cannot be verified because no
statistically significant results were found on the lactobacilli tested [172]. RSV’s favorable
effects on the MB and, as a result, on the prevention of noncommunicable illnesses, have
only been established in vitro and in rodent models, so more research is required [172].
The binary capability of RSV has been demonstrated in a mice model by Qiao et al. [175],
which revealed a selective inhibition of the gut growth of Enterococcus faecalis in favor
of a growth of Lactobacillus and Bifidobacterium species. A secondary outcome was asso-
ciated to an mRNA under-expression of Lpl, Scd1, Ppar-γ, Acc1, and Fas markers that
are correlated to the fatty acid synthesis and adipogenesis/lipogenesis processes [175].
Korsholm et al. found changes in the urine, where many of the metabolites derived from
aromatic amino acids are the product of MB (Table 2). Metabolites such as tyramine
and phenol sulfate, along with homovanillate and tryptamine, as well as indolelactate,
2-hydroxyphenylacetate, and histidine, were changed in the RSV group [26]. Jarosova et al.
provided new information on the metabolic process that makes stilbenoids more water-
soluble by the human GM depending on their molecular structural properties (Table 4).
All this is because the uniformity of stilbenoids varies in the different habitat of the colon.
These phenolic compounds have significant biological effects on humans. Many of the most
recent nutritional and epidemiological studies confirm these important effects, for example,
the ability to defend against oxidative cellular stress and the suitability for the prevention
of degenerative diseases affecting the cardiovascular system, neurological system, and
even cancer [70]. There are two ways in which resveratrol has affected and modulated the
intestinal microbiota: the first with its antimicrobial role, and the second by modifying
the composition of this population [176,177]. Its antimicrobial role has been shown to be
effective in both Gram-positive and Gram-negative bacteria, for example, the antimicrobial
effect of resveratrol on E. coli occurs by inhibiting cell division (Z-ring formation) [178,179].
Hydrolysis (O-deglycosylations and ester hydrolysis), cleavage (C-ring cleavage, delac-
tonization, demethylation), and reductions (dehydroxylation and double bond reduction)
are the three major catabolic processes in microbial biotransformations [77]. In turn, phe-
nolics appear to influence GM composition by favoring/disfavoring specific microbial
strains, establishing a two-way connection between the GM and phenolics [65,81,180–182].
Chlorogenic acid, resveratrol, catechin, and some quercetin derivatives, for example, have
been shown to increase the proportional representation of Bifidobacterium strains and,
hence, have prebiotic-like effects [66,84,183–185]. Inoculation with resveratrol and some
ellagitannins inhibited the growth of various Clostridia species, demonstrating antimicro-
bial activity [75,84,181,186]. Bacterial adhesion effects of procyanidin and chlorogenic acid
have been observed by Lactobacillus strain adhesion augmentation to intestinal epithelial
cells [80,187]. Regarding the composition of gut microbiota, Larrosa et al., concluded that
Lactobacillus and Bifidobacterium were increased after the use of resveratrol, and the op-
posite happened with E. coli and Enterobacteria [181]. There is also evidence that confirms
the positive role of resveratrol in maintaining gut barrier function and integrity [188]. The
changes that resveratrol brings to the composition of gut microbiota are thought to be one
of the main mechanisms of how it acts in the body; also, these changes are closely related
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to the course of metabolic disorders [189,190]. RSV has a strong congeniality with quinone
reductase, by the continuous dissociation that reaches a level above 35 nM, so much so that
it is possible to define RVS as one of the most potent inhibitors known so far, capable of
regulating the cellular presence of antioxidant enzymes and assisting in cellular resistance
to stress oxidation [191]. Its anti-inflammatory capacity remains as demonstrated by three
pivotal factors: the decrease in tumor necrosis element alpha (TNF-α) and interleukin
1 beta (IL-1ß), amplification of interleukin 10 (IL-10), and reduction in the manifestation of
prostaglandin E synthase-1 (PGES-1), cyclooxygenase-2 (COX-2), and inducible nitric oxide
synthase (iNOS) [192,193]. RSV affects various metabolic elements and receptors that are
responsible for oxidative stress. A study [194] investigating RVS’s effect on intestinal eu-
biota noted that, with the determination of the internal structure developed by stilbenoids,
a reduction in the Firmicutes and Bacteroidetes ratio was produced, as well as a lowering in
the Clostridium strains and the incidence in the Lachnospiraceae family. The antimicrobial
effect of RVS has been demonstrated through its inoculation, which inhibits the growth of
several species of Clostridia [75,84,181,186]. The total GM is made up of 90% Firmicutes and
Bacteroidetes [195], and it is known that the increase in F/B in the human (and also mouse)
GM is related to an increase in obesity and onset of disease [82,196]. RVS demonstrated
to reduce this proportion [84,175,185]. Recent studies lead us to deduce that GM is one
of the most important protagonists in cardiovascular diseases, passing through the meta-
organismal pathways [197]. In fact, Chen et al. have developed some guidelines for in vitro
screening of the mouse gut MM. The results demonstrate that the MB modulates bacterial
growth [198]; moreover the cyclic peptides D, L-a of the microbiota are able to reform the
intestinal microbioma itself. The GM bases its metabolism on choline, which, by producing
trimethylamine (TMA), converts into trimethylamine-N-oxide (TMAO), which implements
atherosclerosis by hepatic monooxygenases containing flavin (FMO), and it is known that
TMAO has a significant function in cardiovascular disorders [199]. It is noted that TMAO is
a product of fish and meat-based nutrition [200] and of the intestinal microbial metabolism
of choline, carnitine, and betaine to trimethylamine (TMA). Furthermore, many species of
bacteria elaborate that the synthesis of TMA has been developed with cultural methods,
as well as those described here belonging to Firmicutes and Proteobacteria, and Actinobacte-
ria [201]. Peptides administered orally daily can reduce the density of total cholesterol, and
atherosclerotic plaques and RSV inhibit the synthesis of trimethylamine-N-oxide (TMAO),
reducing the growth of TMA with the remodeling of the MM [202]. Intestinal bacteria
through choline, carnitine, and TMA synthesize TMAO (Table 4) [203], which has been
noted as a cause of cardiovascular disorders.

The whole process is assisted by micro inhibitors that prevent dietary choline or
L-carnitine from converting into TMA, which becomes unable to attack the GM. Some
researchers confirm that a particular inhibitor, 3,3-dimethyl-1-butanol (DMB), inhibits the
microbial activity of choline TMA lyase [204]. In this experiment, Klebsiella and Escherichia
were found to host three of the four potential pathways of production of TMA (choline,
carnitine, and TMAO), so they have a significant role in the cycle of TMA in the human
intestine (Table 4) [203]. Among the various positive effects of RSV, there are also the anti-
cariogenic ones. This activity against S. Mutans has been the subject of studies, focusing on
acid production, acid tolerance, gene expression, extracellular polysaccharide synthesis,
virulence, and biofilm formation [114]. Dental caries is among the most frequent diseases
of the oral cavity, and the action of S. Mutans mainly causes it. Several antimicrobial agents,
including fluoride, have been utilized, but research is moving towards herbal products
with minimal side effects. The synthesis of acid and LDH, an enzyme known to create lactic
acid during glycolysis, was investigated in a study on the anti-cariogenic features of RSV.
S. Mutans’ cariogenic activity is achieved through glycolysis and the LDH’s action [205].
According to a study by Li et al. [114], RSV reduces the acid production of S. Mutans to
sub-MIC levels by suppressing bacterial glycolysis (Table 3). Furthermore, by adding 200
and 400 µg/mL RSV, the final pH values in the glycolytic pH drop test were above the
critical pH value that determines the rate of demineralization and remineralization of
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tooth enamel [206]. RSV reduces the amount of S. Mutans at ph 5. Inhibitory activity of
RSV on acid tolerance has been demonstrated using proton permeability and F-ATPase
activity assays: this action appears to be due to the inhibition of F-ATPase activity, which
is essential in maintaining the pH gradient across the membrane, which is related to acid
tolerance [207]. The adhesion of S. Mutans occurs through water-soluble and insoluble
extracellular polysaccharides (EPS), which act in the biofilm matrix’s formation [208,209].
According to the study [114], RSV reduces adhesion and biofilm formation by taking action
on soluble and non-soluble polysaccharides, more so on insoluble ones; CLSM images
demonstrate a looser and thinner biofilm and thus an inhibitory action on bacterial viability.
This study (Table 4) also evaluated the S.Mutans’ transcriptional activity and virulence
factors, including acid production and acid tolerance, synthesis, and polysaccharide forma-
tion. RSV caused lactate dehydrogenase (LDH) gene expression reduction in accordance
with LDH activity assay and PCR; RelA gene expression, which encodes for guanosine
tetra (penta)-phosphatesynthetase involved in oxidative stress and acid tolerance mecha-
nisms [210], was also decreased. The activity of the gtfC gene encoding for GTCF, which
is required for glucan synthesis in the biofilm, was also discovered to be altered, result-
ing in lower cariogenic activity in vivo [211,212]. RSV can repress the ComDE system of
S. Mutans, generating a phenotype with a defective biofilm [213]. The ComDE system is a
fundamental quorum, sensing the cell–cell communication system in the gene regulatory
networks responsible for bacterial adaptation in biofilms [115,214]. Repression of this gene
interferes with the internal communication quorum sensing mechanism in S. Mutans by
inhibiting biofilm formation. According to this study, RSV might have anti-cariogenic
effects, but the toxic effect in the oral cavity is still to be elucidated, so further studies are
needed to understand its molecular mechanism.

Table 3. Effects of RSV and phenolic compounds on glucose uptake and metabolism in muscle cells,
Lactobacillus adherence to intestinal epithelial cells, and S.Mutans cariogenic activity.

Ref. Authors
(Year)

Type of the
Study/Days Aim of the Study Materials Results

[157]
Houghton

et al.
(2019)

Research in vitro

Investigate the impact of
microbiota-derived

phenolic metabolites on
glucose uptake and

metabolism in muscle
cells in myotubes treated
with insulin and glucose

LHCN-M2 myoblasts
Flavanol conjugates, RSV
conjugates, and phenolic

sulfates, compounds from
colonic microbiota metabolism

Many of the compounds tested
increased glucose absorption and

metabolism, but most
notablyisovanillic acid 3-O-sulfate

(IVAS) by a dose-dependent
mechanism through the GLUT 4
transporter and PI3K pathway

IVAS also enhanced
phosphorylation of Akt and

upregulated GLUT1, GLUT4, and
PI3K p85a proteins.

[172]
Jarosova

et al.
(2018)

Research in vitro RSV increases bacterial
lactobacilli’s adhesion

Bacterial strains: L. plantarum,
L. Gasseri L. fermentum, and

L. brevis
Caco-2 cell line, human

epithelial intestinal cell lines at
three physiologically low doses

of 4.5, 2.25, and 1.125 g mL–1

of RSV
There was no statistically
significant difference in

adhesion between any strains
(p 0.05).

No statistically significant result
on the adhesion of any strain

(p < 0.05)

[114] Li et al.
(2020) Research in vitro

Evaluate anticariogenic
activity of RSV on

S.Mutans

Bacterial strain
S. Mutans UA159

RSV (0, 50, 100, 200,
400 µg/mL)

RSV reduced the synthesis of
water-soluble and water-insoluble
polysaccharides and lowered acid

production and tolerance at
sub-MIC doses, compromising

biofilm formation. Virulence factors
were inhibited as concentrations of

RSV increased
(ldh, relA, gtfC, comDE).
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Table 4. Reported RSV results in the colonic environment and GM.

Ref. Authors
(Year)

Type of the
Study/Days Aim of the Study Materials Results

[70]
Jarosova

et al.
(2018)

In vitro study
48 h study

To analyze the effectiveness of selected
stilbenoids (batatasin III, oxyRSV,

piceatannol, pinostilbene, RSV,
thunalbene) in the colon

To provide new data about the
biotransformation of six stilbenoids by

microbiota, depending on their
structural molecular properties.

In vitro fecal
fermentation system

fermentation medium
Sodium phosphate buffer and

reducing solution
Stilbenoid preparation

Fecal samples and ethics
statement

The stilbenoids vary
their stability in a

colonic environment.

[76]
Jaimes

et.al
2019

In vitro study of
fecal bacteria of 4
volunteer donors

To explore the effect of six stilbenoids
(batatasin III, oxyRSV, piceatannol,

pinostilbene, RSV, thunalbene) on the
gut microbiota composition.

To understand the impact of phenolic
supplementation and favorable

colonic conditions

Fecal fermentation
(FFM) system

Set of six stilbenoid phenolics
were fermented in vials via

inoculation with human fecal
bacteria obtained from

four donors.
2 males and two females ages 23,

28 (volunteer Donors 1 and 3)
and 26, 29 (volunteer Donors 2
and 4). Fermentation Medium

The tested
stilbenoidsmodulate

the GM

[215] Heng et.al
2021

In vitro study to
identify the TMA

inhibitors

To identify choline-degrading bacteria
from healthy human feces and used for

screening of trimethylamine
(TMA)-lyase inhibitors

To screen choline-degrading bacteria
from healthy human feces

Stool samples from healthy
adult college students

BSM supplemented with
50 mM choline

The treatment with
β-sitosterol and RSV
decreased TMA level

3.3. Resveratrol and Microbiota Modulation on the Immune Response

The MB invades and occupies the intestine from birth and is immediately conditioned
by the type of birth, breastfeeding, and antibiotic intake [216]. The MB is the set of symbiotic
microorganisms in symbiosis with the human body, and it is strongly regulated by food and
microorganisms that regulate the bioavailability of many antioxidants [217]. Being in direct
contact with the outside world, the oral MB is the first point of contact with everything we
ingest. It has a defensive role of primary importance and acts as a sentinel against potential
bacteria and viruses that can infiltrate and try to reach the respiratory tract, promoting infec-
tion [218]. The microbiota is a variable organ, modified by hormonal factors specific to the
person or external factors, such as diet or probiotics [46,219]. However, if there is dysbiosis,
the bacteria present are mostly pathological, and the “line of defense” is not strong enough
to protect us from possible pathologies [220]. Pathogenic viruses and bacteria can prevail
and inflame the tonsils, pharynx, and larynx, leading to pharyngotonsillitis, pharyngitis,
tonsillitis, or halitosis oral candida [221]. Polyphenols can be an excellent help for available
diseases, weight, and metabolism, helping to increase the risk for different diseases [222].
Plants synthesize RSV as one of the defense mechanisms, which regulates immunity and
can play a role in the prevention and evolution of chronic inflammatory diseases as it
interferes with the regulation of immune cells, the synthesis of pro-inflammatory cytokines,
and gene expression [90]. RSV can directly damage bacterial, fungal, and viral cells, hitting
specific targets within these microorganisms and slowing their growth [223]. RSV has
antimicrobial activity: it is capable of recruiting and activating macrophages, neutrophils,
and lymphocytes during infections [121]. It has an anti-inflammatory action, stimulating
that of anti-inflammatory cytokines, reducing chronic inflammation: by activating SIRT-1,
it inhibits the formation of inflammatory factors, which include NF-kB, which increases
the production by the cells of the immune system of pro-inflammatory cytokines (such
as TNF-α, IL-1β, IL-6) and COX (COX-1 and 2), which transforms arachidonic acid into
inflammatory prostaglandins and thromboxanes. The anti-inflammatory function of RSV
is mediated by SIRT-1 [121]. RSV also reduces oxidative stress and increases antioxidant
molecules. These molecules, reducing the production of free radicals, are the inhibiting
glutathione S-transferase (GST), glutathione peroxidase (Gpx), NQO1, catalase, and su-
peroxide dismutase (SOD) [224]. Ramdani [225] demonstrated that RSV regulates RAS
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and ACE2, involved in SARS-CoV-2 disease, reducing inflammatory cytokines, activating
the SIRT-1 and p53 signaling ways, and by increasing CTL and NK cells. The receptor for
SARS-CoV-2 is the angiotensin-converting enzyme 2 (ACE-2). Inhibition of ACE reduces
cardiovascular and renal diseases. Furthermore, ACE-2 can reduce the binding of the
SARS-CoV 2 virus to human cells. RSV works by inhibiting ACE/ACE-2. RSV increases
the activity of the angiotensin II converting enzyme receptor both in vivo and in vitro [226].
Cells with high ACE2 expression on their cell walls are an easy target for the SARS-CoV-2
virus [4]. RSV would have shown the potential to increase the expression of ACE-2, im-
portant in the role of the entry of SARS-CoV-2, and could intervene in the SARS-CoV-2
infection [227]. Research tells us that RSV is associated with carboxymethyl beta-glucan
(CMG), which increases its solubility and blocks the SARS-CoV-2 virus replication in hu-
man nasal epithelial cells [228]. RSV could play an important role in the regulation of the
renin–angiotensin system (RAS) and activation of ACE 2 [229]. RSV works by activating
sirtuin 1 (SIRT-1) [230], which has a protective role in response to stress, inflammation, and
the regulation of apoptosis [231]. The activation of SIRT-1 and superoxide dismutase (SOD)
of RSV is associated with increased ACE2 function and decreased markers of inflammation.
Therefore, the upregulation of ACE by the RSV could play an essential role in SARS [232].
RSV modulates inflammatory components and exercises immunoregulatory effects. The
red wine polyphenols have a positive effect on bacteria, which cause problems with teeth
and gums. The 2% RSV emulgel is very effective in improving gum health in orthodontics,
reducing gingival inflammation [233]. In particular, RSV has inhibitory properties on the
cariogenic virulence of Streptococcus mutans, reducing acid production and biofilm forma-
tion. The expression of the related virulence gene was also downregulated with increasing
RSV concentrations. RSV, therefore, represents a promising anti-cariogenic agent, reducing
the ability of bacteria to stick to teeth and gums [114]. In addition, there are studies on peri-
odontitis, particularly on the inflammatory responses induced by Porphyromonas gingivalis
in human gingival fibroblasts [234]. The mechanism by which RSV can increase antioxidant
enzymes in our body is the activation of the Nrf-2 gene, involved in the synthesis of the
antioxidant molecules listed above [235]. RSV is considered to be more potent than vitamin
E, one of the most potent antioxidants known to date [236].

Liu et al. [237] (Table 5) analyzed antimicrobial peptides (AMP: α- and β-defensins,
cathelicidin LL-37, and statins 5), which have antimicrobial and immunostimulant prop-
erties, an important defense mechanism of the innate immune system against invading
microorganisms. The bactericidal activities of AMP are due to the formation of pores
in bacterial cytoplasmic membranes. Furthermore, having a distinctly positive charge,
AMPs enhance the initial electrostatic attraction to negatively charged lipid membranes
and negatively charged acids on the surface of Gram-positive bacteria, for example, Staphy-
lococcus aureus, a common opportunistic human colonizer that may cause life-threatening
diseases, such as sepsis, endocarditis, and pneumonia. The sensitization of S. aureus to
AMPs of the innate immune system can facilitate the eradication of S. aureus. RSV exhibits
antibacterial effects and is a presumed inhibitor of ATP synthase in S. aureus. This indicates
that ATP synthase inhibition can be used to sensitize S. aureus to the natural AMps of the
innate immune system. The ATP synthase inhibitor is RSV. Inhibitors can be adjuvants for
antibiotics [223]. The mosquito-borne (Aedes mosquitoes) disease caused by a flavivirus
is DENV, and it is endemic to tropical climate areas of the world. DENV fever [238] is
generally high and sudden, characterized by headache, myalgia, arthralgia, generalized
lymphadenopathy, and rash after a brief apyrexia, and, in addition, coughing, sore throat,
and runny nose. DENV can also cause fatal fever with bleeding diathesis and shock. Zainal
et al. demonstrate that RSV has antiviral activity against DENV. RSV suppresses DENV
replication by inhibiting the translocation of the high-mobility group box 1 (HMGB1), a
DNA-binding protein from the nucleus. The RSV inhibits this migration and increases the
interferon-stimulated genes’ (ISG) transcription by nuclear HMGB1 (Table 5). RSV inhibits
the translocation of HMGB1 out of the nucleus, allowing pro-inflammatory genes to be
downregulated during DENV infection [14]. Yang [101] examined the action of RSV in
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inhibiting meningitic invasion of meningitic E. coli in the blood–brain barrier (BBB). RSV
inhibits bacterial penetration of BBB, reduces neuroinflammation and lethality, reducing the
inflammatory cytokines and the upregulation of caveolin-1 (CAV-1), a class of rafts that is
supposed to function in endothelial cells. RSV may prove to be important in the inhibition
and management of E. coli meningitis and may alleviate E. coli-induced meningitic CNS
injury (Table 2). Hwang and Lim [239] found that, in the Escherichia coli, is the AcrAB-TolC
multi-drug efflux pump (Table 5). The E. coli AcrAB-TolC complex often transports toxic
compounds out of the cells, and this pump has importance in drug resistance: in cases
where there are high AcrAB levels, they are measured in the cases of multi-resistance of
antibiotic-resistant strains, such as MRSA (methicillin-resistant Staphylococcus aureus).
Efflux pump inhibitors (EPIs) are interesting molecules to test as potential adjuvants for
antibiotic treatment because they hinder multidrug resistance in E. coli. The key goal
of RSV is to stop bacterial growth. RSV significantly cut the activity of the AcrAB-TolC
drug efflux complex, promoting the antibacterial activity of RSV in E. coli [239]. Cold is
a communal viral infection (rhinoviruses (HRVs)) that causes inflammation of the nasal
mucosa and pharynx (throat). Both sick and healthy carriers can transmit highly contagious
colds. The common cold has mild symptoms but can be severe in children. According to
the results of Baldassarre et al. [108], the solution with RSV plus carboxymethyl-β-glucan
in the treatment of childhood colds reduces respiratory symptoms and relapses (signifi-
cant reduction in sternutation and episodes of productive or non-productive cough). In
children, RSV with CM-glucan can alleviate nasal problems and breathing difficulties, for
example, allergic rhinitis and acute nasopharyngitis (Table 2). Based on the information
mentioned in the above articles, having an intestinal microbiota composed of symbiotic
microorganisms in balance with the immune system is of fundamental importance in order
to be able to carry out an effective defense against external pathogens to which one may
be exposed. Conversely, a condition of imbalance of the microbiota and of our immune
system leads to a dysbiosis that negatively predisposes both innate and acquired immune
defense, compromising it. Therefore, by virtue of the prebiotic role of RSV and the role of
the stimulator of the immune system, it is possible to affirm its usefulness as a preventive
and adjuvant factor of traditional antibiotic therapies against many diseases caused by
pathogens. For the reasons we have analyzed, it can be said that RSV can undoubtedly
be considered an excellent supplement to our everyday eating habits. The results derived
from immunological research have undoubtedly generated increasing enthusiasm as RSV
displays remarkable antibacterial and antiviral properties, which is why it will be necessary
to continue the study on RSV given that it keeps our immune system in a state of alert
activity and influences the intestinal microbiota (Table 5).

Table 5. Included studies that focus on the immune-system–microbiota–resveratrol axis.

Ref. Authors
(Year)

Type of the
Study/Days Aim of the Study Materials Results

[237] Liu et al.
(2020) Clinical trial

RSV exhibits
antibacterial effects
against S. aureus.

Human antimicrobial
peptides

RSV exhibits antibacterial effect
sand is a presumed inhibitor of

ATP synthase in S. aureus.

[14] Zainal et al.
(2017)

Randomized
controlled trial

RSV in dengue virus
infection RSV RSV suppresses DENV

replication

[101] Yang et al.
(2021)

Randomized
controlled trial

RSV attenuates
Meningitic
Escherichia

coli-mediated
blood–brain

barrier disruption

Different doses of RSV
(5, 10, 25, and 50 µM

RSV inhibited
meningitic E. coli, protecting

the integrity of the BBB
and lethality
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Table 5. Cont.

Ref. Authors
(Year)

Type of the
Study/Days Aim of the Study Materials Results

[239] Hwang e
Lim (2019) Research letter

RSV controls
Escherichia coli

growth

AcrAB-TolC multidrug
efflux pump in E. coli

RSV gives inhibition of the
AcrAB-TolC pump in E. coli.
RSV might act as an efflux

pump inhibitor

[108] Baldassarre
et al. (2020)

Randomized
double-blind

trial

RSV with
CM-glucan in
infants with

common cold

Solution containing RSV
plus carboxymethyl-β-

glucan

RSV and CM-glucan can
alleviate nasal

symptoms and respiratory
complications,

such as allergic coryza and
acute nasopharyngitis.

3.4. Resveratrol and Microbiota Implications on Preventing Thrombotic Complications

Regarding the protective effect of RSV, a natural polymeric compound contained in
grapes, it has antibacterial mechanisms against Staphylococcus aureus (S. aureus), reducing
the inflammatory response in infected tissues [99]. RSV is a potentially useful agent in
preventing thrombotic infections caused by the S. aureus strains responsible for major infec-
tious diseases, such as osteomyelitis [212]. S. aureus is a GRAM+ bacterium with a spherical
and aerobic shape that gives rise to colonies in which the microorganisms form a cluster
arrangement. It is a very virulent bacterium capable of causing several diseases. It usually
colonizes the skin and mucous membranes, and an effective immune system can keep the
microorganism under control. However, in immune deficiency, it can spread through the
bloodstream and affect joints and bones by establishing osteomyelitis. S. aureus induces
an inflammatory reaction in the host, leading to the excessive and rapid recruitment of
inflammatory cells [240]. Following the lysis of neutrophils, which are found to be the
target of PVL toxins produced by S. aureus, pro-inflammatory substances such as IL-6, IL-8,
and TNF-α are released. These are responsible for thrombus formation when associated
with osteomyelitis [241,242]. PVL is a toxin associated with the development of thrombosis
in patients with osteomyelitis. It is made of two parts (LukS-PV and LukF-PV) that create
beta-barrel pores. The lukS-PV component binds to the complement receptor C5aR, and
both components then result in the insertion of the hydrophobic stalk into the target cell
membrane. Once damaged by PVL, Neutrophils release prothrombotic cytokines, antimi-
crobial alpha-defensins (HPNs), myeloperoxidase (HOCL), and myeloperoxidase-modified
proteins. RSV can inhibit these substances from damaged neutrophils [243,244]. Throm-
botic problems can occur in those with a weakened immune system, and high levels of PVL
can be seen in the context of bone infections [100]. The toxin secreted by S. aureus plays a
central role in the development of thrombosis due to the interaction between PVL toxin,
neutrophils, and platelets [99]. PVL induces neutrophil lysis and the release of HPNs and
HOCL [100,245,246]. HPNs activate platelets [247], accompanied by the conformational
change in the platelet fibrinogen receptor GPIIb/IIIa, which increases its affinity, inducing
the formation of microparticles that induce thrombin generation and thus are essential
in thrombus development [248]. There is a two-step mechanism in the development of
osteomyelitis produced by Staphylococcus aureus that is determined by the activity of PVLs
on platelets: A high number of neutrophils accumulate at the site of osteomyelitis, which
is lysed by PVLs, inducing them to release HNPs or myeloperoxidase and subsequently
activating platelets either directly or through lysine-presenting proteins. This mechanism
causes thrombosis through platelet aggregation [248]. RSV can counteract the platelet
activation effects of HOCL-modified proteins and inhibit neutrophil myeloperoxidase.
Moreover, it blocks PVL-induced fibrinogen-platelet binding. RSV protects vessels from
plaque formation and proliferation of smooth muscle tissue, stimulates nitric oxide pro-
duction responsible for vasodilation, and inhibits platelet activation and aggregation, the
first step in blood clot formation [249]. As a result, S. aureus is one of the microorganisms
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that might cause life-threatening complications. It is important to prevent its virulence. S.
aureus has long been suspected of having its primary reservoir in the nasal cavity [250].
Recent studies, however, have shown that S. aureus is part of the oral MB in greater quantity
than the nasal one [251]. S. aureus, in a 2008 study, was also found to be common in the
oral cavity, with the prevalence ranging from approximately 33% in dental plaque to 47%
in saliva [252]. In addition, it is recognized that the use of dental prostheses numerically
elevates oral pathogens. In these cases, proper oral hygiene is recommended to avoid
the establishment of distant or local infections [78,251]. Some oral diseases are caused
by this microorganism, e.g., angular cheilitis, mumps, staphylococcal mucositis, failure
of dental implants [253]. MRSA species have also been isolated in the oral cavity. These
species are difficult to treat with classical antibiotics because of their resistance. They are
very dangerous because they can have the gene for PVL, causing the previously reported
disruptions [254]. Based on the information mentioned, we firmly believe that the oral
condition of S. aureus colonization must be maintained at nonvirulent levels to avoid the
establishment of the described diseases. RSV, as pointed out, aids in the maintenance of the
oral MB.

3.5. Resveratrol and Microbiota Implications in Gene Therapy

Given its remarkable and important biochemical characteristics, in recent years, RSV
has also been studied as an adjuvant in cutting-edge technology. Gene therapy is a modern
approach that involves the manipulation of genetic material to treat specific diseases. This
manipulation allows replacing a defective or mutated gene with a valid one or modifying
an existing gene to change its function [255]. This technique involves modifying the gene
responsible for the genetic disease and inserting it into a DNA vector. The vectors most
commonly used to transport genetic material are viral vectors due to their efficiency in in-
vading cells and introducing their genetic material [256]. The rationale for the procedure is
to get the vector to transport the functioning gene into the target cell and have it integrated
into the DNA to treat the disease. The inserted foreign genetic material must be stable
in the host cell in order for the therapy to be successful [257]. This technique has proven
efficacy in treating several hematological disorders using hemopoietic stem cells as target
cells [258,259]. Transduction resistance of hematopoietic stem cells is the major problem of
lentiviral vector-mediated gene therapy [260], previously attributed to inhibition by the
proteasome, the absence of vector receptor [261], or a cell in a quiescence state [262]. The
interferon-induced transmembrane (IFITM) family of proteins also have intrinsic defensive
effects against pathogens that use cellular endosomes for entry and transport. In particular,
IFITM3 limits the gene delivery efficiency mediated by vesicular stomatitis virus (VSV) in
hematopoietic stem cells [263]. Further, mTOR inhibitor rapamycin can block this process
pharmacologically, but this results in numerous immunosuppressive side effects [264,265].
A study by Ozog et al. proposed to investigate RSV as a viable component to enhance gene
transport in hematopoietic stem cells [266]. Therefore, in this study, RSV and some of its
synthetic cyclic compounds were examined to enhance the lentiviral vector-mediated gene
delivery in this type of cells. The results showed that only a synthetic compound, Caraphe-
nolA, a synthetic RSV cyclotrimer of a higher oxidation state, was able to enhance gene
delivery [266]. Specifically, Caraphenol A substantially improved gene delivery through
a mechanism that resolves the impediment by the IFITM2/3 to the vector. Notably, the
modulation by this compound did not result in unusual integration or lineage disorders
in vivo [266]. In addition to being a good asset in bioengineering [266], RSV can be used as
an adjuvant in the treatment of hematological cancer disorders and other tumors [267,268].
In fact, several studies have shown that its anti-tumor activity acts on several levels. It
indirectly decreases oxidative and inflammatory stress by minimizing reactive oxygen
species, inhibits the phase I cytochrome P450 enzymes responsible for carcinogen activa-
tion, induces the death of malignant cells, and suppresses the proinflammatory signaling
pathways linked to cancer progression [118,120,267,269]. Moreover, patients with cancer-
ous hematological disorders are significantly immunosuppressed due to chemotherapies
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that encourage the development of opportunistic infections linked to alterations in the
MB that make it pathogenic [270,271]. In addition, individuals treated with hematopoietic
cell transplantation (HCT) may develop graft-versus-host disease (GvHD), which severely
attacks the gut. Bacteria, particularly the GM, have recently been recognized as important
in the success of HCT and the onset of GvHD [272]. In particular, the lack of MB is a risk
factor for treatment-related mortality, including death from GvHD, infection, opportunistic
illness, and organ failure after HCT [273]. Therefore, with the mechanisms previously
discussed in this paper, we suspect that RSV may also have a role in controlling the GM in
this cancer scenario.

3.6. Resveratrol and Microbiota Implications in Bone Regeneration

Based on the literature, RSV can promote the differentiation of bone cells and the
release of angiogenic factors that result in better bone vascularization with a greater supply
of nutrients and growth factors. This leads to bone formation [274,275]. Zhang et al. [276]
showed that RSV associated with strontium ranelate (SrRn) induces osteogenic differen-
tiation of mesenchymal stem cells (MSCc). This aspect was deduced by an increase in
alkaline phosphatase (ALP) activity with an increase in the expression of the transcription
factor runt-related transcription factor 2 (RUNX-2), osteocalcin (OCN), and collagen 1A1
(Col 1A1). Other studies report that RSV influences the osteogenic differentiation of MSCs
because bone morphogenic protein-2 (BMP-2) activates SIRT-1. The latter increases the
activity of ALP and human osteoprotegerin (OPG) [274,277,278]. The Notch signaling
pathway, which RSV activates, favors the conversion of osteoblasts into osteocytes [279].
Furthermore, in the study of Zhang et al., RSV increases the expression of the nuclear factor
of activated T cells 1, which is present (NFATc1; transcription factor for the differentiation
of osteoclasts [280]); RSV has no effect on the expression of Matrix Metalloproteinase-
9 (MMP-9; metalloproteinase involved in the destruction of the extracellular [281]) and
Cathepsin K (CTSK; protease involved in the degradation of collagen and in the bone
resorption phase [282]) [276]. Some studies show that RSV inhibits the action of osteo-
clasts by activating the Wnt/β–catenin pathway [283,284]. Several studies state that RSV
causes an increase in vascularization and, consequently, bone formation [275,276]. In the
study included in our review, the effect of RSV on human umbilical vein endothelial cells
(HUVEC) was evaluated. It was noted that RSV promoted angiogenesis by increasing
VEGFA, platelet–endothelial cell adhesion molecule (PECAM), and von Willebrand factor
(vWF) [276].

In the work of Zhang et al. [276], the following aspects were analyzed:

1. the differentiating power of the RSV associated or not with SrRn on the MSCs;
2. the inhibitory effect of RSV on osteoclasts;
3. the angiogenesis effect of RSV associated or not with SrRn on HUVEC;
4. Formation of bone in rats. Bone defects were induced on the mandible of rats and

then rehabilitated with 3D scaffolds (loaded with a mixture of RSV, SrRn, or both).
Four groups of rats were evaluated: rats with scaffold only, rats with scaffold + RVS,
rats with scaffold + SrRn, and rats with scaffold + (RVS + SrRn).

The results of this study show that [276]:

1. MSCs proliferate and differentiate with a high rate on scaffolds with SrRn, and the
rate is higher than that on scaffolds alone and on RVS scaffolds;

2. on the scaffolds with RVS, SrRn, or both, there was a reduction in the number and
size of osteoclasts compared to that observed in the group with only the scaffold;

3. RVS scaffolds have a more significant angiogenesis effect than SrRn or scaffold-
only groups;

4. The micro-computed tomography (CT) analysis showed high bone formation in rats in
which scaffolds with RVS and SrRn were implanted compared to the other two groups.

Another study [95] evaluates, through the in vitro analysis, the action of RSV associ-
ated with CGF on the differentiation and proliferation of human osteoblasts. Furthermore,
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the protection of RSV on osteoblastic cells treated with bisphosphonates was evaluated. The
bisphosphonates administered on osteoblastic cells in vitro are Alendronate (AL) and ZOL.
These drugs are administered in diseases, i.e., osteoporosis, metastatic bone cancer, and
Paget’s disease. Bone regeneration can be compromised by prolonged use of these drugs,
resulting in necrosis of the maxillary and mandibular bone tissue (osteonecrosis) [285–287].

In the study by Borsani et al. [95], the control group is represented by human osteoblas-
tic cells in osteoblast growth medium. This study highlighted that:

1. CGF and RSV (10 µM) have an osteogenic effect and protect osteoblasts treated
with ZOL;

2. OPG levels are found to be elevated in osteoblasts treated with RSV (10 µM) and ZOL
or CGF associated with RSV (10 µM) and ZOL. Meanwhile, in the treatment with AL,
there is no increase in OPG;

3. the treatment with CGF, RSV (10 µM), and AL or CGF, RSV (10 µM), and ZOL resulted
in a significant increase in BMP-2 (inducer of osteogenesis [288]) levels but less than
in osteoblasts treated with CGF and ZOL;

4. in osteoblastic cells treated with RSV, CGF, and ZOL, there is an increase in SIRT-1
and Col 1A1;

5. human osteoblastic cells treated with RSV (10 µM) deposited significant amounts of
calcium, unlike the control group (human osteoblast cells in osteoblast mineraliza-
tion medium).

Numerous literature studies state that the influence of RSV on osteogenic differentia-
tion, proliferation of human osteoblasts, and endothelial cells depends on the dose of the
drug [289–291].

In the study by Zhang et al. [276], the concentration of RSV released from the scaffolds
was equal to 2.15 ± 0.16 µg/mL, while, in the study by Borsani et al. [95], it is stated that
the concentration that determines an increase in the proliferation of osteoblasts without
cytotoxic effects is equal to 10 µM.

By adopting a concentration of RSV equal to 25 µM, Ornstrup et al. [292] observed that
this stilbenoid has an osteogenic action but reduces the proliferation of MSCs. Furthermore,
different authors [289,290,293] described that, for a concentration of RSV between 0.1 µM
and 2.5 µM, there is an increase in the proliferation of MSCs deriving from the human
umbilical cord (hUC-MSCs), while proliferation is reduced to concentrations between
5 µM and 10 µM. Finally, high concentrations of RSV inhibit angiogenesis and HUVEC
migration [294]. Our analysis shows that RSV has an osteogenic action as it induces the
multiplication and differentiation of MSCs and plays an essential role in angiogenesis given
by the proliferation of HUVEC. The action of RSV seems to be empowered by SrRn as the
latter should play a key role in inhibiting osteoclastogenesis. This leads to a reduction
in bone reabsorption in favor of bone deposition. Furthermore, RSV protects human
osteoblasts treated with bisphosphonates. This appears to be potentiated by CGF, which
contains autologous platelet-derived osteoinductive growth factors. Thus, the RSV appears
to modulate the effects of the CGF. Table 6 summarizes the results obtained.

Numerous studies have shown that RSV increases the expression levels of SIRT-
1 [274,295,296] even in rats in which an ovariectomy has been performed. This leads
to thinking about the positive effect of RSV in the case of post-menopausal osteoporo-
sis [297–300]. Therefore, RSV has been shown to activate SIRT-1, causing osteogenic MSCs
differentiation and proliferation [274,277,301]. This leads to bone formation [298,302,303].
RSV also promotes the conversion of osteoblasts to osteocytes via the Notch pathway [279].
RSV appears to have a protective effect against osteoblastic cells treated in vitro with bispho-
sphonates [95], and the study by Zhai et al. demonstrates that RSV prevents steroid-induced
osteonecrosis in a group of rabbits [96].
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Table 6. Reported RSV results in bone regeneration.

Ref. Authors
(Year)

Type of the
Study/Days Aim of the Study Materials Results

[276] Zhang et.al
2020

Research
in vitro

1. If RSV with or without
SrRn has differentiating
power on the MSC;

2. If RSV with or without
SrRn inhibits the action of
osteoclasts;

3. If RSV with or without
SrRn induces
angiogenesis

4. If in rats rehabilitated
with 3D scaffolds with
RSV associated or not
with SrRn, there is
bone formation

− Scaffold only
− Scaffold with SrRn
− Scaffold with RSV
− Scaffold with RSV
and SrRn

1. MSC proliferation in scaffolds
with SrRn is greater than
other groups;

2. Action of osteoclasts is
inhibited in scaffolds with
RSV, SrRn and both;

3. Angiogenic effect is greatest
in scaffolds with RSV;

4. High bone formation in
mandible with scaffolds with
RVS and SrRn compared to
the other two groups.

[95]
Borsani

et.al
2018

Research
in vitro

The researchers wanted to see
how CGFs and/or resveratrol
affected the proliferation and

differentiation of human
osteoblasts, whether they were
treated with bisphosphonates

or not.

Osteoblast growth medium
(OGM): control group

OGM + RSV 10 µM
OGM + AL 5 µM

OGM + ZOL 5µM
OGM + AL 5µM

+RSV 10µM
OGM + ZOL 5µM

+RSV 10µM
OGM + CGF

OGM + CGF + RSV 10 µM
OGM + CGF + AL 5µM

OGM + CGF + ZOL 5 µM
OGM + CGF + RSV 10µM +

AL 5 µM
OGM + CGF + RSV 10µM +

ZOL 5 µM

1. CGF and RSV both have an
osteogenic impact and protect
ZOL-treated osteoblasts;

2. In osteoblasts treated with
RSV + ZOL or CGF + RSV +
ZOL, OPG levels are higher;

3. BMP-2 levels rose sharply in
osteoblasts treated with CGF
+ RSV + AL or CGF + RSV +
ZOL, but not as much as in
osteoblasts treated with
CGF + ZOL;

4. There is a rise in SIRT-1 and
Col 1 in osteoblastic cells
treated with RSV +
CGF + ZOL;

5. Human osteoblastic cells
treated with RSV deposited
substantial amounts
of calcium.

Other studies show that RSV inhibits the action of osteoclasts by activating the Wnt/β–
catenin pathway [283,304]. Several studies state that RSV causes an increase in vasculariza-
tion and, therefore, bone formation [275,302,305]. RSV increases osteoblast proliferation
while inhibiting osteoclast differentiation [306,307], making it a promising candidate for re-
search in dentistry and maxillofacial surgery [95,276,308–311]. Due to the minimal capacity
to trigger an immune response, bone regeneration is currently carried out with autologous
transplants [312]. The utilization of MSCs is a novel strategy, but it has a critical drawback:
harvesting difficulty and poor long-term stability. Another option is to employ biomaterials;
however, the clinical guidelines for doing so are currently unknown [313]. RSV, which is
isolated from natural sources, triggers pathways that lead to osteoblastic development and
differentiation [95,276,314]. As a result, administering RSV could be a viable therapeutic
option for the processes of bone repair and defect restoration [315]. As demonstrated in
the study by Zhang et al. [276], using RSV alone or combined with scaffolds can improve
the clinical management of diseases such as osteonecrosis of the jaw caused by long-term
bisphosphonate medication.

4. Conclusions

RSV has long been recognized for its anti-inflammatory, antifungal, antioxidant, an-
tithrombotic, anticoagulant, antitumor, antiviral, and immune properties. Therefore, it
can bring multiple beneficial effects to the body as it plays an essential role in preventing
many pathologies by positively modulating the human GM. Its anti-inflammatory action is
due to the activation of SIRT-1, which inhibits the formation of inflammatory factors, such
as NF-kB, which stimulates the immune system to produce pro-inflammatory cytokines
(such as TNF-α, IL-1β, IL-6) and cyclooxygenases (COX-1 and 2), thus reducing oxidative
stress. In addition, the activation of the Nrf-2 gene, which is involved in synthesizing
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antioxidant molecules, enhances its antiphlogistic abilities. During an infectious process,
RSV exerts its antimicrobial activity by recruiting and activating macrophages, neutrophils,
and lymphocytes. In the oral cavity, RSV has inhibitory properties on the karyogenic
virulence of Streptococcus mutans, reducing acid production and biofilm formation. Used
as a nasal spray or aerosol, RSV combined with carboxymethyl-β-glucan has reduced the
use of antihistamines and nasal decongestants in allergic rhinitis and the common cold,
improving symptoms, such as cough, rhinorrhea, nasal congestion, sneezing, sore throat,
and fever. At the level of bone metabolism, the study shows that RSV, by activating SIRT-1,
promotes osteogenic proliferation by the differentiation of MSCs and angiogenetic prolif-
eration because it stimulates the proliferation and migration of HUVECs. RSV associated
with SrRn inhibits osteoclastogenesis by reducing bone resorption and promoting bone
synthesis. RSV associated with CGF enhances its protective effects against osteonecrosis of
the jaws, induced by taking bisphosphonates, by promoting osteoinductive processes and
angiogenesis. Osteoblastic and angiogenetic activation are closely related to low doses of
RSV administration. Due to its antioxidant and anti-inflammatory capacities, inhibiting
cytochrome P450 phase I enzymes responsible for cancer activation, RSV can be used as
an adjuvant in various tumor diseases. The activation of TANK-binding kinase 1 (TBK1),
whose insufficient activity would lead to autoimmune, neurodegenerative, or oncogenic
diseases, is one of the main anti-tumor mechanisms of RSV. Due to its biochemical charac-
teristics, RSV has been studied in bioengineering for gene therapy. This technique is mainly
used on hematological problems using hemopoietic stem cells as target cells.

The use of Carafenol A, an RSV cyclotrimer, facilitated the insertion of the gene into the
predetermined sequence, activating the cellular mechanisms that eliminated the IFITM2/3
obstacle to the vector without creating lineage abnormalities in vivo. Recent scientific
studies have validated the relevant role of polyphenols on MB and their influence on
intestinal well-being. There is a clear interaction between GM and RSV as if the former were
a target of the latter, regulating intestinal homeostasis in response to oxidation processes.
The beneficial activity of RSV is evident by analyzing changes in the genetic expression of
the host and the intestinal microbial community with its administration. Today, the four
“omics” sciences: metagenomics, transcriptomics, proteomics, and metabolomics, allow
us to study genomic sequencing, transcription, protein synthesis, and the composition of
metabolites present in the biosystem.

The possibility of identifying individual microbial families and classifying the com-
position of the MB would allow us to customize preventive and therapeutic treatment
plans with targeted polyphenolic diets when associated with microbial dysbiosis, such as
inflammatory diseases of the gastrointestinal tract, degenerative diseases, tumors, obesity,
diabetes, bone tissue regeneration, and metabolic syndrome in general.
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