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Abstract Bile acids entering into enterohepatic circulating

are primary acids synthesized from cholesterol in hepatocyte.

They are secreted actively across canalicular membrane and

carried in bile to gallbladder, where they are concentrated

during digestion. About 95 % BAs are actively taken up from

the lumen of terminal ileum efficiently, leaving only

approximately 5 % (or approximately 0.5 g/d) in colon, and a

fraction of bile acids are passively reabsorbed after a series of

modifications in the human large intestine including decon-

jugation and oxidation of hydroxy groups. Bile salts hydro-

lysis and hydroxy group dehydrogenation reactions are

performed by a broad spectrum of intestinal anaerobic bac-

teria. Next, hepatocyte reabsorbs bile acids from sinusoidal

blood, which are carried to liver through portal vein via a

series of transporters. Bile acids (BAs) transporters are critical

for maintenance of the enterohepatic BAs circulation, where

BAs exert their multiple physiological functions including

stimulation of bile flow, intestinal absorption of lipophilic

nutrients, solubilization, and excretion of cholesterol. Tight

regulation of BA transporters via nuclear receptors (NRs) is

necessary to maintain proper BA homeostasis. In conclusion,

disturbances of enterohepatic circulation may account for

pathogenesis of gallstones diseases, including BAs trans-

porters and their regulatory NRs and the metabolism of

intestinal bacterias, etc.
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Abbreviations

BA Bile acid

BSH Bile salt hydrolase

HSDH Bile acid hydroxysteroid dehydrogenase

CA Cholic acid

LCA Lithocholic acid

DCA Deoxycholic acid

CDCA Chenodeoxycholic acid

UDCA Ursodeoxycholic acid

DHCA Dehydrocholic acid

CYP Cytochrome P450 enzyme

BSEP Bile salt export pump

ABCA ATP-binding cassette, sub-family A

ABCB ATP-binding cassette, sub-family B

MDR3 Multidrug Resistance Transporter 3

MDR2 Multidrug Resistance Transporter 2

ABCG5/8 ATP-binding cassette, subfamily G, member

5/8

MRP Multidrug resistance-associated proteins

NTCP Na? taurocholate cotransporting polypeptide

OATP Organic anion transporting polypeptide

SLCOs Solute carrier family

OST Organic solute transporter

ASBT Apical sodium bile acid transporter

LXR Liver X receptor

FXR Farnesoid X receptor

PXR Pregnane X receptor

VDR Vitamin D receptor

CAR Constitutive androstane receptor

GR Glucocorticoid receptor

PPARa Peroxisome proliferator-activated receptor a
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SHP Small heterodimer partner

TNFa Tumor necrosis factor alpha

HNF1a Hepatic nuclear factor 1a
ILBP Ileal lipid binding protein

SULT2A1 Sulfotransferases2A1

UGT2B4 Uridine dipho-sphate glucuronosyltransferase

2 family, polypeptide B4

BACS Bile acid-CoA synthetase

BAT Bile acid-CoA amino acid N-acetyltransferase

CCK Cholecystokinin

FGF Fibroblast growth factor

NPC1L1 Niemann-Pick C1-like L1

Introduction

Gallstone disease is a frequent and economically relevant

health problem worldwide. In Western countries, the mor-

bidity of cholelithiasis is about 10–20 % (Kratzer 1999).

Moreover, between 20 and 40 % of gallstone patients

become symptomatic or develop complications (Gibney

1990), and more than 700,000 people in the US and 170,000

in Germany underwent cholecystectomies annually (Sandler

et al. 2002). Economically, gallstone disease has been

identified as the second most costly disorder of the digestive

tract. A genetic component in the susceptibility to choles-

terol gallstones has been recognized (Zubler et al. 1998).

Bile acid pool size is maintained relatively constant at about

3–5 g in healthy subjects by two mechanisms, enterohepatic

circulation and de novo synthesis of bile acids. This latter

mechanism compensates for the daily facal loss (about

0.2–0.6 g) of bile acids, whereas the majority of the pool is

conserved by the former mechanism (Lanzini and Lanzar-

otto 2000). The term enterohepatic circulation (EHC)

denotes the movement of bile acid molecules from the liver

to the small intestine and back to the liver. Bile acids tra-

verse the hepatocyte and are actively secreted into canalic-

ular bile, completing the enterohepatic cycle. During the

enterohepatic circulation, bile salts encounter populations of

facultative and anaerobic bacteria, which is relatively small

in quantity but rather diversified in the small bowel. Bile salt

metabolized by small bowel microbes consists mainly of

deconjugation and hydroxy group oxidation. Ileal bile salt

transport is highly efficient (about 95 %), but approximately

400–800 mg of bile salts escapes the enterohepatic circula-

tion daily and becomes substrate for significant microbial

biotransforming reactions in the large bowel (Ridlon et al.

2006).

Bile Acid Biotransformation by Bacteria

Bile Salt Hydrolase(s)

The human liver can produce close to 1 L of bile every

day, but comparatively small amounts are lost from the

body. Hence, approximately 95 % of the bile acids dis-

tributed to the duodenum are reabsorbed into venous blood

within the ileum and colon, and subsequently, through

mesenteric vein, they arrive at the portal vein, finally they

approach the sinusoids of the liver. And hepatocytes re-

uptake the bile acids capably from sinusoidal blood, while

small amounts escape into systemic circulation. Bile acids

are resecreted into canaliculi by the hepatocyte afterward.

As a whole, the enterohepatic circulation makes each bile

salt molecule available several times during a solitary

digestive stage. During these processes, an important bio-

transformation that must take place before subsequent

modifications is termed deconjugation (Batta et al. 1990),

catalyzed by the bile salt hydrolase (BSH).

BSH is an enzyme produced by several bacterial species

in the human or animal gastrointestinal tract that catalyzes

the glycine- or taurine-linked bile salt deconjugation

reaction. And it belongs to the choloylglycine hydrolase

enzymes family, which also comprises penicillin amidases.

Both of them have been classified as an N-terminal

nucleophilic (Ntn) hydrolase with an N-terminal cysteine

residue. BSH catalyzes the hydrolysis of amide bond in the

conjugated bile salts (CBS), then forms the deconjugated

bile acid (mainly cholic and quenodeoxycholic) until free

amino acids are dissociated. These primary bile acids may

afterward undergo dehydroxylation and get converted into

secondary bile acids (deoxycholic and lithocholic) after a

series of changes.

BSH has already been identified that its substrate (bile

acids) is either on amino acid groups (glycine/taurine) or

on cholate steroid nucleus. There have been a number of

reports on cholate group identification by BSH. It has been

reported in several literatures that among the BSHs whose

substrate is at amino acid moieties, the hydrolysis of gly-

coconjugated bile salts are usually more efficient than the

tauroconjugated bile salts (Oh et al. 2008; Kim et al. 2004;

Tanaka et al. 2000). A Lactobacillus buchneri JCM1069

exhibited hydrolase activity against the taurodeoxycholic

acid but not against the taurocholic acid, although both

acids had taurine as their amino acid moiety, they varied in

their steroid moieties at 7a position (Moser and Savage

2001).

Some of probiotics with BSH have been recognized and

characterized. Interestingly bile salt tolerance has generally
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been considered more important than that of the other

properties during probiotic selection in Bifidobacterium,

such as gastric and pancreatic tolerance. It has also been

observed that pancreatin supported Bifidobacterium to

survive in the gastrointestinal tract and withstand against

the antimicrobial property of bile acids (Masco et al. 2007).

It is possible that the presence of BSH and some transporter

proteins lead to bile salt tolerance of some microorganisms,

which are functionally related to the response efficiently to

the stress from bile salts (Kim and Lee 2008). Microbial

traits must be well tolerant to bile acid if they are to survive

in the human gut (Dethlefsen and McFall-Ngai 2007).

Jones et al. (2008) hypothesized that BSH facilitates col-

onization by mediating the resistance to the conjugated bile

acids.

BSHs are very specific for certain bile types and they

help bacteria to survive in various bile environments

through their contact with bile. This assumption is sup-

ported by the studies carried out in Lactobacillus planta-

rum WCFS1 that have four BSH genes, and L. acidophilus

NCFM that have two BSH genes (McAuliffe 2005; Bron

et al. 2006). Bile addition may sometimes have inducing or

inhibiting effects on BSHs as they are highly substrate

specific. Researches have shown that the expression of

BSH 1 by the bile was induced sixfold, while that of BSH 3

was reduced fivefold. Two BSH genes of L. acidophilus

NCFM were inactivated, which indicated that the encoded

enzymes possessed different substrate specificities (Bron

et al. 2006). It is also known that different parts of bile

stimulate different BSHs. BSH A activity was stimulated

by the steroid nucleus of bile salts, while the activity of

BSH B was induced by the amino acid side chain

(McAuliffe 2005).

BSH activity has been found mostly in Gram-positive

commensals (except a few Bacteroides), which also acquire

genome homolog, whereas it is lacking in Gram-negative

commensals of the gastrointestinal tract. Escherichia coli

and Salmonella enterica serovar typhimurium are reported

as BSH-negative strains (Begley 2005). The prevalence of

BSH is well recognized among the established probiotic

genera. It is observed foremost in the majority of species

such as genera Lactobacillus (McAuliffe 2005), Bifido-

bacterium (Kim and Lee 2008), Bacteroides (Kawamoto

et al. 1989), and Enterococcus (Franz et al. 2001). Tanaka

et al. (1999) screened more than 300 strains from Bifido-

bacterium, Lactobacillus, Lactococcus lactis, Leuconostoc

mesenteroides, and Streptococcus thermophilus and found

BSH activity in 273 strains in Bifidobacterium and Lacto-

bacillus but missing in L. lactis, L. mesenteroides, and S.

thermophilus. Furthermore, Tannock et al. (1989) conclude

that lactobacilli are the main contributors to total BSH

activity in the murine intestinal tract, according to the fact

that BSH activity in the ileal of these mice was reduced by

86 % in the absence of lactobacilli and by greater than

98 % in the absence of lactobacilli and enterococci com-

pared with samples from control group mice.

Microbial genome analyses have identified homologs

and putative BSH genes recently. It varies from species and

genera in the organization and regulation of genes encod-

ing BSH. Monocistronic BSH genes have been reported in

La. plantarum (Christiaens1992), La. johnsonii (Elkins

et al. 2001), Li. monocytogenes (Dussurget et al. 2002), and

Bi. bifidum (Kim et al. 2004). And the crystal structure

showed that the enzyme encoded by the CBAH-1 gene

forms an active homotetramer (Rossocha et al. 2005).

Polycistronic operons have been characterized that three

genes are involved in bile salt deconjugation (cbsT1,

cbsT2, and cbsHb), which are detected in La. Johnsonii and

La. acidophilus (Elkins et al. 2001). Genes cbsT1 and

cbsT2 appear to be gene duplications that encode tauro-

cholate/CA antiport proteins of the major facilitator

superfamily, however, cbsHb encodes the BSH b-isoform

(Elkins and Savage 2003). BSH expression is also growth

phase-dependent. Stationary phase expression has been

reported in Bacteroides fragilis (Stellwag and Hylemon

1976), and exponential phase expression was reported for

Bi. longum (Tanaka et al. 2000).

Bile Acid Hydroxysteroid Dehydrogenase (HSDH)

The initial step in bile salt transformation is deconjugation

of taurine- and glycine-conjugated bile salts to the

respective unconjugated free bile salts. This process is

mentioned previous. Free bile salts are further processed

via reductive dehydroxylation. Oxidation/reduction of

hydroxy groups at C-3, C-7, and C-12, epimerization of

hydroxyl groups, and 7a/b-dehydroxylation, these pro-

cesses generate the so-called secondary bile salts deoxy-

cholate and lithocholate, which are produced from the

primary bile salts cholate and chenodeoxycholate, respec-

tively. HSDHs are nicotinamide adenine dinucleotide

phosphate (NADPH)-dependent enzymes belonging to the

short-chain dehydrogenase/reductase (SDR) superfamily

(Kavanagh et al. 2008). They catalyze the oxidation/

reduction of hydroxyl groups of neutral steroids, bile acids,

and other steroid derivatives.

Oxidation and epimerization of the 3-, 7-, and 12-

hydroxy groups of bile acids in the GI tract are carried out

by HSDH expressed by intestinal bacteria. Epimerization

of bile acid hydroxy groups is the reversible change in

stereochemistry from a to b configuration with the gener-

ation of a stable oxo-bile acid intermediate. Epimerization

requires the concerted effort of two position-specific,

stereochemically distinct HSDHs of intraspecies or inter-

species origin. For example, the presence of both 7a and

7b-HSDH in C. absonum allows epimerization by a single
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bacterium (Sutherland and Macdonald 1982), whereas

epimerization also can be achieved in cocultures of intes-

tinal bacteria, one possessing 7a-HSDH and the other

7b-HSDH (Hirano and Masuda 1981; MacDonald et al.

1982). The extent of the reversible oxidation and reduction

of bile acid hydroxy groups by HSDH depends in part on

the redox potential of the environment. Addition of oxygen

to the culture medium increases the accumulation of oxo-

bile acids (Sutherland and Macdonald 1982).

3a- and 3b-HSDHs

3a-HSDHs specifically catalyze the reversible, stereospe-

cific oxidation/reduction between 3-oxo-bile acids and

3a-hydroxy bile acids. 3a-HSDHs have been detected in

some of the most prevalent intestinal bacteria, including C.

perfringens (Macdonald et al. 1976), Peptostreptococcus

productus (Edenharder et al. 1989), and Eggerthella lenta

(formerly Eubacterium lentum) (MacDonald et al. 1979,

1977), as well as in intestinal bacteria present in lower

numbers (\105/g wet weight of feces), including C. scin-

dens (Mallonee et al. 1995) and C. hiranonis (Wells and

Hylemon 2000), and in nonintestinal bacteria, including

Pseudomonas testosteroni (Skalhegg 1975). This reversible

process is catalyzed by NAD(P)-dependent enzymes rela-

ted to the short-chain dehydrogenase/reductase superfamily

(Hoffmann and Maser 2007).

3b-HSDHs specifically catalyze the reversible, stereo-

specific oxidation/reduction between 3-oxo-bile acids and

3b-hydroxy bile acids. 3b-HSDHs activities have been

described in species of Clostridium and Rumminococcus.

And 3b-HSDHs have also been proved to preferentially

require NADP(H), with the exception of C. innocuum,

which uses NAD(H) (Edenharder et al. 1989). Dihydroxy

bile acids [deoxycholic acid (DCA), chenodeoxycholic

acid (CDCA), and ursodeoxycholic acid (UDCA)] are

generally better substrates than trihydroxy bile acids

[cholic acid (CA)] (Edenharder et al. 1989; Macdonald

et al. 1983). In fact, three copies of 3a-HSDH genes (the

bile acid-inducible genes baiA1, baiA2, and baiA3) have

been identified from C. scindens (Gopal-Srivastava 1990;

Coleman et al. 1988), and baiA1 has been expressed in

E. coli and characterized (Mallonee et al. 1995).

7a- and 7b-HSDHs

Specifically, 7a-HSDHs and 7b-HSDHs might be utilized

for the selective a/b inversion of the hydroxy group at C-7

of primary bile acids, which is identified at an industrial

level through a multistep chemical process (Iida and

Nishida 1993). Both enzymatic activities have been

detected in many intestinal bacteria (Lepercq et al. 2004).

Genes encoding for 7a-HSDHs have been cloned from

E. coli (Yoshimoto et al. 1991), B. fragilis (Bennett et al.

2003), Clostridium sordellii (Coleman et al. 1994), and

Eubacterium sp (Baron et al. 1991) strains. Moreover, the

crystal structure of the E. coli 7a-HSDH was determined

(Tanaka et al. 1996), and not only the role of active site

residues in catalysis but also the cofactor recognition were

investigated. 7a-HSDHs generally use NADP(H) as a

cofactor, with the exception of E. coli (Prabha and Gupta

1989) and Ba. thetaiotaomicron (Sherrod and Hylemon

1977). C. bifermentans, C. absonum, and Ba. fragilis

7a-HSDHs that use either NAD(H) or NADP(H) as a

cofactor (Macdonald and Sutherland 1983; Hylemon and

Sherrod 1975; Sutherland et al. 1987) On the contrary, less

information is available concerning 7b-HSDHs, enzymes

showing this activity has been partially purified from Ru-

minococcus sp (Akao et al. 1987). and Peptostreptococcus

productus (Edenharder et al. 1989). Recently, the gene

encoding the NADPH-dependent 7b-HSDH from Collin-

sella aerofaciens was identified and cloned (Liu and Aig-

ner 2011).

12a- and 12b-HSDHs

The epimerization of the 12a/b hydroxyl group by micro-

bial cooperation was demonstrated. Previous research

shows that the enzyme catalyses the oxidation of CA

directly to 12-oxochenodeoxycholic acid. Human intestinal

flora exist cooperating microorganisms such as Clostridium

group P strain C 48-50, expressing NADP(H)-dependent

12a-hydroxysteroid dehydrogenase (HSDH) (Macdonald

et al. 1979), and Clostridium paraputrijiicum, strain D

762-06, containing a described NADP(H)-dependent 12P-

HSDH (Edenharder and Pfutzner 1988). NADP-dependent

12a-HSDHs have been detected in Bifidobacterium species

(Aries 1970) and C. leptum (Harris and Hylemon 1978) in

Clostridium group P (Macdonald et al. 1979), whereas

NAD-dependent 12a-HSDH activity was reported in Eg.

lentum (MacDonald et al. 1977) and C. perfringens

(Macdonald et al. 1976). Meanwhile 12b-HSDHs have

been detected in C. Tertium, C. Difficile, and C. parapu-

trificum (Edenharder and Pfutzner 1988; Edenharder and

Schneider 1985). So far, Clostridium group P, strain C

48–50, is the only microorganism known to express HSDH

activity at unusually high level, meanwhile in the absence

of other HSDHs (Macdonald et al. 1979). Potentially,

this microorganism is a good source for producing HSDH.

12a/b-HSDHs characterized to date are constitutively

expressed and noninducible, with the exception of the

12b-HSDH from C. paraputrificum, which is induced by

12-oxo-bile acid substrates (Edenharder and Pfutzner

1988). 12a/b-HSDHs generally have higher affinity for

dihydroxy bile acids (DCA) than for trihydroxy bile acids

(CA and iso-CA) and for free versus conjugated bile acids.
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The 12a-HSDH from C. leptum is an exception, demon-

strating higher affinity for CA conjugates than for free CA

(Harris and Hylemon 1978).

7a/b Dehydroxylation of Bile Acid

Owing to the fact that 7-dehydroxylation cannot be

reversed by the host enzymatic machinery, LCA and DCA

tend to accumulate in the BA pool. However, LCA is

3-sulfated and conjugated at C-24 by the liver, resulting in

a derivative that is poorly absorbed from the colonic

mucosa, and consequently LCA is not present in significant

amounts in the bile (Hofmann 2004). Thus major BAs in

human bile are CA, CDCA, and DCA, which are accom-

panied by minor amounts of UDCA, LCA, and other BAs,

whereas faces contain mainly DCA, LCA, along with

minor amounts of CDCA, CA and UDCA ,and a variety of

bacteria transformed derivatives (Ridlon et al. 2006).

Several bacterial species in the genus Clostridium have

been isolated and confirmed to convert primary bile acids

into secondary bile acids, a process termed bile acids

7a-dehydroxylation. There previously proposed a multistep

biochemical pathway for bile acids 7a-dehydroxylation.

The current model of bile acid 7a-dehydroxylation sug-

gests that free primary bile acids are actively transported

into the bacterial cell by a proton-dependent bile acids

transporter encoded by the baiG gene (Mallonee and

Hylemon 1996). Once inside, the primary bile acids is

ligated to an ATP-dependent CoA, adjusted by the baiB

gene product (Mallonee et al. 1992). The baiA gene encodes

3a-HSDH, which is specific for primary bile acid CoA

conjugates (Mallonee et al. 1995). It is recently reported

that the baiCD and baiH gene products encode stereospe-

cific 3-dehydro-4-bile acid oxidoreductases, which can rec-

ognize 7a-hydroxy bile acids (CA, CDCA) and 7b-hydroxy

bile acids [UDCA, 3a,7a-dihydro-5b-cholan-24-oic acid],

respectively (Kang et al. 2008). The rate-limiting and irre-

versible step in this pathway is 7a-dehydration that cata-

lyzed by bile acid 7a-dehydratase, which is encoded by the

baiE gene (Dawson et al. 1996). The 3-dehydro-4,6-bile

acid intermediate is then sequentially reduced and exported

from the cell. However, genes in the ‘‘reductive arm’’ of the

pathway have yet to be identified. Previously, the baiF gene

product hydrolyzes bile acid CoA conjugates (Ye et al.

1999). Moreover, the product of gene based on amino acid

sequence comparisons may be a bile acid CoA transferase.

Further, there exists strong evidence that the baiF gene

encodes a bile acid CoA transferase with broad bile acid

substrate specificity (Heider 2001). In a word, the discovery

and characterization demonstrate that bile acid 7a-dehydr-

oxylation is a multistep pathway and suggest the presence

of multiple bai genes.

Bile Acid Synthesis, Transporters, and Regulatory

Nuclear Receptors in the Enterohepatic Circulation

Bile acid (BA) transporters are indispensable for main-

taining the enterohepatic circulation of bile acids. Main-

tenance of the enterohepatic BAs circulation is vital for

several liver and gastrointestinal functions including bile

flow, solubilization and excretion of cholesterol, clearance

of toxic molecules, intestinal absorption of lipophilic

nutrients, as well as metabolic and antimicrobial effects

(Hofmann 2007). In the body, BAs are actively taken up

from the lumen of the terminal ileum efficiently, which is

carried in by the apical sodium-dependent BA transporter

(ASBT, gene symbol SLC10A2), meanwhile leaving only

approximately 5 % (or approximately 0.5 g/d) in the lumen

(Dietschy and Turley 2002). In contrast, this fraction is in

part passively absorbed in the colon, a process facilitated

by bacterial transformation (see above), and the others

extruded with faces.

Bile acids homeostasis in the enterohepatic circulation is

controlled by genes of nuclear receptors (NRs). Except

NRs as intracellular BA sensors, some cells also contain

BA receptors at the cell surface including a G-protein-

coupled receptor (TGR5/M-BAR/GPBAR1) (Maruyama

et al. 2002) and the epidermal growth factor receptor (Rao

et al. 2002). Under physiological conditions, these regu-

latory networks preserve the enterohepatic BAs circulation

and limit intracellular levels of potentially toxic BAs.

Hence it is necessary to maintain proper BAs homeostasis

regulated by transporters via NRs. Furthermore, hereditary

and acquired defects of BA transporters are involved in the

pathogenesis of several hepatobiliary disorders such as

cholestasis and gallstones.

The Enterohepatic Circulation of Bile Acid

Bile Acid Synthesis in Liver

Bile acids are synthesized from cholesterol by either a

classical pathway or an alternative pathway resulting in

formation of CA or chenodeoxycholic acid (CDCA). In the

classical pathway, the cholesterol undergoes a series of

hydroxylations catalyzed by cytochrome P450 enzyme

CYP7A1, CYP8B1 (Eggertsen et al. 1996), and CYP27

(Cali and Russell 1991). In the alternative pathway,

7a-hydroxylation is preceded by the formation of several

different oxysterols. Oxysterols is hydroxylated by

CYP7B1 and CYP39A1 (Li-Hawkins 2000; Schwarz

1997). Moreover oxysterols are also substrates of CYP7A1

(Norlin et al. 2000) and 7a-hydroxylation of oxysterols

blocks their ability to inhibit sterol regulatory element-

binding protein (SREBP) (Schroepfer 2000). Thus,

7a-hydroxylation of oxysterols can markedly influence
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lipid metabolism through increasing the expression of

genes normally regulated by SREBP. Meanwhile the low-

density lipoprotein receptor (LDLR) (Dueland 1992) also

regulates the expression of SREBP-regulated genes.

Hepatocellular Bile Salt Excretion Canalicular Export

Systems

At the canalicular membrane, highly specialized canalicu-

lar transporters mediate excretion of the individual com-

ponents of bile such as BAs, phospholipids, and cholesterol

(Trauner 2003). The bile salt export pump (nomenclature

BSEP, ABCB11 or sister of p-glycoprotein (Spgp)) is the

major canalicular BAs efflux system (Gerloff et al. 1998).

Importantly, the existence of other transporters is proved

by Makishima (1999) and Stieger et al. (2011) by means of

BSEP konckout mouse. BSEP expression and activity are

tightly controlled at transcriptional and post-transcriptional

levels. Farnesoid X receptor (FXR) upregulates BSEP

expression (recently reviewed in Stieger 2011), while

BSEP is downregulated by inflammatory, injury, and

estrogen, for example obstructive cholestasis (Wagner

et al. 2010). The canalicular membrane also contains

transport systems mediating excretion of biliary phospho-

lipids (nomenclature MDR3, MDR2 in rodents or ABCB4)

and cholesterol (ABCG5/8), which are tightly coupled with

BAs excretion (Lo et al. 2008). Another ABC transporter

involved in cholesterol transport is ATP-binding cassette,

sub-family A 1 (ABCA1), which mediates cellular cho-

lesterol efflux from peripheral macrophages but also

expressed at the basolateral surface of hepatocytes and

Caco2 cells (Ohama et al. 2002; Neufeld et al. 2002). There

are other canalicular transport systems that are less

important for BAs transport. For instance multidrug resis-

tance-associated protein 2 (MRP2/ABCC2) mainly

excretes bilirubin–glucuronides and glutathione conju-

gates, but also transports divalent sulfo-conjugated BAs

into the bile.

Alternative Basolateral Efflux Systems in Hepatocytes

When hepatocellular BAs overload, BAs can also be

transported back to the sinusoidal blood to protect the liver

and then undergo elimination through the urine. To provide

less toxic and higher affinity substrates for the basolateral

BAs export systems, BAs is associated with phase I and II

detoxification (Zollner 2006). Basolateral efflux systems

contain the multidrug resistance-associated proteins MRP3

(ABCC3), MRP4 (ABCC4), and the heterodimeric organic

solute transporter (OSTa/OSTb). Analyses of the role of

MRP3 in liver with respect to endobiotics have focused on

glucuronides and monoanionic bile acids, which are well-

established transport substrates of the pump. MRP3 mice

made cholestatic by bile duct ligation have lower serum

levels of bilirubin glucuronide, a conjugate formed in the

liver, compared to cholestatic wildtype mice.

Cholangiocytes and Bile Acid Transport

Bile duct epithelial cells (cholangiocytes) are important

modifiers of bile formation by promoting bicarbonate

excretion and the bile ducts act as drainage system for BAs

flowing to the intestine. After hepatocytes secrete bile salts

into the bile canaliculus, primary hepatic bile acids are

modified during its passage through the biliary tree by

organic anion and electrolyte transport proteins expressed

in biliary epithelial cells. In contrast, conjugated BAs

require active transport into cholangiocytes via an apical

sodium-dependent BA transporter (ASBT/SLC10A2),

which is identical to the transport system in the ileum (see

below) (Lazaridis et al. 1997). BAs are exported into the

adjacent peribiliary capillary plexus via OSTa/b, MRP3,

and possibly a truncated version of ASBT (tABST)

(recently reviewed in (Claudel et al. 2011)). The physio-

logical role of bile salts uptake by cholangiocytes probably

pertains to the regulatory effect of bile salts on intracellular

signaling mechanisms including cholangiocellular mucin

and bicarbonate secretion (Hirata 2001; Jungst and

Sreejayan 2007).

Intestinal Bile Acid Transporters

BAs are mainly actively taken up in the terminal ileum via

ASBT, apart from a relatively small proportion of passive

uptake in the proximal small intestine and colon (Shneider

2001; Dawson et al. 2003). Interestingly, enterocytes,

cholangiocytes, and renal tubular cells share several BA

transport systems including ASBT (see above) (Zollner

2006). After reabsorption, BAs are bound to the cytosolic

ileal BA binding protein IBABP (also known as ileal lipid

binding protein (ILBP) and fatty acid binding protein 6,

FABP6) and exported into the portal blood via OSTa/

OSTb (Dawson et al. 2009). Bile acids escape ileal reab-

sorption and are transformed by intestinal flora in the

colon, where the secondary BAs take up through efflux

systems (e.g., OSTa/OSTb) (Zollner 2006).

Hepatocellular Uptake of Bile Salts

The final step in the enterohepatic circulation of bile salts is

the extraction from portal blood plasma by hepatocytes,

whereas a much lesser amount from the hepatic artery, and

are efficiently removed during their first passage through

the hepatic sinusoids by hepatocellular BA uptake systems

(Kullak-Ublick et al. 2004), involving a sodium-dependent

sodium/taurocholate co-transporting polypeptide (NTCP/
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SLC10A1) and a family of sodium-independent multi-

specific organic anion transporters (OATPs/SLCOs) (Ku-

llak-Ublick et al. 1994; Hagenbuch 1994). This process is

described in detail in several recent review articles (Trau-

ner 2003). Bile salts circulate in plasma are tightly bound

to albumin and lipoproteins such as high-density lipopro-

tein (Wolkoff and Cohen 2003). NTCP accounts for the

bulk (about 90 %) of BA uptake and is the first cloned BA

transporter (Hagenbuch 1994). Its regulation under physi-

ological and pathological conditions is therefore well

understood thus serving as a paradigmatic model to

understand transporter regulation. NTCP expression is

controlled by BAs, hormones such as estrogen and pro-

lactin, as well as pro-inflammatory cytokines (recently

reviewed in Wagner et al. 2010).

Next to the sodium-dependent uptake system NTCP, the

organic anion transporting polypeptides 1B1 (OATP1B1,

encoded by the SLCO1B1 gene), OATP1B3 (SLCO1B3),

and OATP2B1 (SLCO2B1) are major uptake transporters

on the sinusoidal membrane of human hepatocytes. They

mediate the influx of endogenous compounds such as bile

salts, bilirubin glucuronides, thyroid hormones and steroid

hormone metabolites, and clinically frequently used drugs

like statins, HIV protease inhibitors, and the anti-cancer

agents irinotecan or methotrexate (Hagenbuch 2004; Gia-

comini et al. 2010; Niemi 2011; Nies et al. 2008).

Transcriptional Regulation of Bile Salt Transporters

Expression of bile salt transporters in enterohepatic circulation

determines not only uptake and efflux systems but also key

bile acid synthetic enzymes. To ensure the balance between

synthesis, uptake and excretion, expression of bile salt trans-

porters is tightly regulated by NRs. NRs provide a network of

negative feedback and positive feed-forward mechanisms, in

order to control intracellular concentration of biliary constit-

uents, which are often also ligands for these NRs.

Liver X Receptor

Liver X receptors (LXRs) were initially characterized as

sterol sensors that affect cholesterol and lipid homeostasis

and inflammation (Tontonoz 2003). In rodents, LXRa pro-

motes bile acid synthesis by activating cytochrome P450

7A1 (Cyp7a1), a rate-limiting enzyme, to convert cholesterol

to bile acids (Peet et al. 1998; Chiang 2004). It showed that

LXR can also promote bile acid detoxification and alleviate

cholestasis. LXRs are known to induce the expression of

cholesterol and phospholipid efflux transporters. These

include the canalicular cholesterol efflux transporters

ABCG5 and ABCG8 (Repa et al. 2002), as well as ABCA1, a

basolateral ABC transporter that effluxes both cholesterol

and phospholipids (Chawla 2001; Groen et al. 2001;

Mulligan et al. 2003). The potential effects of LXR on the

homeostasis of bile acid, cholesterol, and phospholipids

may play a role in the pathogenesis of cholesterol gall-

stone disease (CGD). LXR-mediated increases in the biliary

efflux of cholesterol and phospholipids as well as a reduced

biliary bile salt pool size, resulting from sensitizing mice of

lithogenic diet, induced gallbladder cholesterol crystalliza-

tion (Uppal et al. 2008).

Role of the Farnesoid X Receptor (FXR) in Controlling

Bile Acid Homeostasis

FXR has a predominant role in regulating bile acid synthesis

and bile salt transport. A rise in intracellular bile acid levels

results in an increase in binding of bile acids to the ligand-

binding domain of FXR and in transcriptional activation of

its target genes. One such hepatic FXR target gene is the

small heterodimer partner (SHP; NR0B2) (Goodwin 2000),

an atypical member of the NR superfamily that lacks a

DNA-binding domain (Seol 1996). SHP can dimerize with

and inactivate both LRH1 and LXRa, resulting in a decrease

in Cyp7a1 expression (Goodwin 2000; Brendel and

Schoonjans 2002). Support for this model comes from

studies showing that treatment of SHP impaired mice with a

potent, synthetic FXR agonist (GW4064) fails to repress

Cyp7a1 mRNA levels (Kerr et al. 2002).

Another pathway that regulates bile acid production is

initiated after activation of FXR in enterocytes; this acti-

vation is induced through enhancing transcription and

secretion of fibroblast growth factor 15 (FGF15). Sub-

sequent binding of FGF15 to fibroblast growth factor

receptor 4 (FGFR4), a transmembrane tyrosine kinase

receptor localized on the hepatocyte cell surface, results in

activation of the c-Jun N-terminal kinase (JNK) pathway

and repression of Cyp7a1 and Cyp8b1 (Inagaki et al.

2005). A prove for the importance of FGF15 in this path-

way came from the earlier observation that both Cyp7a1

expression and the bile acid pool are increased in FGFR4-

lacking mice (Yu et al. 2000).

In addition to Cyp7a1 and Cyp8b1, FXR also regulates

genes involved in bile acid (e.g., BSEP, MRP2) and

phospholipid (e.g., human MDR3 or mouse Mdr2) secre-

tion across the bile canalicular membrane, bile acid trans-

port (ASBT, NTCP, IBABP, OSTa–OSTb), and bile acid

conjugation and detoxification (e.g., SULT2A1, UGT2B4,

BACS, BAT) (Lee et al. 2006).These findings suggest that

FXR is the primary bile acid sensor that coordinately

regulates bile acid metabolism.

Pregnane X Receptor (PXR) in Bile Acid Metabolism

PXR regulates both the basal expression and repression of

Cyp7a (Staudinger et al. 2001a; 2001b). Interestingly, PXR
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does not regulate Shp expression. Thus, PXR represses

Cyp7a1 through a mechanism distinct from that of FXR. In

addition to Cyp7a1, PXR also regulates other genes that

have also been implicated in bile acid metabolism. These

genes include MRP2 (Kast et al. 2002) and OATP2

(Staudinger et al. 2001b), which transport bile acids across

hepatic canalicular and sinusoidal membranes, respectively

(48); and, CYP3A, which hydroxylates bile acids including

lithocholic acid (LCA) (Araya and Wikvall 1999). Unlike

FXR, PXR is not activated efficiently by CA, chenodeox-

ycholic acid, or their conjugated derivatives. However,

both the mouse and human PXR are activated efficiently by

the secondary bile acid LCA and its 3-keto metabolite

(Staudinger et al. 2001; Xie et al. 2001).

Role of Other Transcription Factor (VDR, CAR, PPARa,

GR) in the Regulation of Bile Salt

The basolateral bile salt transporter Mrp3, which is

strongly induced in obstructive cholestasis in rats and

compensates for decreased Mrp2 expression, is induced by

constitutive androstane receptor (CAR) (Soroka et al.

2001). CAR is a NR known to strongly activate CYP2B1

expression, and recent evidence suggests that bilirubin may

induce translocation of CAR from the cytosol to the

nucleus, suggesting a regulatory role of CAR in cholestatic

liver disease (Cherrington et al. 2002; Xiong and Yoshinari

2002).

Vitamin D receptor (VDR) binds 1a,25-(OH)2-vitamin

D3 with high affinity and mediates classic calcitriol effects

such as regulation of calcium and phosphate homeostasis.

Krasowski et al. (2011, 2008) suggest that only VDRs from

animals that predominantly use 5b-bile acids are activated

by bile acids, possibly as an adaptive response to limit the

toxicity of secondary bile acids generated in the intestinal

tract.

The apical sodium-dependent bile salt transporter ASBT

and the hepatocyte canalicular phospholipid flippase Mdr2/

MDR3 (ABCB4) are activated by PPARa (Jung and Fried

2002; Kok 2003). A key function of PPARa is the regu-

lation of genes involved in various steps of fatty acid

metabolism (Desvergne and Wahli 1999) and PPARa
ligands include fatty acids and fibrate drugs. Fibrate drugs

are ligands of PPARa and an important adverse effect of

fibrate treatment is the increased risk of cholesterol gall-

stone formation (see below).

The glucocorticoid receptor (GR) is a nuclear steroid

hormone receptor that is activated by nanomolar concen-

trations of glucocorticoids. The human ASBT gene has

been proved to be transactivated by the GR and an

induction of ASBT by glucocorticoids could be beneficial

in patients with Crohn’s disease who exhibit reduced

ASBT expression (Jung 2004). The NTCP promoter is

activated by GR in a ligand-dependent manner, similarly to

the ASBT promoter. Thus, glucocorticoids may coordi-

nately regulate the major bile acid uptake systems in

human liver and intestine, while providing a negative

feedback mechanism for bile acid uptake in human

hepatocytes.

Enterohepatic Circulation and Gallstone

In theory, each factor that disequilibrates the enterohepatic

circulation will lead to the formation of gallstones. None-

theless, there still remain many unknown aspects when it

comes to regulation of the bile acid homeostasis in the

enterohepatic circulation. In the past few decades, it’s

widely accepted that the most important prerequisites for

gallstone formation are hypersecretion of biliary choles-

terol and cholesterol supersaturation of the bile. Mean-

while, gallstone also exhibits abnormality of bile acid,

reduction of gallbladder motility, prolongation of intestinal

transit time. In the following, we will expose the cause of

gallstones in detail.

Role of Bacteria in Gallstone Disease

Secondary bile acids are synthesized in the human colon

from the bacterial 7alpha-dehydroxylation of primary bile

acids. Increased levels of secondary bile acids have been

correlated with an increased risk of CGD. Moreover,

increased CA-7alpha-dehydroxylation activity of the

intestinal microflora may be an important factor for cho-

lesterol gallstone formation or growth in gallstone patients.

High levels of CA 7a-dehydroxylating fecal bacteria have

been correlated with increased amounts of DCA in bile of a

subset of cholesterol gallstone patients. Treatment of these

cholesterol gallstone patients (high DCA group) with

antibiotics significantly decreased the levels of fecal CA

7a-dehydroxylating bacteria, DCA in bile, and the choles-

terol saturation index in bile (Berr 1996). The optimal

reaction conditions of cholylglycine hydrolase and 7a-de-

hydroxylase are measured in fresh caecal samples, obtained

by aspiration during clinically-indicated colonoscopy. This

is an essential first step to further studies of intestinal

bacterial enzymes in the pathogenesis of CGD (Thomas

et al. 1997). UDCA, which can be used as an therapeutic

agent for the non-surgical dissolution of gallstones as well

as for the treatment of primary sclerosing cholangitis and

primary biliary cirrhosis (Beuers et al. 1992). The key

enzymatic steps in the synthesis of UDCA are the reduction

of dehydrocholic acid (DHCA) to 12-keto-ursodeoxycholic

acid. Recently, it is observed that 7b-hydroxysteroid

dehydrogenase (7b-HSDH) from Collinsella aerofaciens,

3a-hydroxysteroid dehydrogenase (3a-HSDH) from
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Comamonas testosteroni with glucose dehydroge-

nase(GDH) from Bacillus subtilis for cofactor regenera-

tion, which was able to completely convert 100 mM

DHCA to [99.5 mM 12-keto-UDCA within 4.5 h in a

simple batch process on a liter scale (Sun et al. 2013).

Acromegalic patients have slow colonic transit,

increased rates of deoxycholic acid formation, and an

increased prevalence of cholesterol gall stones, especially

during long-term octreotide treatment. The increasing de-

oxycholic acid formation seen in acromegalics during

octreotide treatment is due not only to the greater numbers

of facal anaerobes but also to increased activity of the rate-

limiting enzyme pathway (7alpha-dehydroxylation) con-

verting cholic acid to deoxycholic acid (Thomas et al.

2005). It is found that gallstone patients had [42-fold

(p \ 0.01) higher levels of 7alpha-dehydroxylating bacte-

ria than patients who had not developed gallstones. And all

strains of 7alpha-dehydroxylating bacteria isolated from

gallstone patients appear to belong to the genus Clostrid-

ium (Wells et al. 2000). Moreover, antibiotic treatment

decreases facal 7a-dehydroxylation activity, and lowers

biliary deoxycholate and cholesterol concentration (Berr

1996).

Bacterial DNA sequences are usually present in mixed

cholesterol (to 95 % cholesterol content), brown pigment,

and common bile duct, but rarely in pure cholesterol

gallstones (Lee et al. 1999). Stewart and co-authors (2007,

2007) have readily cultured bacteria from cholesterol

stones with pigment centers. Bacteria sequestered in cho-

lesterol stones cause fewer infectious than pigment stone

bacteria. Possibly because of their isolation, cholesterol

stone bacteria were less often present in bile and blood,

induced less immunoglobulin G, were less often killed by a

patient’s serum. Bacteria-laden gallstones are biofilms

whose characteristics influence illness severity. Factors

(beta-glucuronidase/phospholipase) creating colonization

surface facilitated bacteremia and severe infections. But at

the same time, abundant slime production not only facili-

tates colonization, but also inhibits detachment and cho-

langiovenous reflux. What is more, germ-free rederivation

rendered mice more susceptible to cholesterol gallstone

formation. This susceptibility appeared to be largely due to

alterations in gallbladder size and gallbladder wall

inflammation (Fremont-Rahl et al. 2013).

Role of Intestine in Gallstone Disease

In gallstone patients, both small intestinal and whole gut

transit times are prolonged compared to normal controls.

Therefore, we can conjecture that impaired intestinal

motility might promote gallstone formation. One possible

link between impaired intestinal motility and lithogenic

bile could be secondary hydrophobic bile salt

deoxycholate. We can find the evidence from studies in

humans and mice. For example, it is reported that gallstone

patients have longer large bowel transit times, more total

and gram-positive anaerobes and more 7a-dehydroxylating

activity in the caecum than normal subjects (Thomas et al.

2000). Further, treatment with octreotide that is known for

the risk factor of CGD, which not only increases biliary

deoxycholate concentration but also prolongs colonic

transit time (Thomas et al. 2005).

It is also believed that ileal disease, bypass, or resection

represent a major risk factor for gallstones, according to

study on prairie dogs that underwent ileal resection or

Crohn’s disease, whose cholesterol saturation indexes of

gallbladder bile remained essentially unchanged, whereas

pigment gallstones formed frequently (Jung 2004; Pitt et al.

1984). The role of chronic intestinal infection as a potential

factor in cholesterol gallstone pathogenesis has been pro-

posed. Distal intestinal infection with a variety of enter-

ohepatic Helicobacter species, but not Helicobacter pylori,

are essential to nucleate cholesterol supersaturated bile in a

well-established murine model of cholesterol gallstone

formation (Maurer et al. 2006; Maurer et al. 2005). Bile

salt malabsorption is another factor of gallstone. For

example, excess dietary carbohydrates are known to cause

bile salt malabsorption. Bile salt malabsorption has been

induced in mice and hamsters by a diet rich in nondigest-

ible starch and b-cyclodextrin (Abadie et al. 1994). Similar

results have been found with diets replete in refined sugars:

high sucrose diets increase fecal bile salt loss, possibly

because of induction of more rapid intestinal transit (Kruis

et al. 1991). Meanwhile, chronic alcohol ingestion by

laboratory animals leads to bile salt malabsorption due to

morphological and functional alterations of the small

intestinal mucosa, which may compromise Na? -coupled

bile salt transport (Zucoloto and Muccilo 1985). Recent

experimental studies on mice with defects in the cystic

fibrosis transmembrane conductance regulator gene

(CFTR) have shown that bile salt malabsorption also

occurs in these animal models, which may be caused by the

disorder of mucin, and leads to gallstone (Debray et al.

2012). Moreover, prolonged TPN may also cause ileal

atrophy and downregulation of ileal ASBT, complicating

the scenario with added bile salt malabsorption (Matsum-

ura et al. 1993).

Role of Gallbladder in Gallstone Disease

Impaired postprandial gallbladder emptying, often present

in cholesterol gallstone patients, may prolong residence of

bile in the gallbladder, thus allowing more time for

nucleation of cholesterol crystals from supersaturated bile

and their growth/aggregation into macroscopic stones.

Although impaired motility is generally secondary to
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biliary cholesterol supersaturation, it may still facilitate the

process of gallstone formation. Gallbladder motility is

often impaired in many high-risk situations for gallstone

formation, such as pregnancy, obesity and rapid weight loss

in obese patients, diabetes mellitus, and total parenteral

nutrition (van Erpecum et al. 2000). Meal-induced release

of cholecystokinin (CCK) from the duodenum is the prin-

cipal factor driving gallbladder smooth muscle contraction,

accounting for 70–80 % of the decrease of fasting gall-

bladder volume. The CCK-1-receptors-deficient mice have

larger gallbladder volumes (predisposing to bile stasis),

significant retardation of small intestinal transit times

(resulting in increased cholesterol absorption), and

increased biliary cholesterol secretion rates. And the mice

result in a significantly higher prevalence of cholesterol

gallstones for the absence of CCK-induced contraction

(Wang et al. 2004). A primary role for gallbladder motility

in gallstone formation is also indirectly supported by the

observation that daily CCK injection during total parenteral

nutrition or inclusion of dietary fat to enhance CCK release

during rapid weight loss restores gallbladder contractility

and can prevent gallstone formation (Gebhard et al. 1996;

Sitzmann et al. 1990).

Gallbladder wall inflammation may also be critical in

gallstone formation. The gallbladder wall is exposed to

detergent bile salts, unesterified cholesterol and bacteria,

which all could induce inflammation. The murine infected

with Helicobacter spp and fed a lithogenic diet develops

cholesterol gallstone at 80 % prevalence by 8 weeks

compared with approximately 10 % in uninfected controls.

This result indicates that Helicobacter spp play a signifi-

cant role in the pathophysiology of cholesterol gallstone

formation in mice and perhaps humans (Maurer et al.

2005). Subsequent studies confirm that T cells are critical

in murine cholesterol cholelithogenesis. Wild-type mice

develop significantly more cholesterol gallstones than

congenic immunodeficient Rag2(-/-) (Rag) mice. Mean-

while T lymphocytes to Rag2(-/-) mice increased stone

prevalence markedly (Maurer et al. 2007). Although vari-

ous helicobacter species have been detected in human

gallbladders and bile, and antibodies to helicobacter hep-

aticus were found at increased frequency in gallstone

patients, the role of helicobacter in human gallstone path-

ogenesis remains to be defined.

Role of Bile Acids Transporters in Gallstone Disease

Bile acids transporters play a important role in pathogen-

esis of gallstone. As it is known to us, enterocytes, cho-

langiocytes, and renal tubular cells all contain apical

sodium-dependent bile acid transporter (ASBT) which is

one of BAs transport systems. Interestingly, female who

are deficient of the ASBT and ILBP in the cholesterol, low

BAs or phospholipid concentrations, as well as BAs and

phospholipid species, deter small intestine result in pro-

moting gallstone formation (Bergheim et al. 2006). It

observes that an impaired function of OSTa–OSTb may

lead to low ileal bile acid reabsorption and an altered bile

acid pool composition and therefore may contribute to the

formation of gallstones in non-obese patients (Renner et al.

2008). A decreased expression of the ileal ASBT gene

SLC10A2 develops the formation of gallstone, and Com-

prehensive statistical analysis provides strong evidence that

allele of rs9514089 is a genetic determinant especially in

male non-obese gallstone carriers (Renner et al. 2009).

What is more, the decreased hepatic NPC1L1 levels may

leads to the cholesterol supersaturation because of the

malabsorption of biliary cholesterol in the liver in Chinese

female gallstone patients (Cui et al. 2010).

The process of nascent bile formation is maintained by

an elaborate network of ATP-binding cassette (ABC)

transporters in the hepatocyte canalicular membrane which

enable biliary secretion of cholesterol, bile salts, and

phospholipids. Higher hepatic messenger RNA expression

of ABCG5 and ABCG8 correlates positively with higher

biliary cholesterol levels (Yu 2002). The variants

ABCG8(D19H) are proved to be a susceptibility factor for

human gallstone disease via a genome-wide association

scan (Buch et al. 2007). Recently, mutation detection and

genotyping yield two chololithiasis-associated variants:

ABCG5-R50C and ABCG8-D19H. Moreover, the

ABCG8-19H variant has a high transport capacity, which

was also superior in nested logistic regression models in

German, Chilean, and Chinese patient samples (von

Kampen et al. 2013). Henkel and Wei (2005) observes that

overexpress BESP (ABCB11) in mice fed a lithogenic diet

have an increased rate of cholesterol crystal and gallstone

formation. This was associated with an increase in both the

hydrophobic bile salt and cholesterol content of gallbladder

bile. Analysing the entire MDR3 (ABCB4) gene coding

sequences represents that MDR3 (ABCB4) gene mutations

are a major genetic risk factor in a symptomatic and

recurring form of cholelithiasis in young adults (Rosmor-

duc and Hermelin 2003). Nevertheless, recent data from sib

pairs with gallstones and control do not support a link

between ABCB4 and ABCB11 polymorphisms and gall-

stone formation in the large majority of patients (Acalov-

schi et al. 2009).

The down-regulation of NTCP1 (SLC10A1) protein

expression might protect hepatocytes from high intracel-

lular bile salt loads in the lithogenic diet mice (Muller et al.

2002). Organic anion transport protein 1B1 (OATP1B1)

(encoded by SLCO1B1) is a major transporter protein for

bile salt uptake in enterohepatic circulation of bile salts.

The frequency CA genotype and A allele of Exon4 C [ A

polymorphism was higher in gallstones patients (12.4 and
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6.2 %) as compared to controls (5.2 and 2.6 %). These

results confirm the increasing risk of gallstone disease in

North Indian population (Srivastava et al. 2011).

Role of Nuclear Receptors in Gallstone Disease

FXR is a member of the NR superfamily and regulates

hepatic expression of BESP (ABCB11) and MDR3

(MDR2/ABCB4), thus affecting amounts of solibilizing

bile salts and phospholipids in bile. FXR deficient mice are

highly susceptible to gallstone formation, which treating

with a synthetic FXR agonist can prevent gallstone disease.

These results maybe relate to the low amounts of biliary

bile salts and phospholipids, which are regulated by BESP

and MDR3 (Moschetta 2004). What is more, research

suggests that FXR and the heterodimer ABCG5/ABCG8

are possible determinants of cholesterol gallstone forma-

tion in mice via quantitative trait locus analysis (Witten-

burg 2003). The loss of the ASBT and ILBP)in female

normal weight gallstone carriers is coupled with a reduc-

tion of protein levels of hepatic nuclear factor 1alpha and

FXR (Bergheim et al. 2006). The absence of b-Klotho

would be predicted to disrupt the FXR–FGF15/19-medi-

ated gut liver signaling, the most relevant pathway for

FXR-dependent CYP7A1 down-regulation (Franz et al.

2001), leading to increased CYP7A1 levels. Thus, inhibi-

tion of bKlotho could improve current (i.e., UDCA) and

potential future therapies (i.e., synthetic FXR agonists) for

gallstone disease by increasing cholesterol breakdown via

increasing CYP7A1, which is typically reduced in treat-

ment with FXR agonists.

We have illustrated that LXR regulates expression of

ABCG5/G8 cholesterol transport protein. The current study

has revealed a novel lithogenic role of LXR as well as a

functional interplay between LXR and LDLR in gallblad-

der cholesterol crystallization and possibly CGD in the

murine model. Furtherly, in a small group of Chinese non-

obese normolipidemic gallstone patients, the upregulation

of ABCG5/ABCG8 in gallstone patients is mediated by

increased LXRalpha possibly, may contribute to the cho-

lesterol supersaturation of bile and the formation of gall-

stone (Jiang et al. 2008). In addition, LXRb and PPARd
coordinate Niemann-Pick C1-like L1(NPC1L1/ABCA1)-

dependent vectorial cholesterol flux from bile through

cholangiocytes and manipulation of these processes may

influence bile composition in murine with gallstone (Xia

et al. 2012).

PXR knock-out mice associated with reduced expression

of cholesterol 7alpha-hydroxylase present a decrease in

biliary concentrations of bile salts and phospholipids and

an increase in the cholesterol saturation index and forma-

tion of cholesterol crystals (He et al. 2011). Fasted mice

with hepatocyte-specific GR knockdown have smaller

gallbladder BA content and are more susceptible to devel-

oping cholesterol gallstones when fed a cholesterol-rich diet.

Hepatic GR deficiency reduces the expression of the major

hepatocyte basolateral BA transporter, Na(?)-taurocholate

transport protein (NTCP/SLC10A1), which affected dietary

fat absorption and brown adipose tissue activation (Rose

et al. 2011). Role of VDR in BESP repression via direct

VDR–FXR interaction has been postulated in vitro. And

VDR is able to induce mouse MRP3 expression in intestine

(Honjo et al. 2006). CAR appears to play a central role in

regulating bile acid sulfation, since it is proposed to regulate

bile acid sulfation and subsequent basolateral export via

CAR-induced over-expression of the basolateral export

pump MRP4, which transports steroid sulfates (McCarthy

et al. 2005). But, there is not any direct research between

VDR or CAR and the formation of gallstone. Further

research is needed on the role of NRs in gallstone patho-

genesis and the therapeutic potential of the potent NR ago-

nists currently available. The review shows the latest

information as far as we know it, but there is still much work

remains to be done to identify the causal relation between

enterohepatic circulation and gallstone.
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