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Abstract: In recent years, a growing interest has been dedicated to the study of the endocannabinoid system. The isolation 
of Cannabis sativa main psychotropic compound, Δ9-tetrahydrocannabinol (THC), has led to the discovery of an atypical 
neurotransmission system that modulates the release of other neurotransmitters and participates in many biological 
processes, including the cascade of inflammatory responses. In this context, cannabinoids have been studied for their 
possible therapeutic properties in neuroinflammatory diseases. In this review, historic and biochemical aspects of 
cannabinoids are discussed, as well as their function as modulators of inflammatory processes and therapeutic 
perspectives for neurodegenerative disorders, particularly, multiple sclerosis. 
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1. INTRODUCTION 

 Cannabis sativa is a herb belonging to the Cannabaceae 
family, characterized by palmate leaves and numerous fibers. 
Its first record as a medicine dates back to 5000 years ago 
and it was found in China, where cannabis was used for a 
myriad of purposes and diseases, including malaria, neuro- 
pathic pain, nausea, sexual dysfunction and constipation [1]. 
The use of cannabis spread from Central Asia and deeply 
influenced Indian folk medicine. However, sedative and 
psychotropic effects of cannabis turned it into a recreational 
drug. This fact resulted in discrimination against the 
consumption of the cannabis plant and its derivatives, which 
delayed the scientific findings in this field.  

 Cannabinoid compounds may be extracted from the plant 
(phytocannabinoids) or be artificially obtained (synthetic 
cannabinoids). Mammals also produce endogenous substances 
(named ‘endocannabinoids’) that resemble the bioactive 
constituents of the plant. Since the first accurate description 
of a cannabis constituent in 1964 [2], enormous advances in 
the cannabinoid field were possible. From the discovery of 
Δ9-THC (THC), several phytocannabinoids were purified 
and identified, such as cannabidiol (CBD), cannabigerol,  
and cannabichromene. In the 1980s the presence of a 
cannabinoid receptor in the brain was identified by Devane 
and colleagues [3]. The high-affinity, stereoselective G 
protein-coupled cannabinoid receptor in the rat brain tissue 
was termed CB1 receptor, and soon it was cloned [4]. To CB1 
receptor are attributed all psychotropic and motor impairing 
effects of cannabis, due to its plentiful expression in specific 
regions of the central nervous system (CNS) such as the  
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hippocampus, pre-frontal cortex, basal ganglia and 
cerebellum [5, 6]. Also, because CB1 receptors are expressed 
in CNS areas related to the descending spinal inhibition, for 
instance, dorsal periaqueductal gray (PAG) and rostral 
ventrolateral medulla (RVM), they are associated to the 
control of pain [7-9]. In fact, synthetic THC (dronabinol) and 
its derivative nabilone are already marketed as therapeutic 
agents (Marinol® and Cesamet®, respectively) with 
antiemetic and analgesic properties [10-12]. Cannabinoid 
CB1 receptors are also found to a lower extent in peripheral 
tissues, including the adrenal gland, bone marrow, heart, 
lung, prostate, testis, thymus, tonsils, and spleen [13]. At a 
cellular level, CB1 receptors are found mainly at the 
terminals of central and peripheral neurons, where they 
usually modulate the release of excitatory and inhibitory 
neurotransmitters [14].  
 A second subtype of cannabinoid receptor, named CB2, 
was found to be expressed primarily in cells of the immune 
and hematopoietic systems, including myeloid, macrophage, 
mast, B, T, and erythroid cells [15]. Indeed, further studies 
on the function of this receptor identified it as the major 
participant in cannabinoid-mediated immune modulation 
[16, 17]. Additionally, the presence of CB2 in the CNS was 
also detected [18, 19], particularly in specific regions of the 
brain, spinal cord and dorsal root ganglia [20, 21]. Microglia 
cells, which are the CNS ‘macrophages’ and therefore can be 
considered as the resident immune cells of the brain, 
undoubtedly express CB2 receptors depending on the 
activated state of the cell [22-27]. Thus, microglia in healthy 
brain seems to not express CB2, whereas such receptors are 
detected in microglia from patients with neurodegenerative 
disorders and/or neuropathic pain [24, 28-30]. However, CB2 
expression on CNS neurons is still controversial, although its 
presence in peripheral nociceptive neurons is responsible for 
modulating many types of pain [for a detailed review on this 
issue, see [31]. 
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 Based on the notion that an organism would not express 
receptors to once in life encounter their respective exogenous 
ligands, the existence of endogenous cannabinoid agonists 
needed to be considered as a fact. Thus, the first endogenous 
ligands (endocannabinoids) to be identified were N-
arachidonoyl-ethanolamine (anandamide, AEA) and 2-
arachidonylglycerol (2-AG) [32, 33], both of which are 
members of the eicosanoid group of cannabinoid CB1/CB2 
receptor agonists. They are synthesized on demand in 
response to elevations of intracellular calcium levels and 
both function as neurotransmitters or neuromodulators, 
acting as retrograde synaptic messengers [34]. The 
biosynthetic and degradative pathways of AEA and  
2-AG completed the evidence for the existence of an 
endocannabinoid neurotransmission system, formed by a 
class of receptors, its endogenous and exogenous ligands and 
respective metabolizing enzymes (fatty acid amide hydrolase 
– FAAH and monoacylglycerol lipase – MAGL), which 
terminate the action of endocannabinoids at the synapse  
[for a better review on this issue see [35, 36]. Thus, it is 
noteworthy to mention that endocannabinoids metabolizing 
enzymes constitute important targets for pharmacological 
interventions in order to treat/control neurodegenerative 
conditions as well as some types of pain [35, 37].  

 Synthetic analogs of phyto- and endocannabinoids have 
been developed to better explore the potential importance of 
this system for the development of therapeutic strategies in 
neurological disorders. These compounds include THC-like 
analogs and aminoalkylindole compounds typified by R-(+)-
WIN55,212-2, an agonist for both CB1 and CB2 receptors. 
Other pharmacological tools to investigate the endocannabinoid 
system have been described, as selective antagonists 
(SR141716A (rimonabant), LY320135, SR144528) [38], 
inverse agonists (AM251, AM630) and as described  
above, inhibitors of the hydrolytic enzymes that degrade 
endocannabinoids (URB597, PF-750, JZL184). 

 Therefore, although solid efforts have been made in order 
to provide new insights into the biological actions of the 
endocannabinoid system, many questions remain yet 
unsolved. One of them is the possible existence of a third 
cannabinoid receptor, which could explain the bimodal and 
contradictory effects induced by cannabinoids in experimental 
studies. Thus, understanding the role of cannabinoids in 
homeostatic and/or pathological processes would favor their 
use as a therapeutic target for inflammatory diseases.  

2. CANNABINOID TRANSMISSION AND RECEPTOR 
PHARMACOLOGY 

 Due to the structure of the CB1 and CB2 receptors, they 
were grouped in the superfamily of G-protein coupled 
receptors [15]. Both receptors inhibit the adenylyl cyclase 
and activate mitogen-activated protein kinases (MAPKs) by 
signaling through Gi/o proteins. Additionally, CB1 receptors 
can also mediate the activation of A-type and inwardly 
rectifying potassium currents and inhibition of N- and P/Q-
type calcium currents [14]. Unlike the CB1 subtype, CB2 
receptors neither modulate the activity of P/Q-type calcium 
channels nor the influx of potassium [39]. Rather, 
intracellular CB2-dependent signaling stimulates MAPKs 
and phosphoinositide 3-kinase pathways, besides leading to 

the de novo ceramide synthesis and to the cyclooxygenase-2 
(COX-2) expression [40].  

 It is noteworthy to mention that the receptor response to a 
specific cannabinoid depends on the ligand concentration, 
the presence of other cannabinoid ligands, the receptor 
density and its state of activation as well as the levels of 
signaling proteins [41-45]. Other cannabinoid effects may be 
mediated by non-CB1/CB2 receptors, as discussed elsewhere 
[14, 46]. 

3. EVIDENCE FOR THE PARTICIPATION OF 
CANNABINOIDS IN NEUROINFLAMMATORY 
PROCESSES 

 The presence of both CB1 and CB2 receptors on immune 
cells [13], and the evidence that cannabinoids inhibit 
adenylyl cyclase in such cells through a pertussis toxin-
sensitive mode, first suggested a role for cannabinoid 
receptors in the modulation of the immune system [15]. 
Moreover, activation of immune cells by a range of 
inflammatory stimuli modulates the expression of CB1 and 
CB2 by these cells, a fact that has been linked to the immune-
regulatory effects of cannabinoids [20, 47]. In vitro 
experiments have reported that cannabinoids may act as 
immunomodulators by (1) induction of apoptosis, (2) 
inhibition of cell proliferation as well as cytokine and 
chemokine production, and (3) expansion of regulatory  
T cells [48, 49]. In addition, there is also evidence of 
endocannabinoid production as metabolites of activated 
immune cells [50, 51].  

 It has been reported that cannabinoids suppress the 
production of a variety of pro-inflammatory cytokines in 
both human cell cultures and animal models, an effect that 
has been thought to be mediated mainly by CB2 receptors 
[52, 53]. When activated, CB2 receptors can modulate 
immune cell migration and cytokine release both outside and 
within the brain [54]. Furthermore, through CB2 receptors, 
cannabinoids may inhibit the production of tumor necrosis 
factor (TNF)-α, interleukin (IL)-1β and the p40 subunit of 
IL-12 and IL-23 by microglia and macrophages [55-57]. 
Moreover, CB2 receptors also seem to play an important role 
in regulating cell migration of neutrophils, macrophages, NK 
and B cells [20]. Also, it has been suggested that 
cannabinoids are able to decrease IL-2 production and T 
cells proliferation [20] and may alter the cytokine profile 
from a T helper (Th)1 to a Th2 phenotype in a CB2-
dependent manner [53, 58]. However, CB1 receptors have 
also been related to neuroinflammation regulation. Notably 
are the data from Mestre et al. [59], showing that 
anandamide, through CB1 receptor activation, inhibits the 
expression of Theiler’s virus-induced vascular cell adhesion 
molecule (VCAM)-1, an endothelial receptor that plays a key 
role in leukocyte transmigration in multiple sclerosis [60, 
61]. Zoppi et al. [62] also demonstrated that CB1 receptors 
activation by a synthetic selective CB1 agonist (arachidonyl-
2'-chloroethylamide; ACEA) modulates stress-induced 
conditions and neuroinflammation by preventing the 
decrease in glutamate uptake and glutamate astroglial 
transporter excitatory amino acid transporter 2 (EAAT2) 
expression, the increase in pro-inflammatory molecules 
(cytokines, nuclear factor kappa B – NF-κB) and enzymatic 
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sources, such as inducible nitric oxide synthase (NOS-2) and 
cyclooxygenase-2 (COX-2), in addition to the increase in 
lipid peroxidation. 

 Toll-like receptors (TLRs), considered as pattern 
recognition receptors (PRRs) that recognize molecular 
signatures of microbes known as pathogen-associated 
molecular patterns (PAMPs) have been emerged as central 
keys in the innate immune and neuroimmune responses [63-
64]. Indeed, TLRs have been found to be expressed on glial 
cells and neurons [65-70]. Such receptors after being 
activated by PAMPs lead to intracellular signaling cascades 
that culminate in NF-κB translocation to the nucleus and the 
consequent synthesis of pro-inflammatory molecules [71]. 
Interestingly, as discussed above, cannabinoid receptors  
are also present on glial cells and a large body of  
evidence suggests that cannabinoids (phyto-, synthetic and 
endocannabinoids) can negatively modulate TLR4-induced 
neuroinflammation in these cells [72-76]. Moreover, as 
recently published by Downer et al. [77], the synthetic 
cannabinoid WIN-55,212-2 inhibits the pro-inflammatory 
signaling axis triggered by TLR3 and TLR4, while selectively 
augmenting TLR3-induced expression of IFN-β.  

 Thus, due to a myriad of neuro-protective, anti-neuro- 
inflammatory and anti-oxidant actions, cannabinoids have 
been cogitated as possible therapeutic agents for neuro- 
degenerative disorders that combine inflammatory responses, 
as Alzheimer’s Disease (AD), Multiple Sclerosis (MS), 
Huntington and Parkinson Diseases [78]. Hyperactive 
microglia, a common feature of these neurodegenerative 
diseases, secrete a number of pro- and anti-inflammatory 
cytokines, chemokines, glutamate, prostanoids, neurotrophic 
factors, and a range of free radicals that provide a milieu for 
oxidative stress. In this context, cannabidiol (CBD) has 
emerged as a promising strategy to treat inflammation that 
results from microglial hyperactivation [78], with no 
psychotropic side effects. Moreover, CBD has been shown to 
attenuate oxidative and nitrosative stress in several human 
disease models [78-81]. Other cannabinoid compounds that 
have been used in preclinical studies are exemplified in 
Table 1. 

 Alzheimer’s disease (AD) is characterized by the 
presence of beta-amyloid (Aβ) plaques and neurofibrillary 
tangles in the brain, as well as cognitive decline and memory 
deficits. The abnormal processing of a 42-amino acid peptide 
(Aβ peptide) that precipitates in the extra-cellular space may 
be the cause of Aβ plaques accumulation, which leads to 
neuronal death. Activated microglia are found surrounding 
Aβ plaques, even before neuronal death [97]. In AD patients, 
increased microglial CB1 and CB2 receptor expression is 
found especially in plaque-bearing areas [84], suggesting a 
role of cannabinoids in AD pathophysiology. Eubanks et al. 
[82] found that THC competitively inhibits the enzyme 
acetylcholinesterase (AChE) by binding to the peripheral 
anionic site of AChE, the critical region involved in 
amyloidogenesis. Other studies have been conducted to 
support the participation of cannabinoids in AD (see Table 1). 

 Parkinson’s disease (PD) is a degenerative condition 
affecting dopaminergic neurotransmission in the basal ganglia 
resulting in hypokinesia [98]. Some of the neurodegenerative 

features of this disease include intracellular accumulation of 
misfolded proteins and Lewy bodies, oxidative stress, 
excitotoxicity, and neuroinflammation. The endocannabinoid 
system may be a therapeutic target because of its marked 
activity in the basal ganglia where it regulates neuro- 
transmitter release and motor activity [5, 99]. It has been 
demonstrated that in PD patients, endocannabinoid levels in 
the cerebrospinal fluid are increased [100]. As mentioned 
before, the use of cannabinoid drugs that activate CB1 
receptors may induce motor impairment; therefore, CB1 
antagonists are more suitable candidates as therapeutic 
agents in PD. Indeed, results drawn from preclinical studies 
have proposed that SR141716A may reduce the hypokinesia 
in an animal model of PD, at a low dose [95].  

 Another neurodegenerative disease involving the basal 
ganglia is Huntington’s disease (HD). HD has a delayed 
onset, defined by selective neuronal vulnerability and 
widespread expression of disease-related proteins during the 
whole lifetime. A genetic defect causes abnormal protein 
processing and aggregation; and cellular toxic effects 
involve defective autophagy-lysosomal function, trans- 
criptional dysregulation, oxidative stress, apoptosis, 
mitochondrial and metabolic dysfunction [101]. HD patients 
develop progressive psychiatric manifestations, cognitive 
decline and choreiform movements [102]. In HD, there is a 
reduction in CB1 expression in the basal ganglia [87, 103], 
where the most prominent cell loss occurs. The 
downregulation of CB1 receptors has been thought to be a 
key pathogenic event in HD. Lastres-Becker and colleagues 
[104] found that in a rat model of HD, AEA and 2-AG levels 
were decreased in the striatum, while there was an increase 
in AEA level in the substantia nigra. These changes in 
endocannabinoid levels are similar to those found in the 
brain of HD patients. However, further studies are still 
necessary to clarify how cannabinoids may participate in this 
disorder, since many preclinical results are controversial. 

4. PERSPECTIVES FOR MULTIPLE SCLEROSIS 

 One of the most promising clinical uses of cannabinoid 
compounds lies on the symptomatic treatment of multiple 
sclerosis (MS) [105], although therapies based on the 
expansion of regulatory T (Treg) cells have been emerged as 
possible targets to treat early-diagnosed autoimmune 
diseases [106]. MS is an autoimmune inflammatory neuro- 
degenerative disorder characterized by nerves demyelination 
in the CNS. Neurological commitments mostly affect young 
adults (aged between 20 and 40) [16] and it is diagnosed in 
30 out of 100,000 people in the world population, being 
women more susceptible than men. MS comprises several 
phenotypes (relapsing-remitting, primary progressive and 
secondary progressive together with less common variants) 
depending on the population and geographic distribution 
[107]. Its symptoms include weakened muscle tone, motor 
impairment, fatigue, numbness, vision problems and 
cognitive loss. However, the etiology of MS is still unknown, 
but epidemiological studies suggested that multiple sclerosis 
may occur in a genetically susceptible population who has 
been exposed to some environmental triggering factors,  
such as viral infection [16, 107]. Such factors, therefore, 
associated with a genetically susceptibility, drives the 
immune response towards myelin self-peptides which 
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devastates the myelin sheathes, causing the neuro- 
degenerative profile of MS. To this extent, the inflammatory-
mediated damage is thought to be caused by the release of 
reactive oxygen and nitrogen species by immune cells, as 
well as that of cytokines, prostaglandins and proteases, 
which directly mediate cell damage [56].  

 The autoimmune characteristic of MS has been 
reproduced in animal models such as experimental 
autoimmune encephalomyelitis (EAE) and Theiler’s murine 
encephalomyelitis virus-induced demyelinating disease 
(TMEV-IDD). These models are employed in pharma- 
cological research and provide suitable evidence for new 

Table 1. Effects of Cannabinoid Treatment for Neurodegenerative Diseases 

Disease Drug Dose Main Effects Refs. 

THC --- Inhibits acetylcholine esterase (AchE)-induced aggregation of Aβ [82] 

Cannabidiol 2.5 or 10mg/kg, i.p., for 7 days 
Reduces the transcription and expression of glial pro-inflammatory 
molecules in the hippocampus of an in vivo model of Aβ-induced 

neuroinflammation 
[83] 

WIN55,212-2 10 µg, i.c.v., for 7 days 
Prevents Aβ-induced microglial activation, cognitive impairment, 

and loss of neuronal markers 
[84] 

SR141716A 1mg/kg, i.p., single dose Prevents the amnesia induced by Aβ (i.c.v.) peptides [85] 

AD 

HU210 
0, 10, or 50 µg/kg, i.p., twice 

daily for 10 to 20 days 
No effect on behavioural parameters and neuropathology in 

APP23/PS45 double transgenic AD model mice 
[86] 

2 mg/kg 
Attenuates the motor coordination deficits of R6/2 mice on the 

rotarod test, ameliorates striatal atrophy and huntingtin aggregate 
accumulation 

[87] 

10 mg/kg, i.p., daily for 8 
weeks 

No effect on the onset or progression of behavioral deficits in the 
R6/1 mouse model of HD 

[88] 
THC 

n/a Increases malonate-induced striatal lesions compared to vehicle [89] 

SR141716A n/a Exacerbates malonate lesions [89] 

HU210 
0.01 mg/kg, i.p., daily for 8 

weeks 

Increases ubiquitin-positive protein aggregate numbers, but has no 
effect on the onset or progression of behavioural deficits in the  

R6/1 mouse model of HD 
[88] 

HU308 
5 mg/kg, i.p., before and after 

intrastriatal injection of 
malonate 

Neuroprotection by partially reducing malonate-induced GABA 
deficit in the striatum and the globus pallidus of rats 

[90] 

URB597 
0.3 mg/kg, i.p., daily for 8 

weeks 

Preservation of CB1 receptors in the mouse striatum, but had no 
effect on the onset or progression of behavioural deficits in the R6/1 

mouse model of HD 
[88] 

WIN55,212-2 
5 or 10 µM, intracerebral 

(striatum) 
Prevents quinolinic acid-induced glutamate outflow in the striatum of 

rats, an effect fully banned by AM251 
[91] 

Huntington’s 
disease 

Cannabidiol 
Average daily oral dose of 

about 700 mg/day for 6 weeks 
Neither symptomatically effective nor toxic, relative to placebo, in 

neuroleptic-free patients with HD 
[92] 

4 mg/kg, i.p., for 5 days 
Protects mouse nigrostriatal DA neurons from the neurodegenerative 

effects induced by the neurotoxin MPTP; reverses MPTP-induced 
motor abnormalities, inhibits MPTP-induced microglia activation 

[93] 

WIN55,212-2 

6 mg/kg, s.c., for 14 days 
Morphological and cytoskeletal changes following WIN treatment, 

suggesting neuronal plasticity 
[94] 

SR141716A 0.1 mg/kg, i.p. 
Partially attenuated the hypokinesia shown by 6-hydroxydopamine-

injected rats 
[95] 

THC 3 mg/kg, i.p., daily for 14 days 

Parkinson’s 
disease 

Cannabidiol 3 mg/kg, i.p., daily for 14 days 

Prevent neuronal damage induced by 6-hydroxydopamine 
unilateral injection into the nigra, pars compacta, in rats with 

hemiparkinsonism 
[96] 

Abbreviations: AD: Alzheimer’s disease; Aβ: beta-amyloid; HD: Huntington’s disease; i.c.v.: intracerebroventricular; i.p.: intraperitoneal; MPTP: 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridin; n/a: not available. 
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treatment strategies. Since there is no cure for MS, any 
treatment is only a palliative resource. Due to its intriguing 
anti-inflammatory effects, cannabinoid compounds have 
been tested in animal models of MS as a supportive 
treatment for symptoms like spasticity and tremor, which are 
common in patients with MS (see Table 2). Lyman et al. 
[108] demonstrated that animals pretreated with Δ9-THC 
displayed a delay in the onset of the symptoms and a 
reduction in severity when EAE was subsequently induced. 
In studies using synthetic cannabinoids, dexanabinol (HU-
211) was capable to reduce inflammation and EAE score, 
probably by suppression of TNF-α production in the brain 
and peripheral blood [109]. Administration of WIN55,212-2 
ameliorated the progression of clinical symptoms in mice 
with TMEV-IDD [105], a mouse model of chronic-
progressive MS and EAE [77]. Similar results were obtained 
by Arévalo-Martín et al. [110] who found that systemic 
treatment with WIN55,212-2, ACEA, and JWH-015 over a 
period of 10 days to mice with established TMEV-IDD 
improved their motor function by modulating microglia and 
lymphocyte infiltration into the spinal cord. Interestingly, the 
selective CB1 antagonist SR141716A increased EAE clinical 
score probably by releasing pro-inflammatory cytokines such 
as IFN-γ, IL-17, IL-6, IL-1β and TNF-α in mice brain and 
spinal cord. However, such treatment was able to 
simultaneously increase CB2 receptors expression in brain, 
spinal cord and spleen of mice [111]. It is worthy of mention 
that combined cannabinoid medicine constituted by the two 
plant-derived cannabinoids THC and CBD have been 
formulated under an oromucosal mouth spray (Sativex®) to 
alleviate neuropathic pain, spasticity, overactive bladder, and 
other symptoms associated with MS [112]. 

 As commented above, expansion of Treg cells has been 
emerged as a promising candidate therapy to treat (or  
even prevent) autoimmune diseases such as MS (Rezende  
et al., manuscript in preparation [113]). It is already known  
that cannabinoids are able to increase Treg population,  
which effectively contributes to their immune-modulatory 
actions by dampening the uncontrolled encephalitogenic T 
cells proliferation and activation [48, 49, 114]. Moreover, 
expanding Treg cells derived from the patient itself would 

provide an important tool to treat/prevent MS with no side 
effects.  

CONCLUSION 

 Due to its peculiar chemistry, cannabinoids have imposed 
a challenge to researchers. To date, it is still impossible to 
prove or rule out all benefits of cannabis described 
empirically by ancient herbal practitioners. For now, science 
aims to understand how cannabinoid compounds are 
associated with neuroinflammation and how cannabis-based 
medicine can help millions of patients worldwide. The 
development of safe, effective cannabis-based medicines 
must overcome the risk of adverse effects. 
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