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During radiotherapy, reactive oxygen species- (ROS-) induced apoptosis is one of the main mechanism of radiation. Based on
KillerRed which can induce ROS burst in different cell substructures, here we hypothesized that KillerRed targeting
mitochondria (mtKR) could induce ROS to enhance apoptosis by radiation. In this study, empty vector, mtKR, and mtmCherry
plasmids were successfully constructed, and mitochondrial localization were detected in COS-7 and HeLa cells. After HeLa cells
were transfected and irradiated by visible light and X-rays, ROS levels, mitochondrial membrane potential (Δψm), ATPase
activities, adenosine triphosphate (ATP) content, apoptosis, and the expressions of mRNA and protein were measured,
respectively. Data demonstrated that the ROS levels significantly increased after light exposure, and adding extra radiation,
voltage-dependent anion channel 1 (VDAC1) protein increased in the mitochondria, while Na+-K+ and Ca2+-Mg2+ ATPase
activities, ATP content, and Δψm significantly reduced. Additionally, the cell apoptotic rates dramatically increased, which
referred to the increase of cytochrome c (Cyt c), caspase-9, and caspase-3 mRNA expressions, and Cyt c protein was released
from the mitochondria into the cytoplasm; caspase-9 and -3 were activated. These results indicated that mtKR can increase the
production of ROS, enhance mitochondrial dysfunction, and strengthen apoptosis by radiation via Cyt c/caspase-3 pathway.

1. Introduction

Mitochondria are essential organelles for cell survival, death,
and signaling and are also one of the main production sites of
reactive oxygen species (ROS) [1, 2]. In addition, mitochon-
dria also play a prominent role in the regulation of apoptosis
[3–5]. When ROS is produced in the mitochondria, adeno-
sine triphosphate (ATP) is also produced. ROS can be gener-
ated endogenously during cellular respiration or in response
to infection and can be induced exogenously by chemical and
physical agents, such as radiation, UV, and cigarette smoke.
Lower levels of ROS play a role in normal cellular function
[6], while increased levels of ROS induce oxidative stress
which is the cause or consequence of the damage to mito-
chondria and mitochondrial DNA (mtDNA) [7].

In addition, mitochondria are also a damaging target of
ROS. Under normal physiological conditions, ROS resulting

from mitochondria is removed by a cellular antioxidant
defense system. However, once ROS is overproduced, it will
lead to the accumulation of excess radicals that damage the
mitochondria and cells [8]. The literatures suggest that oxi-
dative damage has also played a key role in diseases such as
diabetes, Parkinson’s disease, Alzheimer’s disease, and even
in the progress of cancers [9–11]. And ROS may mediate
the programmed cell death (PCD) at a moderately high con-
centration among different cell types [12, 13]. In apoptosis,
external stimuli such as radiation and cytotoxic agents can
result in the formation of pores at mitochondrial mem-
branes. Disruption of mitochondrial membrane potential
(Δψm) is a major sign of mitochondrial dysfunction. Loss of
the Δψm can result in a defective mitochondrial electron
transport chain (ETC) and decrease metabolic oxygen con-
sumption and ATP depletion [14]. Mitochondrial dysfunc-
tion results in the release of proapoptotic protein Cyt c and
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activates caspases to induce apoptosis. Once mitochondrial
permeability transition pore (MPTP) is activated by oxida-
tive stress, the membrane depolarization will develop, and
the uncoupling of oxidative phosphorylation and ATP deple-
tion will be induced [15]. Nowadays, the strategy targeting
mitochondrial dysfunction in cancer therapy has been the
research hotspots [16].

Radiotherapy is a conventional mean for cancer treat-
ment for several decades. There is a growing interest in
understanding how the altered mitochondrial functions
may be the target to improve the effects of radiotherapy
[17]. The modified bioenergetic and biosynthetic states of
mitochondria play an eminent role for cancer cells in
response to radiation [18]. Radiotherapy causes death of
cancer cells through apoptosis and autophagy induced by
excessive production of ROS [19–21]. Therefore, how to
induce enough ROS to target mitochondria is a crucial
research topic. KillerRed can directly express in cells, and
under appropriate light excitation, it can efficiently induce
ROS to cause cell death [22–25]. KillerRed can be used for
the inactivation of light-induced protein, killing specific cell
populations in vivo and studying intracellular local oxidative
stress [26–28]. Additionally, because of light-inducing inacti-
vation of KillerRed, in some studies, KillerRed was replaced
by another red fluorescence protein mCherry (no phototox-
icity) to study intracellular localization.

In this study, the N-terminal mitochondrial-targeting
sequence (MTS) of PTEN-induced putative kinase 1 (Pink1)
was used to mediate downstream mCherry and KillerRed to
express in mitochondria [29]. Under fluorescence micro-
scope, the colocalization of mCherry (red) and mitochon-
drial tracker COX IV (green) in both African green monkey
kidney cell COS-7 and human cervical cancer cell HeLa was
observed. Furthermore, we explored mtKR-induced mito-
chondrial dysfunction and apoptosis by light and X-rays,
and proapoptotic mechanisms via Cyt c/caspase-3 pathway,
to provide a new idea for cancer radiotherapy.

2. Materials and Methods

2.1. The mtmCherry and mtKR Vectors. In this study, the
DNAs ofmCherry, KillerRed, and Pink1-MTSwere amplified
with PCR using Q5 High-Fidelity DNA Polymerase (NEB,
Beverly, MA, USA), and plxsp-TetA-mCherry, plxsp-TetA-
KillerRed (kindly given by Dr. Shen from Cancer Institute of
New Jersey, USA), and pcDNA-DEST47 PINK1 C-GF
plasmids (Addgene, Cambridge, MA, USA) were used as
templates. The following primers were used: mCherry:
5´-GGAATTCGCCACCATGGTGAGCAAGGG-3´(F), 5´-
CGGGATCCTTACTTGTACAGCTCGTCCATG-3´(R);
KillerRed: 5´-GGAATTCATGGGTTCAGAGGGC-3´(F), 5´-
CGGGATCCCTAGATCTCGTCG-3´(R); Pink1-MTS: 5´-A
AGGAAAAAAGCGGCCGCAATGGCGGTGCGACAG-3́ (F),
5´-CGAATTCCGGCCGCCCCAAGCCGTAG-3´(R). The
schematic diagram was shown in Figure 1(a), and the PCR
products of mCherry, KillerRed, and Pink1-MTS were
shown in Figure 1(b). All of the resulting plasmids were
sequenced to verify that the clones had the correct sequence.

2.2. Cell Transfection and Observation with Fluorescence
Microscope. COS-7 and HeLa cells were obtained from the
ATCC (American Type Culture Collection). Both cell lines
were maintained at 37°C under humidified conditions and
5% CO2 and cultured in Dulbecco’s modified Eagle’s medium
(DMEM, Gibco, Grand Island, NY, USA), supplemented
with 10% fetal bovine serum (MRC, Jiangsu, China). COS-7
and HeLa cells were seeded into a 6-well plate with coverslips
at 2 × 105/well and routinely incubated for 8-12h without
light. The mtmCherry plasmids were transfected into the
cells with Hieff Trans™ Liposomal Transfection Reagent
(Shanghai YESEN Biotechnology Co., Ltd.). At 30h post-
transfection, the coverslips were taken out, and the cells were
fixed in PBS with 4% paraformaldehyde for 10min at room
temperature (RT), permeabilized and blocked with sealing
fluid (0.3% Triton X-100 and 2% BSA in PBS) for 1 h at
RT. The cells were incubated with COX IV antibody diluted
in sealing fluid overnight at 4°C, followed by incubation with
secondary antibodies (green fluorescence) diluted in sealing
fluid for 1 h at 37°C. The coverslips were mounted onto
microscope slides; mCherry and COX IV expressions were
observed under fluorescence microscope. The images were
processed for analyzation.

2.3. ROS Detection. HeLa cells were transfected with empty
vector and mtKR plasmids for 30 h and exposed to visible
light for 10, 30, and 60min, respectively, then at 10, 30, and
60min after exposure, 2′,7′-dichlorofluorescein diacetate
(DCFH-DA, Sigma-Aldrich, St. Louis, MO, USA) was added
into the cells. Finally, the mean fluorescence intensity (MFI)
was detected by Cytation™ 3 Cell Imaging Multi-Mode
Reader System (BioTek, Winooski, Vermont, USA). There
were 6 replicate wells per group, and the experiment was per-
formed in triplicate.

2.4. Detections of Na+-K+ and Ca2+-Mg2+ ATPase Activities
and ATP Content.At 12 h postlight exposure, HeLa cells were
irradiated by 4Gy X-rays with X-RAD 320iX machine (Pre-
cision X-ray, Inc., USA), at 24 h postirradiation, the cells were
homogenized using homogenate medium (pH7.4, 0.01M
Tris-HCl, 0.001M EDTA-2Na, 0.01M saccharose, and 0.8%
NaCl) (Nanjing Jiancheng Bioengineering Institute, China),
and protein concentrations were determined. Na+-K+ and
Ca2+-Mg2+ ATPases and ATP were measured using bio-
chemical assay kits (Nanjing Jiancheng Bioengineering Insti-
tute, China) and a spectrophotometer (Beckman, USA) with
636 nm excitation wavelengths. There were 4 replicate wells
per group, and the experiment was performed in triplicate.

2.5. Flow Cytometry (FCM). Rhodamine123 (Rh123, Sig-
ma-Aldrich, St. Louis, MO, USA) was used to detect Δψm,
and Annexin V-FITC/PI kit (Becton, Dickinson and Com-
pany, Franklin Lakes, NJ, USA) was used to measure apopto-
tic rate. The collected cells were resuspended at 12h
postirradiation, then, Rh123 was added into the cells to yield
final concentrations of 5μM for detecting Δψm and stained
with 10μl Annexin V-FITC and PI for 15min in the dark
for detecting apoptotic rate. Then the Δψm and apoptotic rate
were detected by FCM (Becton, Dickinson and Company,
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Franklin Lakes, NJ, USA). For each sample, at least 1 × 104
cells were collected. There were 4 replicate wells per group.
The experiment was performed in triplicate.

2.6. Quantitative Real-Time PCR (qRT-PCR). Total RNA was
extracted with TRIzol reagents (Invitrogen, Carlsbad, CA,
USA), and the complementary DNA (cDNA) was synthe-
sized using a high-capacity reverse transcription kit (Takara
Bio Inc., Japan). The reverse transcription of 1μg RNA was
performed according to the protocol, and the reaction was
incubated at 42°C for 60min, then at 70°C for 2min.
GAPDH: 5′-ACCACAGTCCATGCCATCAC-3′(F), 5′-TC
CACCACCCTGTTGCTGTA-3′(R); Cyt c: 5′-GGGCGA
GAGCTATGTAATGCAAG-3′(F), 5′-TACAGCCAAAGC
AGCAGCTCA-3′(R); caspase-9: 5′-GGACATCCAGCGGG
CAGG-3′ (F), 5′-TCTAAGCAGGAGATGAACAAAGG-3′
(R); caspase-3: 5′-TTCAGGCCTGCCGTGGTACA-3′(F),
5′-CCAAGAATAATAACCAGGTGCT-3′(R). The qRT-PCR
reaction was performed and analyzed (Bio-Rad, Hercules,
CA, USA) according to SYBR® Premix Ex Taq ™ II kit (Takara
Bio Inc., Japan) protocol.

2.7. Mitochondrial Protein Extraction. The cells were washed
with 0.01M PBS and collected at × 200 g for 5min, added
with 3ml mitochondrial separation reagents (Beyotime®
Biotechnology, Hangzhou, China) consisting of PMSF and
put on ice for 10min. The cell homogenate was transferred
into glass homogenizer, performed for 30min, and
centrifuged at × 600 g at 4°C for 10min. The suspension
was transferred to another tube and centrifuged at × 11000 g

at 4°C for 10min. When the suspension was removed
after centrifugation, the mitochondria were obtained.
Then the mitochondrial proteins were extracted and
quantitatively determined.

2.8. Western Blot. After the total proteins were extracted and
quantitatively determined, 40μg proteins were separated by
SDS-PAGE (10% resolving gel, 5% stacking gel) and trans-
ferred to NCmembrane (200mA, 1.5 h; MerckMillipore, Bil-
lerica, MA, USA). After blocking with 5% nonfat dry milk,
the membranes were incubated with diluting solution
(1 : 200) of the primary antibodies including anti-VDAC1,
anti-HSP60 and anti-Cyt c (Bioworld Technology Inc.,
USA), anti-caspase-9 (cleaved) and anti-caspase-3 (cleaved)
(Cell Signaling Technology, Danvers, MA, USA), and
anti-GAPDH (Santa Cruz, CA, USA), respectively, over-
night at 4°C. After washing with TBST, the membranes
were incubated with IgG-HRP-conjugated secondary anti-
body (ImmunoWay, Plano, TX, USA) at 1 : 1000 dilution
for 1.5 h at RT. Finally, the membranes were identified
using an enhanced chemiluminescence detection system
(ECL detection kit, Santa Cruz, CA, USA). The films were
scanned for the following gray scale ratio analysis.

2.9. Statistical Analysis. All the data were analyzed using
SPSS, version 24.0 (SPSS Inc., Chicago, IL, USA). The results
were presented as mean ± SD and subjected to one-way
ANOVA followed by Student’s t-test; P < 0 05 was consid-
ered as significant.
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Figure 1: Development of vectors for mtmCherry and mtKR. (a) Schematic diagram of mtmCherry and mtKR vectors: Pink1-MTS was
cloned into empty vector (plxsp-flag) (Not I and EcoR I sites); mCherry and KillerRed were cloned into plxsp-flag-Pink1-MTS (EcoR I and
BamH I sites). (b) PCR products of mCherry, KillerRed, and Pink1-MTS. Lane 1 was 100 bp DNA Marker; lane 2 and 3 were PCR
amplification products.

3Oxidative Medicine and Cellular Longevity



3. Results

3.1. The mtmCherry Protein to Localize Mitochondria. As
shown in Figure 2, the fluorescence images clearly indicated
that COX IV expressed in the mitochondria, and mCherry
also specifically localized to the same sites. Hence, it demon-
strated that Pink1-MTS sequence might mediate mCherry to
localize mitochondria.

3.2. ROS Induced by mtKR Exposed to Visible Light.As shown
in Figure 3(a), before light exposure, there were a large
amount of red cells and very few green cells; after light expo-
sure, red cells decreased and green cells increased, indicating
ROS production. As shown in Figure 3(b), at 60min post-10
or -30min light exposure, MFIs reached for maximum value,
but at 30 or 60min post-60min light exposure, MFIs
reduced. Taken together, these results indicated that light
exposure caused the inactivation of mtKR protein and the
increase of ROS.

3.3. Mitochondrial Dysfunction Caused by mtKR and
Irradiation. The Na+-K+ and Ca2+-Mg2+ ATPase activities
and ATP content significantly decreased after light exposure
and irradiation (Figure 4(a)). Additionally, even though Δψm
significantly reduced, it had similar change regularity as
ATPase activities (Figure 4(b)). As shown in Figures 4(c)
and 4(d), VDAC1 expressions in total and mitochondrial

proteins were all increased, but after 4Gy irradiation,
VDAC1 decreased in total protein. Taken together, these
results showed that mtKR-induced ROS and X-rays
caused mitochondrial dysfunction, and MPTP was kept
in opening status.

3.4. Changes of Apoptotic Rate Caused by mtKR and
Irradiation via Cyt c/Caspase-3 Pathway. At 12h postirradi-
ation, early apoptotic rates caused by mtKR exposure to light
were significantly increased, and 4Gy X-rays also induced
the increase of apoptotic rate (Figure 5(a)). As shown in
Figure 5(b), at 24 h postirradiation, the mRNA expressions
of Cyt c, caspase-9, and caspase-3 dramatically increased.
And caspase-9 and -3 proteins were cleaved into active frag-
ments in total proteins; Cyt c protein expression reduced in
mitochondrial protein; however, it increased in total protein
(Figures 5(c) and 5(d)).

4. Discussion

Radiotherapy is the major means of cancer treatments, and
its major feature is the induction of toxic oxidative damage
in targeted cancer cells. Under normal physiological condi-
tion, cells maintain a basal redox balance between prooxida-
tive and antioxidative reactions [30]. During radiation, ROS
generated from water by radiation energy deposition can oxi-
dize DNAs, proteins, and lipids and target mitochondria to

HeLa

COX IV

mCherry

Merge

COS-7

Figure 2: The mtmCherry colocalized the mitochondria with COX IV, ×200. COS-7 and HeLa cells were transfected with mtmCherry
plasmids. At 30 h posttransfection, the cells were stained with COX IV, and COX IV (green) and mCherry (red) expressions were observed.
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cause mitochondrial dysfunction and final cell death. More-
over, the ROS has extremely short lifespan and a limited dif-
fusion distance leading to low killing efficiency to tumor cells
and unsatisfactory therapeutic effects [31–33]. In this study,
based on KillerRed-induced ROS, we utilized Pink1-MTS to
mediate mitochondrial localization, and our results also indi-
cated our hypothesis. In addition, our data showed that
mtKR might promote mitochondrial ROS burst. The nature
of the cytotoxicity of KillerRed, a generator of ROS, therefore
offers a significant opportunity to genetically investigate the
mechanisms regulating cellular responses.

Mitochondrion is an ancient organelle generating
approximately 90% of cellular ATP via oxidative phosphory-
lation [34]. Unlike normal cells, there is an abnormal redox
status in cancer cells, which is unable to regulate redox

homeostasis [35]. It is postulated that mitochondrial
dysfunction in cancer cells would affect the relative cellular
ATPase activities, ATP production, and subsequent apopto-
sis and migration processes. In the present study, the relative
ATPase activity and ATP in HeLa cells transfected by mtKR
plasmids were significantly decreased. Moreover, various evi-
dences suggest that the mitochondrial dysfunction plays a
key role in oxidative stress [36, 37], and ROS generation
impairs mitochondrial electron transport chain [38]. The
decline in Δψm is an earlier event in the process of cell death,
and we also showed that mtKR-induced ROS can result in the
loss of Δψm. VDAC is the most abundant protein in the outer
mitochondrial membrane, and the fact that VDAC plays a
role in MTPT is undeniable, so it has long been considered
to be a candidate for the outer membrane component of
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Figure 3: ROS changes measured by DCFH-DA staining. (a) The images of mtKR (red) before or after light exposure for 30min in HeLa cells
and cells stained by DCFH-DA (green), scale bars: 200 μm. (b) The changes of MFIs at different time postlight exposure for 10, 30, and
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Figure 4: Mitochondrial dysfunctions caused by mtKR-induced ROS and X-rays. (a) The changes of Na+-K+ and Ca2+-Mg2+ ATPase
activities and ATP content by biochemical assay after light exposure and irradiation. (b) The FCM pictures of Δψm. HeLa cells were
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the MPTP [39]. Recently, it has been shown that the opening
of VDAC is a regulated process, and VDAC may exhibit
some degree of specificity in the mitochondrial import/
export of molecules (e.g., ATP, Ca2+, and other ions) [40].
In some studies, VDAC1-deficient mitochondria isolated
from a mutant yeast strain failed to exhibit the Bax/Bak-
induced Δψm loss and Cyt c release that was observed with
VDAC1-expressing control mitochondria [41]. Our results
showed that VDAC1 protein expression significantly
increased in total and mitochondrial proteins, indicating an
opening status of the mitochondrial membrane. In addition,
it is well known that radiation-induced increase in ROS
causes DNA damage, cell cycle arrest, and activation of some
transcription and apoptotic factors [42, 43]. Thus, the
hypothesis that mtKR aggravates the mitochondrial dysfunc-
tion induced by radiation is understandable. Interestingly,
our results also verify this hypothesis.

There are two major pathways in apoptosis [44]. One
involves death receptors and is marked by Fas-mediated
caspase-8 activation, and the other is the stress- or
mitochondrial-mediated caspase-9 and -3 activation. Mito-
chondria are the major source of ROS production in cells,
in turn, the most adversely affected organelles [45]. To

better understand the mechanism that ROS leads to apo-
ptosis, we demonstrated in this study that an acute burst
of ROS in the mitochondria specifically resulted in the
apoptosis, the subsequent Cyt c release and activation of
caspase-9 and -3. Our results showed a promoting role
on the apoptosis resulting from mtKR, which might be
enhanced by radiation, and had impressive significance
for tumor radiotherapy. The releases of Cyt c as well as other
proteins from the mitochondria and cytosol appear to play a
central role in the induction of the apoptotic cascade that
ultimately leads to the programmed cell death [46]. To fur-
ther explore the mechanisms, we analyzed the transcriptional
levels and protein expressions of Cyt c, caspase-9, and
caspase-3 at 24 h postirradiation, and their mRNA levels all
increased. Interestingly, Cyt c protein expression increased
in total protein however reduced in mitochondrial protein.
Moreover, radiation could enhance these effects of mtKR,
which indicated that Cyt c was released from the mitochon-
dria. Under the downstream of mitochondrial apoptotic
pathway, caspase-9 and -3 were activated (Figures 5(c) and
5(d)), which made us believe mtKR induced-ROS might act
synergistically with radiation to induce the apoptosis via
Cyt c/caspase-3 pathway.
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Figure 5: Apoptosis induced by mtKR and irradiation via Cyt c/caspase-3 pathway. (a) The FCM pictures of apoptosis and FCM analysis in
HeLa cells stained by Annexin V/FITC and PI; the apoptotic population was defined as early apoptosis (lower right, green of FITC staining).
(b) Cyt c, caspase-9, and caspase-3 mRNAs were detected by qRT-PCR. (c) Western blot was performed to determine the protein levels of Cyt
c, caspase-9, and caspase-3 in total and mitochondrial proteins. GAPDH and HSP60 proteins were used for loading control. (d) From top to
bottom, the gray ratios of cleaved caspase-9/GAPDH, cleaved caspase-3/GAPDH, Cyt c/GAPDH, and Cyt c/HSP60. The bars represent the
mean ± SD of triplicatemeasurements. ∗P < 0 05, ∗∗P < 0 01, and ∗∗∗P < 0 001 versus control; #P < 0 05 versus 4Gy irradiation, and△P < 0 05
versus light exposure.
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In conclusion, as illustrated in Figure 6, this present
study demonstrates that the mitochondrial targeting char-
acteristics of Pink-MTS and ROS increased by mtKR
exposure to visible light in HeLa cells and then to
impaired mitochondrial function. When ATPase activities
and ATP content as well as Δψm reduced, and VDAC1
expression increased, the cell apoptosis also increased
dependently on the Cyt c/caspase-3 pathway. Notably,
mitochondrial dysfunction and final apoptosis enhanced
by radiation has provided a new strategy for ROS sensiti-
zation in future clinical cancer therapy.

Data Availability

In these studies, all data were obtained by PCR technique,
flow cytometry (FCM), biochemical assay, observation by
fluorescence microscope, quantitative real-time PCR, and
Western blot, and some pictures were plotted using dif-
ferent tools, such as BVTech plasmid software, Adobe
Photoshop CS2 software, SPSS 24.0 version, GraphPad
prism 6.0 software, and PPT of Microsoft office, Science-
Slides, etc. The data (the schematic diagram of vector
construction, the cell picture under fluorescence micro-
scope, some pictures drawn with experiment results by
GraphPad prism 6.0 software, FCM pictures, Western blot
pictures, and the proposed scheme of conclusions) used
to support the findings of this study are included within
the article.
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