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Abstract: Numerical flow simulations play an important role in polymer processing. One of the
essential prerequisites for accurate and precise flow simulations is to obtain accurate materials
functions. In the framework of the generalized Newtonian fluid model, one needs to obtain shear
viscosity as a function of the rate-of-shear and temperature—as determined by rheometry—and
then fitted to a mathematical model. Often, many subjectively perform the fitting without paying
attention to the relative quality of the estimated parameters. This paper proposes a unique iterative
algorithm for fitting the rate-of-shear and temperature-dependent viscosity model under the time–
temperature superposition (TTS) principle. Proof-of-concept demonstrations are shown using the
five-parameter Carreau–Yasuda model and experimental data from small-amplitude oscillatory shear
(SAOS) measurements. It is shown that the newly proposed iterative algorithm leads to a more
accurate representation of the experimental data compared to the traditional approach. We compare
their performance in studies of the steady isothermal flow of a Carreau–Yasuda model fluid in a
straight, circular tube. The two sets of parameters, one from the traditional approach and the other
from the newly proposed iterative approach, show considerable differences in flow simulation. The
percentage difference between the two predictions can be as large as 10% or more. Furthermore,
even in cases where prior knowledge of the TTS shifting factors is not available, the newly proposed
iterative approach can still yield a good fit to the experimental data, resulting in both the shifting
factors and parameters for the non-Newtonian fluid model.

Keywords: rheology model; polymers; non-Newtonian fluid; time–temperature superposition;
curve-fitting; parameter estimation

1. Introduction

In polymer rheology, the proper non-Newtonian viscosity models are essential for
modeling and flow simulations [1]. Experimental measurements of polymeric liquids
(solution and melt) are routinely carried out to obtain the necessary data on their rheological
properties. Then, various numerical methods were used to find a suitable set of parameters
for the rheology model to facilitate efficient flow simulations [2–8].

In general, there is no universal rule of fitting the rheological data. As stated by Singh
et al. (2019) [9], people subjectively choose the fitting approach—thus, leading to non-
unique inferences. Moreover, Gallagher et al. (2019) [10] reported the non-identifiability in
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a family of shear-thinning rheological models. They found a class of parameter sets that fit
the data evenly well. Suppose that we choose the rheology model with a large number of
parameters. In that case, this issue can arise simply, for instance, from choosing the different
sets of the initial guess in the optimization algorithm. One of the traditional optimization
algorithms in nonlinear regression is Levenberg–Marquardt (LM) [11,12], but it usually fails
with the poor choice of an initial guess. Moreover, Kim et al. [13] advocated the inefficiency
of the conventional LM method because of the sometimes unrealistic estimations, which is
usually due to the poor choice of an initial guess. Therefore, we need an efficient means of
solving the practical issues with fitting the rheological data.

In this paper, we propose the iterative algorithm that helps effectively identify the
model parameters. Several research papers presented the algorithms to fit the temperature-
dependent rheology model. For instance, Helleloid [14] proposed two numerical methods
for obtaining the viscosity–shear rate temperature master curves for polymer fluids. How-
ever, the author presented the algorithms with only two experimental viscosity–shear
rate data, and the curve fitting was performed by the traditional Newton method. In
comparison, here we present our algorithm with more than two viscosity curves and use
a more advantageous minimization method. Other authors, Naya et al. [15] developed
the method for estimating the optimal shift factors based on the shifting of the derivative
functions using the b-spline regression and presented reasonably accurate results. However,
our algorithm is wholly different and optimizes the shift factors together with the rheology
model and is hence a global optimization algorithm.

Part of our algorithm uses the bound-constrained truncated Newton method (TNC) [11]
which has both the line search and trust-region frameworks. Unlike the LM method,
it searches the optimal values in the trust interval that is set to each of the model pa-
rameters. This requirement is vital for realistic parameter estimation. As an example,
Venczel et al. [16] used the bound constraints for the parameters in their use of the quasi-
Newton numerical method for the Carreau–Yasuda (CY) model. Indeed, setting the con-
straints is not the sole approach to prevent obtaining unrealistic results. It is also achievable
by the direct estimation of the parameters using genetic algorithms from machine learn-
ing [17]. As another example, Magnon and Cayeux [18] used the physics-based method to
overcome this issue in the context of the Herschel–Bulkley model, and their results were
promising at low flow rates. In our case, due to the fast convergence and the possibility
of using the constrained approach, we chose the TNC method as an intermediate step in
our iterative scheme. In other words, we set lower and upper limit values for the parame-
ters, thus avoiding the unrealistic estimates, for instance, the negative infinite shear-rate
viscosity. Simply relying on the theory, we can set the lower limit 0 and upper limit 1 for
the parameter n in the CY model by shear-thinning [19]. In addition, our global iterative
algorithm estimates not only the model parameters but simultaneously the horizontal
and vertical shift factors which come from the time–temperature superposition principle
(TTS) [20]. Although traditional methods to find the shift factors already exist [21–23],
our algorithm produces them equally well.

Overall, our approach combines the two-step procedure of finding the model parame-
ters and the shift factors. The quality of the model and its performance in isothermal flows
are demonstrated in Section 3.

2. Model and Methods

As is well known in polymer rheology, viscosity measurements are taken over a large
range of shear rate (γ̇) values covering several decades of viscosity (η) values. If one
attempts to fit the η vs. γ̇ on a linear–linear scale, the high viscosity values at low shear
rates will have a huge influence on the results, whereas the low viscosity values at high
shear rates will have almost no effect on the results [24]. The common “trick” in melt
rheology, as has been well established, is to fit to the logarithms of the values instead of the
values themselves.
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Suppose {log10 ηi}m
i=1 is the set of m logged observations of viscosity and {log10 γ̇i}m

i=1
is the set of m logged observations of the shear rate. The five-parameter version of the CY
model with the assumption of TTS is given by

η(γ̇)/a∗T = η∞ + (η0 − η∞)
[
1 + (λaTγ̇)a] n−1

a (1)

where η∞ is the infinite shear-rate viscosity, η0 is the zero shear-rate viscosity, aT and
aT∗ ≡ aTbT are the horizontal and vertical shift factors, respectively, and a, n, λ are other
constant parameters. We are interested in the minimization of the following sum of the
squared error function:

S =
m

∑
i=1

[
log10 η(~θ)− log10 ηi

]2
(2)

where~θ = (θ1, . . . , θk) is the vector of k parameters, particularly the five parameters of the
CY model, (η∞, η0, a, n, λ), and {a∗T , aT} for each temperature and ηi is the given viscosity
at each observation i.

2.1. Truncated Newton Method

The step-by-step truncated Newton algorithm is described as follows:

Step 1: Choose the initial guess~θ∗ and compute the function S. Set j = 0;

Step 2: If convergence is satisfied by~θj, then stop the algorithm;

Step 3: Compute the search direction ~p in the matrix Equation:

H(Sj)~p = −∇Sj

where H(Sj) and ∇Sj are the Hessian and the gradient of the function S(~θj), re-
spectively.

Step 4: With the ~p obtained in Step 2, compute the line search α > 0 such that S(~θj +

α~p) < S(~θj).

Step 5: Set~θj+1 = ~θj+1 + α~p, and j = j + 1. Return to Step 2.

To implement this method, we use the minimization function “TNC” from the Python 3.7
package lmfit of version 1.0.3 [25]. The Python code implementation is available in
https://github.com/medeuamangeldi/Combined-iterative-algorithm-with-Hessian-free-
optimization-for-nonlinear-data-fitting-/tree/main (accessed on 28 October 2021).

2.2. Proposed Global Iterative Algorithm

To demonstrate the potential of the global algorithm, we need to consider two sce-
narios. Scenario 1 is when we do have the foreknown values of the shift factors, which
is often the case in practice, and Scenario 2 is that we do not have the foreknown values
of the shift factors. In every fitting, we use the truncated Newton method described in
Section 2.1. In addition, the fitted parameters at each iteration are used as the initial guess
in the next iteration.

Scenario 1. In this case, suppose we have the known shift factors a∗T , aT , and we use them
as the initial guess.

Step 1: Construct the master curve with the known shift factors. Fit it with the CY model.
Set k = 0. If~θk is satisfactory for convergence, then terminate the algorithm;

Step 2: Fix the estimated parameters~θk of (1) except a∗T , aT , and fit the data at each tempera-
ture (except the reference) to estimate the shift factors a∗T and aT in the Equation (1);

https://github.com/medeuamangeldi/Combined-iterative-algorithm-with-Hessian-free-optimization-for-nonlinear-data-fitting-/tree/main
https://github.com/medeuamangeldi/Combined-iterative-algorithm-with-Hessian-free-optimization-for-nonlinear-data-fitting-/tree/main
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Step 3: Construct the master curve with the fitted shift factors from Step 2. Fit it with
the CY model. Set k = k + 1. If ~θk is satisfactory for convergence, then terminate
the algorithm;

Step 4: Go to Step 2.

The algorithm flowchart of Scenario 1 is presented in Figure 1.

Start

Input: known a∗T and aT

Master curve with a∗T and aT .
Fit it with the CY model.

Converged? Fix the fitted parameters of CY model.
Estimate the new a∗T and aT .

Stop

no

yes

Figure 1. Scenario 1 flowchart.

Scenario 2. In this case, the description of an iterative approach is as follows:

Step 1: Choose the reference temperature. Set a∗T = aT = 1 in Equation (1). Fit the viscosity
vs. shear rate data at reference temperature with (1). Set k = 0;

Step 2: Fix the estimated parameters~θk of (1) except a∗T , aT , and fit the data at each tempera-
ture (except the reference) to estimate the shift factors a∗T and aT in the Equation (1);

Step 3: Construct the master curve with the fitted shift factors from Step 2. Fit it with
the CY model. Set k = k + 1. If ~θk is satisfactory for convergence, then terminate
the algorithm;

Step 4: Go to Step 2.

The algorithm flowchart of Scenario 2 is presented in Figure 2.
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Start

Input: a∗T = 1, aT = 1

Fit the data at ref. temp. with CY model; fix the parameters.
Estimate the new a∗T and aT .

Master curve with a∗T and aT .
Fit it with the CY model.

Converged? Fix the fitted CY model parameters.
Estimate the new a∗T and aT .

Stop

no

yes

Figure 2. Scenario 2 flowchart.

2.3. Goodness of Fit

In order to measure how well the collected data are replicated by the CY model,
we used 4 different estimators—Akaike Information Criterion (AIC) [26], Bayesian Infor-
mation Criterion (BIC) [27], adjusted R-squared (R2

adj) [28] and root mean squared error
(RMSE) [29].

The information criteria—AIC—helps identify the relative quality of every fitted CY
model. In other words, given the set of models, the most preferred is the one with the
lowest AIC value. The equation of AIC is described as

AIC = 2k− 2 ln L̂ (3)

where k is the number of estimated parameters in the CY model and L̂ is the maximum
likelihood function of the model. The idea of BIC is similar to AIC but with the larger
penalty term. It is defined as

BIC = k ln n− 2 ln L̂ (4)

where n is the number of data points.
Another measure of model quality is R2

adj, the so-called “coefficient of determination”.
It is formally defined as

R2
adj = 1−

[
1− ∑i(log10 yi − log10 ŷi)

2

∑i(log10 yi − log10 y)2

]
n− 1

n− p− 1
(5)

where {yi} is a set of observed data, {ŷi} is a set of predicted data, log10 y is the mean
of logged observations, n is a sample size and p is a number of parameters in the model.
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We use this estimator as a stopping criteria in our global iterative algorithm by the percent
change defined as

R2
adj, % =

(R2
adj)new − (R2

adj)old

(R2
adj)old

(6)

The last estimator—RMSE—provides the model’s predictive quality by aggregating
the differences between the actual and predicted values. It is defined as

RMSE =

√
∑n

i=1(log10 yi − log10 ŷi)2

n
(7)

where {yi} is a set of actual values, {ŷi} a set of predicted values and n is a sample size.
The description of RMSE in the logarithmic space is the same as taking the root of the mean
of the squared ratio between the actual and predicted values.

2.4. Experimental Data

In this paper, we used the viscosity and shear rate data of polystyrene melt, which was
obtained by small amplitude oscillatory shear (SAOS) measurements by Huang et al. [30].
The values were approximated with complex viscosity vs. angular frequency by the Cox–
Merz rule [1,31]. In addition to the experimental data, the shift factors were also obtained
using the TRIOS software package from TA Instruments.

3. Results and Discussion
3.1. Nonlinear Regression: Traditional Approach vs. Scenario 1

Usually, obtaining the shift factors is performed independently from the parameter
estimation of the rheology model. We demonstrated the results of this traditional approach
by fitting the master curve with the existing shift factors. Then, the comparison was made
with the results from Scenario 1. At first glance, both approaches gave rather good fits to
the experimental data at each of the three temperatures (see Figures 3 and 4).

10−1 100 101 102
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η 
(P
a⋅
s)

Data               Model
403.15 K
433.15 K
443.15 K

 
 
 

(a)
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443.15 K

 
 
 

(b)

Figure 3. Fitted Carreau–Yasuda model at different temperatures with: (a) the traditional approach;
and (b) Scenario 1.

The evolution of the goodness-of-fit measures of Scenario 1 is shown in Figure 5.
They all show monotonic behavior towards a better fitting as the iteration proceeds. The
evolution of the TTS shifting factors is shown in Figure 6. As the iteration proceeds,
convergence behavior is found for all parameters. Table 1 summarizes the evolution of the
estimated parameters of the CY model and shift factors with each iteration (Scenario 1).
The values shown for item #1 are referred to as the traditional approach.
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Figure 4. Master curve and the corresponding Carreau–Yasuda fit obtained by: (a) traditional
approach; and (b) Scenario 1.
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Table 1. Evolution of the estimated parameters of the Carreau–Yasuda model and TTS shift factors
with each iteration (Scenario 1). The values shown for item #1 are referred to as the traditional
method in this work.

# 1 2 . . . 37

η∞ (Pa · s) 40,476.13 40,476.32 . . . 37,190.11

η0 (Pa · s) 598,346,954.87 598,346,954.87 . . . 598,346,954.87

a 0.7968 0.7981 . . . 1.2160

n 0.1054 0.1059 . . . 0.1477

λ (s) 4725.29 4726.26 . . . 6911.72

a∗T (403.15 K) 1 1 . . . 1

aT (403.15 K) 1 1 . . . 1

a∗T (433.15 K) 0.003522 0.003364 . . . 0.002356

aT (433.15 K) 0.003552 0.003593 . . . 0.002131

a∗T (443.15 K) 0.001023 0.000974 . . . 0.000753

aT (443.15 K) 0.001089 0.000958 . . . 0.000636

AIC −413.93 −446.72 . . . −486.74

BIC −403.54 −436.33 . . . −476.35

adjR2 0.9994 0.9996 . . . 0.9998

As summarized in Table 2, the model by the traditional method has a relatively
lower quality of fitting than that in the Scenario 1 by looking at the AIC, BIC and the R2

adj
values. Moreover, the RMSE is approximately twice as large as the RMSE of Scenario 1,
demonstrating the superior performance of the proposed global iterative algorithm. As
a further comparison, Table 2 also presents the performance of the more conventionally
used LM method. Judging from all four measures of the goodness-of-fit, the traditional
approach using the LM method shows an even poorer performance.

Table 2. Summary of the models with their quality measures.

Model by AIC BIC R2
adj RMSE

Traditional approach using LM −331.12 −320.74 0.9976 0.0585
Traditional method (with TNC) −413.93 −403.54 0.9994 0.0318

Global algorithm: Scenario 1 (our method) −486.74 −476.35 0.9998 0.0148

Figure 7 presents a direct comparison between the two sets of the best fitting parame-
ters, one from the traditional approach (as can be seen in #1 in Table 1) and the other from
the herein proposed iterative approach, referred to as “Scenario 1” (as can be seen in #37 in
Table 1) for the three temperature values of the measurements. Figure 7a shows the shear
viscosity vs. shear rate, and Figure 7b shows the percent difference, which is defined as

PD =
η0 − η1

(η0 + η1)/2
× 100% (8)

where η0 = η0(γ̇) and η1 = η1(γ̇) are the predicted shear viscosity from the traditional
approach (subscript “0”) and from the method of Scenario 1 (subscript “1”), respectively.
From the range of the shear rate of the actual measurement (0.1 to 102 s−1), the percentage
difference between the two model predictions is within 10%. However, at a shear rate lower
than 10−2 s−1 and larger than 103 s−1, the difference between the two model predictions
can exceed 10%.
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Figure 7. (a) Viscosity vs. shear rate at three different temperatures: traditional method (- - - -) and
Scenario 1 (—–); and (b) percentage difference between the two model predictions.

3.2. Isothermal Flow in a Tube

In this subsection, we compared the two sets of parameters, one from the traditional
approach and the other from the newly proposed iterative approach, in the flow of a CY
fluid in a circular tube problem. Tube flow is encountered in several polymer processes [32].
For simplicity, it is assumed that the flow is isothermal (no viscous dissipation), steady, fully
developed, with no entrance effects and axis-symmetric. The axial momentum equation is
reduced to [1,32]:

0 = −dP
dz
− 1

r
d
dr

(rτrz) (9)

where dP/dz = −∆P/L is the pressure gradient, and ∆P = (P0 − PL)/L is the pressure
difference over the tube length L. The above equation may be integrated to give the
rz-component of the viscous shear stress:

τrz =
1
2

∆P
L

r (10)

In the framework of the generalized Newtonian fluid (GNF) model, we have:

τrz = η(γ̇)γ̇ (11)

where the shear rate γ̇ is given by

γ̇ = −dvz(r)
dr

(12)

and is a positive quantity. For the CY fluid model, η(γ̇) is given by Equation (1). To sum
up, the problem at hand to solve the following first-order nonlinear ODE si:

1
2

∆P
L

r = a∗T

{
η∞ + (η0 − η∞)

[
1 +

(
λaT

∣∣∣∣dvz

dr

∣∣∣∣)a] n−1
a
}(
−dvz

dr

)
(13)

subject to the non-slip boundary condition of vz(r = R) = 0. In this work, we numerically
solved the governing ODE, Equation (13), and the accuracy of our numerical solutions
were validated by a recently developed analytical solution to this problem [33]. To obtain
the numerical solutions, we used Wolfram Mathematica (“12.1.1 for Microsoft Windows
(64-bit) (19 June 2020)”). The corresponding Wolfram Mathematica notebook is available in
the Supporting Material of this article.

Consider the viscosity data for the intermediate temperature value, T = 433.15 K, as
an example. For a circular tube of radius R = 0.05 rm, Figure 8a presents the predicted
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average flow velocity (vavg) as a function of the pressure gradient (∆P/L) for the two sets
of the best fitting parameters. At first glance, they give very similar results. However, upon
closer inspection, when the pressure gradient is low, the percentage difference between the
predicted average velocities may exceed 40%, as shown in Figure 8b. Here, the percentage
difference is defined as

PD =
vavg,0 − vavg,1

(vavg,0 + vavg,1)/2
× 100% (14)

where vavg,0 and vavg,1 are the predicted average flow velocity using viscosity param-
eters from the traditional approach (subscript “0”) and from Scenario 1 (subscript “1”),
respectively. For practical melt processing conditions, the pressure gradient is usually very
high, and in such cases, the percentage difference is within 10%. Similar conclusions can
be reached from a comparison of the predicted wall shear rate, γ̇W = −(dvz(r)/dr)r=R,
as shown in Figure 9. In obtaining the wall shear rate (γ̇W), we used two approaches,
one directly solving a nonlinear Equation (by combining Equations (10) and (11)) (shown
as lines) and the other from numerical evaluations of γ̇W = −(dvz(r)/dr)r=R (shown by
symbols) using our numerical solutions of the velocity profile. Both approaches gave the
same results.
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Figure 8. Average flow velocity (a) and the percentage difference (b) on the predicted average flow
velocity. Tube radius R = 0.05 rm.
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Figure 9. Wall shear rate (a) and the percentage difference (b) on the predicted wall shear rate. Tube
radius R = 0.05 rm.

Figures 10 and 11 present a direct comparison of the predicted velocity distribution
and local shear rate at low and high pressure gradients, respectively. At a pressure gra-
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dient value of 7.5 MPa/m, the set of the best-fit viscosity parameters from the traditional
approach yields a much lower velocity as compared to that from the set of parameters from
Scenario 1. This can be understood from the comparison shown in Figure 7. When the
characteristic shear rate (e.g., the wall shear rate) is low, then the difference in the predicted
shear viscosity values from the two sets of the best fitting parameters will yield a rather
pronounced difference in flow simulations, as demonstrated in Figure 10. However, when
the characteristic shear rate is high, then the difference in the predicted shear viscosity
values from the two sets of the best fitting parameters in the relevant shear rate range is
rather small (within 10%); for this reason, they yield similar results in flow simulations,
as demonstrated in Figure 11.
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Figure 10. Velocity profile (a) and local shear rate (b) at pressure gradient = 7.5 MPa/m. Tube radius
R = 0.05 rm.
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Figure 11. Velocity profile (a) and local shear rate (b) at pressure gradient = 15 MPa/m. Tube radius
R = 0.05 rm.

Our results for the local shear rate, as shown in Figures 10b and 11b, were also obtained
from two approaches, one from solving a nonlinear Equation (by combining Equations (10)
and (11)) directly (shown as solid lines) and the other from numerical evaluations of
the velocity gradient (see Equation (12)) from our numerical solutions of the velocity
distribution. The latter results are shown as dashed lines in Figures 10b and 11b. Clearly,
both approaches gave the same results.

3.3. Shear Viscosity as a Function of the Rate of Shear and Temperature

In this subsection, we compared the two sets of best-fitting parameters: one from the
traditional approach and the other from the newly proposed iterative approach (Scenario 1),
in the thus obtained shear viscosity as a function of the rate of shear and temperature
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functions. To study non-isothermal flows in practical flow simulations of polymer process-
ing, it is necessary to have η(γ̇, T). To model the temperature dependence, we used the
Williams–Landel–Ferry (WLF) [20,22,34] equation, defined as

log10(a∗T) = −
A0(T − Tref)

B0 + (T − Tref)
(15)

and:

log10(aT) = −
A1(T − Tref)

B1 + (T − Tref)
(16)

where A0, A1 are related to the free volume at the reference temperature Tref, and B0, B1
are related to the thermal expansion’s free-volume coefficient. These estimated parameters
for each case in Table 2 are shown in Table 3.

Table 3. Fitted coefficients of WLF for each case.

Model by A0 A1 B0 (K) B1 (K)

Traditional method 8.7065088 7.97907227 76.4700812 67.72598488
Global algorithm: Scenario 1 7.1865105 7.78847416 52.04696748 57.46612279

Figure 12 presents a comparison of the two sets of best-fitting parameters for the
η(γ̇, T) function, one from the traditional method and the other from the herein proposed
iterative approach (Scenario 1). Here, the percentage difference is defined as

PD =
log10

( η0

Pa · s

)
− log10

( η1

Pa · s

)
[
log10

( η0

Pa · s

)
+ log10

( η1

Pa · s

)]
/2
× 100% (17)

where η0 is the predicted viscosity by the traditional method and η1 is the predicted
viscosity by Scenario 1. As shown in Figure 12b, the percentage difference, as defined in
Equation (diffperc), may exceed 20%, even at large shear rate values.
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Figure 12. Viscosity vs. shear rate vs. temperature contour plots by the parameters from (a) Scenario 1
and (B) the percentage difference between Scenario 1 and traditional method.

3.4. Nonlinear Regression: Proof of Concept for Scenario 2

Here, we present a proof-of-concept demonstration for Scenario 2, when the shift
factors are not available, based on our in-house measurements (polypropylene sample by
SAOS measurements). In Figure 13, we can see the fitted viscosity plots for different temper-
atures and the corresponding master curve with reference a temperature of T = 473.15 K.
Good fittings were obtained for all temperature values of our measurements Figure 13a,
and a good master curve was also obtained—as shown in Figure 13b. Thus, even in cases
where prior knowledge of the shifting factors is not available, the newly proposed iterative
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approach can still lead to a good fit to the experimental data, resulting in both the shift-
ing factors (which can then be used to construct a master curve) and parameters for the
non-Newtonian fluid model. Generally speaking, it takes fewer iteration steps to reach a
similar goodness-of-fit if we have a good initial guess for the shifting factors, which is the
case with Scenario 1 as compared to the case with Scenario 2.
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Figure 13. (a) Viscosity vs. shear rate at 6 different temperatures; and (b) the obtained master curve.

4. Conclusions

This work presents a unique iterative algorithm for fitting the rate-of-shear and
temperature-dependent viscosity model under the time–temperature superposition (TTS)
principle. Proof-of-concept demonstrations were shown using the five-parameter Carreau–
Yasuda model and experimental data from small amplitude oscillatory shear measurements.
It was shown that the newly proposed iterative algorithm leads to a more accurate repre-
sentation of the experimental data compared with the traditional approach, judging from
all four measures of the goodness of fit that we investigated.

Comparing the two sets of parameters, one from the traditional approach and the
other from the newly proposed iterative approach (Scenario 1), and based on the same
experimental data in the “isothermal flow in a circular tube” problem, it was found that
the two sets of parameters lead to considerable differences in both the velocity distribution
and the average flow velocity. The percentage difference between the two predictions can
be as large as 10% and above.

Finally, even in cases where prior knowledge of the TTS shifting factors is not available
(Scenario 2), the newly proposed iterative approach can still yield a good fitting of the exper-
imental data and the master curve, resulting in both the shifting factors and parameters for
the non-Newtonian fluid model. In contrast, the traditional approach requires a two-step
procedure (obtaining the shifting factors in the first step and then obtaining the viscosity
parameters in the second step) and may not lead to a representation of experimental data
as accurate as that from our approach (see Table 2).

In future studies, this newly proposed algorithm may be applied to analyze other
types of nonlinear rheological models and it is also worth comparing the performance of
those different model parameters which originated from the same experimental data in
non-isothermal flow simulations.
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