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Glucose Transporters in Diabetic 
Kidney Disease—Friends or Foes?
Anita A. Wasik and Sanna Lehtonen*

Department of Pathology, University of Helsinki, Helsinki, Finland

Diabetic kidney disease (DKD) is a major microvascular complication of diabetes and a 
common cause of end-stage renal disease worldwide. DKD manifests as an increased 
urinary protein excretion (albuminuria). Multiple studies have shown that insulin resistance 
correlates with the development of albuminuria in non-diabetic and diabetic patients. 
There is also accumulating evidence that glomerular epithelial cells or podocytes are 
insulin sensitive and that insulin signaling in podocytes is essential for maintaining 
normal kidney function. At the cellular level, the mechanisms leading to the develop-
ment of insulin resistance include mutations in the insulin receptor gene, impairments 
in the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway, or perturbations in the 
trafficking of glucose transporters (GLUTs), which mediate the uptake of glucose into 
cells. Podocytes express several GLUTs, including GLUT1, GLUT2, GLUT3, GLUT4, 
and GLUT8. Of these, the most studied ones are GLUT1 and GLUT4, both shown to 
be insulin responsive in podocytes. In the basal state, GLUT4 is preferentially located in 
perinuclear and cytosolic vesicular structures and to a lesser extent at the plasma mem-
brane. After insulin stimulation, GLUT4 is sorted into GLUT4-containing vesicles (GCVs) 
that translocate to the plasma membrane. GCV trafficking consists of several steps, 
including approaching of the GCVs to the plasma membrane, tethering, and docking, 
after which the lipid bilayers of the GCVs and the plasma membrane fuse, delivering 
GLUT4 to the cell surface for glucose uptake into the cell. Studies have revealed novel 
molecular regulators of the GLUT trafficking in podocytes and unraveled unexpected 
roles for GLUT1 and GLUT4 in the development of DKD, summarized in this review. 
These findings pave the way for better understanding of the mechanistic pathways 
associated with the development and progression of DKD and aid in the development of 
new treatments for this devastating disease.

Keywords: diabetic kidney disease, glucose transporters, insulin resistance, insulin signaling, podocyte, type 2 
diabetes

iNTRODUCTiON

Diabetic kidney disease (DKD) is the serious complication of diabetes. Clinically, DKD manifests 
as progressive albuminuria and gradual decline in estimated glomerular filtration rate. The cumula-
tive incidence of DKD in patients with type 1 diabetes (T1DM) is 20–40% after 20–25  years of 
diabetes (1). Type 2 diabetes (T2DM) may remain undiagnosed for several years after onset of the 
disease, and thus patients may have DKD already at the time of diagnosis. The prevalence of low-level 
albuminuria in patients with T2DM has been reported to be 24.9% 10  years after diagnosis (2).  
DKD due to either T1DM or T2DM is the leading cause of end-stage renal disease.

The pathophysiological mechanisms leading to the development of DKD remain incompletely 
understood. Genetic factors, inflammation, and metabolic disturbances are known to be involved 
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FiGURe 1 | Glomerular filtration barrier (GFB) and schematic cartoon of the insulin signaling pathway in podocytes. (A) Schematic structure of GFB. (B) Electron 
microscopic image of the GFB in mouse. (C) Insulin activates the insulin receptor tyrosine kinase, which recruits and phosphorylates different substrate adaptors, 
such as the IRS family proteins. Tyrosine-phosphorylated IRS-1 binds PI3K. The catalytic subunit of PI3K phosphorylates phosphatidylinositol (4,5)-bisphosphate 
(PIP2) leading to the formation of phosphatidylinositol (3,4,5)-trisphosphate (PIP3). PI3K is also linked to the activation of the protein kinase Akt (protein kinase B), 
and further downstream to the translocation of GCVs to the plasma membrane. Also, activation of PKG-I leads to enhanced phosphorylation of AKT and increases 
glucose uptake. E, endothelial cell; FP, foot process; GBM, glomerular basement membrane; GCV, GLUT4-containing vesicle; IRS-1, insulin receptor substrate-1; P, 
phosphorylation; PI3K, phosphoinositide 3-kinase; PKG-I, cGMP-dependent protein kinase G type I.
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[reviewed in Ref. (1)]. Hyperglycemia plays a central role, and 
also insulin resistance is a risk factor for DKD and contributes to 
the development of the disease (3). This is supported by studies 
showing that insulin resistance correlates with microalbuminuria 
in diabetic (4–7) and non-diabetic subjects (8). Albuminuria 
develops when the glomerular filtration barrier (GFB), consist-
ing of the fenestrated endothelial cells, the glomerular basement 
membrane (GBM), and the glomerular epithelial cells or podo-
cytes (Figures 1A,B), is disturbed. Podocytes are polarized, highly 
specialized, and terminally differentiated cells. The foot processes 
of neighboring podocytes interact with specialized cell to cell 
junctions called slit diaphragms (SD) located between the basal 
and apical domains of the foot processes (Figures 1A,B). Podocyte 
injury has been suggested to have a pivotal role in the pathogenesis 
of DKD (9). During podocyte injury, podocytes efface (flatten) 
and detach from the GBM, and the frequency of SDs is reduced.

Interestingly, podocytes are insulin sensitive (10) and have 
been shown to develop insulin resistance in animal models 
of diabetes (11). Concomitantly, insulin resistance has been 
proposed as one of the key mechanisms that associates with the 
development and progression of DKD (12). This raises interest 
in the pathways that regulate insulin sensitivity of podocytes and 

specifically in the perturbations in these pathways leading to 
the development of insulin resistance of these specialized cells. 
Understanding the mechanisms that lead to reduced response of 
podocytes to insulin and the functional consequences will help 
to design treatment strategies to prevent the progression of DKD. 
Several recent, excellent reviews summarize the effects of insulin 
on podocytes and regulation of renal insulin signaling (13, 14). In 
this review, we summarize insulin signaling in podocytes in the 
context of glucose uptake and specifically concentrate in describ-
ing the current knowledge on the glucose transporters (GLUTs) 
and the regulation of GLUT trafficking in podocytes.

iNSULiN SiGNALiNG PATHwAYS  
THAT ReGULATe GLUT TRAFFiCKiNG

insulin Signaling via the Pi3K/AKT 
Pathway
The actions of insulin in cells are initiated by binding of insulin to 
its receptor on the cell surface (Figure 1C). Insulin receptor (IR) 
is a heterotetrameric complex, consisting of two extracellular α 
subunits that bind insulin and two transmembrane β subunits 
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with tyrosine kinase activity (15). IR exists in two forms, A and B. 
IR-A is ubiquitously expressed, and IR-B is expressed in insulin-
sensitive tissues such as liver, muscle, adipose tissue, and kidney. 
Insulin may also bind to and signal via insulin-like growth factor 
I (IGF-IR) or IR/IGF-IR hybrid receptors, although insulin binds 
to IGF-IR at much lower affinity than to IR [reviewed in Ref. (16)].

Binding of insulin to the α subunit of IR induces transpho-
sphorylation of one β subunit by another on specific tyrosine 
residues, resulting in increased catalytic activity of the kinase.  
The receptor further undergoes autophosphorylation at other 
tyrosine residues. The activated receptor then phosphorylates 
tyrosine residues on intracellular substrates, including members 
of the insulin receptor substrate family (IRS1–4) (17). Upon tyros-
ine phosphorylation, IRS proteins interact with the p85 regulatory 
subunit of the PI3K, which leads to its activation and translocation 
to the plasma membrane. PI3K catalyzes phosphorylation of phos-
phatidylinositol 4,5-bisphosphate to form phosphatidylinositol 
3,4,5-trisphosphate (PIP3). Insulin-stimulated increase in PIP3 
results in the phosphorylation and activation of the serine/threo-
nine kinase AKT, also called protein kinase B (PKB), leading to a 
cascade of signaling events that coordinate trafficking of GLUT4 
to the plasma membrane (Figure 1C). In the absence of insulin 
signal, GLUT4 resides in cytoplasmic vesicular structures. Upon 
insulin stimulation, GLUT4 is sorted into insulin-responsive vesi-
cles (IRVs) that translocate to the plasma membrane leading to 
glucose uptake into cells [for reviews on adipocytes and myocytes, 
see Ref. (18, 19)]. These vesicles are often called GLUT4 storage 
vesicles or IRVs. However, the various vesicles containing GLUT4 
are hard to distinguish from each other (18) and therefore we will 
call them here generally as GLUT4-containing vesicles (GCVs). 
Various studies indicate that not only PI3K is essential for GLUT4 
translocation and glucose uptake (20) but also other signals, 
generated by insulin, participate in stimulating translocation of 
GLUT4 (21–24). IR has also been shown to localize in lipid rafts 
on the plasma membrane and to induce glucose uptake into cells 
via a PI3K-independent pathway involving Cbl/Cbl-associated 
protein (25)/TC10 (22). This pathway is involved in insulin signal-
ing and glucose uptake in adipose tissue and muscle cells (22), but 
apparently the pathway is not active in podocytes (26).

Podocytes express all the elements of the insulin signaling 
cascade, such as IR, IRS1 (10), and IRS2 (27). Analyses have dem-
onstrated that podocytes have the highest levels of both IR and 
IRS1 expression when compared with endothelial and mesangial 
cells in primary culture (28). Similar to adipocytes and muscle 
cells, podocytes respond to insulin by activating the PI3K and 
mitogen-activated protein kinase signaling pathways, but only 
PI3K is implicated in glucose uptake. In podocytes, insulin induces 
rapid translocation of GLUT4 to the plasma membrane similarly 
as in muscle cells and adipocytes (10). This induces remodeling 
of the cortical actin cytoskeleton and contraction (26), allowing 
podocytes to physiologically respond to the increased glomerular 
pressure and filtration that happen after a meal.

Regulation of the Pi3K/AKT Pathway  
in Podocytes
Defects in any site of the insulin signaling pathway, both upstream 
and downstream of IRS, may arise and disrupt the signaling 

cascade. Examination of the protein and activity levels of the IR, 
PI3K, and AKT demonstrate a clear disturbance in these signaling 
molecules in diabetic conditions (29). Downregulation of IR-B 
subunit was observed in diabetic podocytes (11). Furthermore, 
specific deletion of IR in podocytes in mice induces a disease 
state reminiscent of DKD, without hyperglycemia (3). This 
demonstrates the necessity of insulin signaling in podocytes for 
maintaining normal kidney function.

Multiple studies suggest that inhibition of AKT activation is 
one of the key factors leading to insulin resistance of podocytes. 
In podocytes of db/db mice, a model for T2DM, insulin- 
stimulated AKT phosphorylation (activation) is lost (11). A similar 
loss of insulin signaling via PI3K was found in the glomeruli of 
streptozotocin (STZ) and Zucker rats (28), models for T1DM 
and T2DM, respectively. The interpodocyte SD with its major 
component nephrin (30) has emerged as an important signaling 
center, as nephrin associates with a number of membrane and 
cytosolic proteins thereby connecting the SD to various signaling 
pathways (31–33). Concomitantly, nephrin has been shown to 
activate AKT via PI3K (33, 34). Interestingly, nephrin has been 
found to be downregulated or mislocalized in various models of 
DKD (35–40).

The negative regulators of the PI3K signaling pathway include 
lipid phosphatases SHIP2 (SH2-domain-containing inositol 
polyphosphate-5 phosphatase 2) and phosphatase and tensin 
homolog (PTEN) (41). These phosphatases dephosphorylate 
PI(3,4,5)P3 to PI(3,4)P2 and PI(4,5)P2, respectively (42). In line 
with this, overexpression of SHIP2 downregulates insulin response 
in cultured human podocytes by reducing AKT activation (43). 
Furthermore, SHIP2 expression was found to be elevated in 
glomeruli of insulin resistant obese Zucker rats prior to the rats 
developed albuminuria (43). Insulin resistance in podocytes due 
to high glucose could also be a consequence of increased PTEN 
protein levels, which occurs in an AMP-activated protein kinase 
(AMPK)-dependent manner (44). Interestingly, lack of Irs2 
renders podocytes insulin resistant due to upregulation of PTEN 
(27). High glucose also increases the expression of protein tyros-
ine phosphatase SHP-1, conferring to insulin unresponsiveness 
of podocytes (45). Studies have also shown that in glomeruli of 
db/db mice, upregulation of C-jun N-terminal kinase, a nega-
tive regulator of insulin signaling, may result in the inability of 
podocytes to respond to insulin (46).

insulin Signals via the PKG Pathway  
in Podocytes
Another signaling pathway that is activated by insulin and 
stimulates glucose uptake into podocytes is the cGMP-dependent 
protein kinase G (PKG) pathway (44), which is also involved in 
glucose uptake into smooth muscle cells (47). cGMP-dependent 
protein kinase G type I (PKG-I) exists as two isoforms, Iα and 
Iβ. Dimerization of two PKG-I subunits increases the catalytic 
activity of PKG-I and consequently enhances its biological action 
(48). The PKG-Iα isoform is expressed in cultured rat podocytes, 
in which the activation of PKG-I by insulin or hydrogen perox-
ide leads to the activation of the insulin signaling pathway via 
increased phosphorylation of IR and AKT. This enhances translo-
cation of GLUT4 to the plasma membrane and increases glucose 
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uptake into cells (Figure 1C) (49). The effect is abolished by a 
PKG-I inhibitor confirming the role of PKG-I in glucose uptake 
into podocytes (49).

Regulation of the PKG Pathway  
in Podocytes
In podocytes, PKG-Iα is mainly expressed in its monomeric form 
(50). Insulin increases activation (dimerization) of PKG-Iα in a 
ROS-dependent manner (50, 51). Insulin may also activate PKG-
Iα via TRPC6, increasing the permeability of podocyte monolay-
ers to albumin (50). PKG-Iα is upregulated in the glomeruli 
isolated from obese, hyperinsulinemic, and insulin-resistant 
Zucker rats compared to lean controls (52).

ReGULATiON OF GLUT TRAFFiCKiNG  
iN PODOCYTeS

GLUTs and Their Translocation Machinery
Thus far 14 members belonging to the family of facilitative GLUTs 
have been identified in mammals (53). The facilitative GLUTs, 
which mediate uptake of glucose into cells down its concentra-
tion gradient, are either constitutive or inducible by insulin. 
Constitutive GLUTs, such as GLUT1, transport glucose into cells 
at basal condition, and GLUT4 is the major insulin-inducible 
GLUT. In adipocytes and myocytes in the basal state, GLUT4 is 
preferentially located in the intracellular vesicular compartments 
and slowly cycles to the plasma membrane and back. However, 
upon insulin stimulation, GLUT4 is translocated fast to the 
plasma membrane in insulin-responsive GCVs [reviewed in  
Ref. (18, 19)].

GLUT4-containing vesicle trafficking has been studied 
extensively in adipocytes and myocytes [reviewed in Ref.  
(18, 19, 54)]. GCV translocation occurs in multiple stages includ-
ing approaching, tethering, docking, and fusion. The cytoskel-
eton provides a route for the GCVs to approach the plasma 
membrane. Depending on the cell type and distance to be traf-
ficked, both actin–myosin and microtubule–kinesin machineries 
are utilized for GCV translocation (55). An increasing amount of 
evidence supports a critical role for actin in GLUT4 translocation  
(10, 55–57). Insulin elicits a rapid, dynamic remodeling of actin 
filaments into a cortical mesh in various insulin-sensitive cell 
types, such as differentiated muscle cells, adipocytes, and podo-
cytes (26, 57, 58). Cortical actin is a necessity for GLUT4 trans-
location and pharmaceutical disruption of cortical actin filament 
formation inhibits insulin-stimulated GLUT4 translocation (56). 
The second step includes two processes: tethering and docking. 
Actin and the exocyst complex proteins help to tether the GCVs 
to the plasma membrane (18), and docking is mediated by the 
assembly of the N-ethylmaleimide-sensitive factor attachment 
protein receptor (SNARE) complex (59, 60); reviewed in Ref. 
(61). The SNARE complex includes a vesicle-SNARE (v-SNARE) 
on GCVs, vesicle-associated membrane protein 2 (VAMP2), and 
target-SNAREs (t-SNARE) on the plasma membrane, such as syn-
taxin 4 and synaptosome-associated protein, 23 kDa (SNAP23) 
(62, 63). The last step of GCV trafficking to the cell surface is 
fusion, in which a specific interaction between v-SNARE and 

t-SNARE proteins allows merging of the lipid bilayers of the 
GCVs and the plasma membrane [reviewed in Ref. (18, 61)].

GLUTs expressed in Podocytes
Podocytes express several GLUTs, including GLUT1 (10, 64), 
GLUT2 (65), GLUT3 (64), GLUT4 (10, 64–66), and GLUT8 (66).

GLUT1
GLUT1 regulates glucose uptake at the basal stage in podocytes, 
but interestingly, it has also been shown to respond to insulin 
stimulation in these cells (10). GLUT1 has a vesicular distribution 
within the cytoplasm and at the plasma membrane, appearing 
both at apical and basolateral domains of the podocyte foot pro-
cesses in human glomeruli ex vivo (10). The expression of GLUT1 
mRNA in the glomeruli of normoalbuminuric T1DM patients 
was shown to be downregulated, but glomeruli from T1DM 
patients with microalbuminuria presented increased GLUT1 
mRNA expression compared with non-diabetic controls (67). 
The expression of GLUT1 mRNA and protein followed a similar 
pattern in the glomeruli of db/db mice (67). Upregulation of 
GLUT1 was also described in the glomeruli of the STZ-induced 
rats (68). Studies in cultured cells revealed that GLUT1 expression 
is elevated in cultured human podocytes exposed to high glucose 
(69). A similar increase was observed in cultured mesangial 
cells exposed to high glucose and this associated with increased 
glucose uptake (70) and stimulated production of extracellular 
matrix proteins (64). Studies in mice overexpressing GLUT1 in 
either mesangial cells or podocytes revealed interesting cell type-
specific outcomes in terms of DKD. Overexpression of GLUT1 in 
mesangial cells in mice mimicked typical features of diabetic glo-
merular disease, without diabetes or hypertension (71). However, 
podocyte-specific overexpression of GLUT1 in diabetic mice 
reduced mesangial expansion and fibronectin accumulation, both 
typical features of DKD (72). This could be mediated by reduced 
glomerular expression of vascular endothelial growth factor, 
known to contribute to mesangial matrix accumulation (72).  
It thus appears that increased expression of GLUT1 in mesangial 
cells is deleterious whereas increased expression of GLUT1 in 
podocytes protects against DKD. A protective role for GLUT1 is 
supported by the finding that peroxisome proliferator-activated 
receptor (PPAR) γ agonist rosiglitazone, shown to prevent kidney 
disease in a mouse model of T1DM (73) and to reduce albumi-
nuria in patients with T2DM (74), increases glucose uptake into 
podocytes by enhancing membrane localization of GLUT1 (75).

GLUT4
GLUT4 has a cytoplasmic, vesicular distribution in the resting 
cell, but upon insulin stimulation, GLUT4 translocates to the 
cell surface [reviewed in Ref. (18, 19)]. In human glomeruli 
ex vivo, GLUT4 localizes in an intracellular vesicular distribu-
tion and at the apical and basolateral domains of the plasma 
membrane of the podocyte foot processes (10). Contrary to 
GLUT1, the expression of GLUT4 mRNA was shown to be 
upregulated in the glomeruli of normoalbuminuric T1DM 
patients (67), whereas glomeruli from T1DM patients with 
microalbuminuria presented decreased GLUT4 mRNA expres-
sion compared to non-diabetic controls (67). GLUT1 mRNA 
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and protein expression followed a similar pattern in db/db mice 
(67). Also, contrary to GLUT1, chronic exposure of cultured 
human podocytes to high glucose reduced GLUT4 expression 
(69). Interestingly, podocyte-specific GLUT4-deficient mice do 
not develop albuminuria even though they have fewer and larger 
podocytes than the wild-type mice (67). Furthermore, they 
are protected from diabetes-induced podocyte hypertrophy, 
mesangial expansion, and albuminuria (67). The mice showed 
increased activation of AMPK in glomeruli and suppression of 
the mammalian target of rapamycin (mTOR) pathway (67), pro-
posing that lack of GLUT4 affects nutrient sensing in podocytes. 
Both clinical and experimental data support a role for nutrient 
sensing signals (mTORC1, AMPK) in the pathogenesis of the 
kidney complication in diabetes (76). AMPK activity has been 
shown to be decreased in the kidneys of several types of diabetic 
rodent models, including STZ-induced type 1 diabetic rats  
(77, 78) and type 2 diabetic db/db mice (79, 80), leading to renal 
hypertrophy or renal interstitial fibrosis. Hyperactivation of the 
mTORC1 signal is strongly associated with the progression of 
podocyte injury and proteinuria in diabetic animal models, 
characterized by dysregulation of nephrin and podocyte loss 
(39, 81). These data suggest that high GLUT4 level would be 
an enemy in DKD and that decreasing GLUT4 expression or 
attenuating its function may be beneficial in diabetic kidney. 
Additional work is needed to investigate whether the function 
of GLUT4 in podocyte is independent of insulin signaling, as a 
study suggests that GLUT4 may directly regulate actin remod-
eling (82).

Other GLUTs
GLUT2 has been described to mediate glucose uptake in cultured 
rat podocytes (65). GLUT3 expression has been shown to be 
upregulated in human podocytes exposed to high glucose in vitro 
(69), and GLUT8 expression was higher in podocytes of kidneys 
of diabetic db/db mice compared with non-diabetic mice (66). 
Defining the roles of these GLUTs in podocyte function awaits 
further studies in rodent models of diabetes and DKD.

Properties of GLUTs and Metabolism of Podocytes
GLUT1, GLUT3, GLUT4, and GLUT8 are high-affinity, low-
capacity GLUTs, and GLUT2 is a low-affinity, high-capacity 
GLUT (83). As individual transporters may get saturated, the 
presence of the high-affinity GLUTs at the plasma membrane 
plays an important role in regulating the flux of glucose into 
cells. As described earlier, the studies thus far have defined the 
expression of GLUT1 and GLUT4 only at the mRNA level in 
glomeruli of patients with diabetes (67), and the study defining 
their localization by immunoelectron microscopy in human 
podocytes concentrated looking at only normal human kidney 
tissue (10). It would be interesting to define the exact subcellular 
localization of each GLUT in podocytes during the progression  
of DKD, but this is challenging due to the invasiveness of obtaining 
tissue material. For the same reason, regulation of the metabolism 
of podocytes in diabetic conditions has mainly relied on studies 
carried out using cultured human podocytes treated with factors 
associated with diabetes. In line with this, during differentiation 
in normal (5 mM) glucose, cultured human podocytes activate 

oxidative metabolism and reduce glycolytic enzymes (84). 
Hyperglycemic conditions (20 mM glucose) promote metabolic 
reprogramming in podocytes, with reduction of mitochondrial 
biogenesis and increased glycolysis (84). Corresponding signs 
of glycolytic switch are observed in kidney sections of human 
patients with DKD (84). This is consistent with a previous study 
showing that mitochondrial function is dysregulated in patients 
with DKD (85).

Molecular Regulators of GLUT Trafficking 
in Podocytes
In the myoblasts and adipocytes in the basal state, at least half 
of the GLUT4 population is found in a vesicle compartment. 
Stimulation with insulin increases the amount of GLUT4 at the 
cell surface mainly by promoting exocytosis of GCVs and to a 
lesser extent by increasing exocytosis from the recycling system, 
orchestrated by an array of regulatory and sorting proteins  
(10, 86, 87). In addition, glucose uptake into cells may be regulated 
by affecting the endocytosis of GLUT4 at the plasma membrane. 
Mechanisms that regulate GCV trafficking and glucose uptake 
into podocytes are less well defined than in adipocytes and myo-
cytes, and currently there are no data describing the regulation of 
GLUT4 endocytosis in podocytes. Here, we summarize the cur-
rent knowledge on the mechanisms by which sorting of GLUT4 
into GCVs and insulin-stimulated GCV exocytosis are regulated 
in podocytes (Figure 2).

Sorting
Cultured podocytes depleted of CD2-associated protein show 
attenuated glucose uptake in the basal state compared with wild-
type podocytes, and CD2AP knockout podocytes fail to increase 
glucose uptake in response to insulin (88). This process was found 
to be independent of the insulin signaling pathway (as measured 
by insulin-induced AKT activation) or altered expression of 
GLUT1 and GLUT4, proposing a defect in GLUT4 trafficking. 
In line with this, GLUT4 appears as clusters in the perinuclear 
region of podocytes lacking CD2AP (88). GLUT4 in the perinu-
clear region is sorted into GCVs prior to transport toward the 
plasma membrane (Figure 2). This step is controlled by GGA2, 
which facilitates the formation of GCVs by recruiting clathrin 
and adaptor proteins, leading to enhanced insulin-stimulated 
glucose uptake (89, 90). Of note, podocytes are the only cells in 
the kidney that express GGA2 (91). Interestingly, CD2AP forms 
a complex with GGA2, and the complex formation is further 
increased by insulin stimulation, proposing that CD2AP regu-
lates GCV sorting.

GGA2 binds a transmembrane protein, sortilin, a key com-
ponent in the formation of GCVs (92). Sortilin overexpression 
stabilizes GLUT4 (92), and its upregulation in CD2AP-depleted 
podocytes could explain the increased protein level of GLUT4 
(88). Sortilin overexpression has been shown to increase the 
efficiency of the formation of GCVs and to induce glucose uptake 
into adipocytes (92) and myocytes (93). Despite upregulation of 
GLUT4 and sortilin in the absence of CD2AP, GLUT4 was not 
efficiently trafficked to the plasma membrane in response to 
insulin (88). This suggests that increased expression of endog-
enous GLUT4 and sortilin in CD2AP knockout podocytes is a 
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FiGURe 2 | Overview of the steps involved in GLUT4 trafficking to the plasma membrane based on studies carried out in cultured podocytes. Newly synthesized 
GLUT4 molecules are sorted directly into GCVs (1). GLUT4 may be sorted into GCVs also from other vesicular compartments. Cytoskeleton plays a role in 
approaching of the vesicles from the perinuclear region to the plasma membrane (2). Tethering (3), docking (4), and fusion (5) are required to merge the lipid bilayer 
of the GCV with the plasma membrane. Once at the plasma membrane, the GCV docking (4) and fusion (5) require formation of the ternary complex between 
v-SNARE, VAMP2, on the GCV and t-SNAREs, syntaxin-4 and SNAP23, on the plasma membrane, allowing the extracellular exposure of the GLUT4. (6) GLUT4 
present at the plasma membrane is endocytosed and transported to the endosomal system for recycling. GCV, GLUT4-containing vesicle; P, phosphorylation; Endo, 
endosomes and recycling endosomes; TGN, trans-Golgi network; SNAP23, synaptosome-associated protein, 23 kDa; SNARE, N-ethylmaleimide-sensitive factor 
attachment protein receptor; t-SNARE, target SNARE; v-SNARE, vesicle SNARE; VAMP2, vesicle-associated membrane protein 2.
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compensatory mechanism, possibly caused by a defect in GCV 
formation or trafficking. Interestingly, CD2AP forms a complex 
also with clathrin and, apparently via its ability to directly bind 
actin (94), connects clathrin to actin in the perinuclear region 
(88). When CD2AP is absent, the recycling of clathrin back to the 
trans-Golgi membranes from the vesicular fraction containing 
GCVs appears impaired. This reduces insulin-stimulated traffick-
ing of GCVs resulting in reduced glucose uptake when CD2AP 
is absent (88).

Approaching and Tethering
The precise mechanism by which GCVs are delivered to the 
plasma membrane in podocytes is not well defined, but it has 
been shown that the translocation depends on an intact actin 
cytoskeleton (10, 26). Insulin-treated podocytes display cortical 
reorganization of actin, which occurs via activation of RhoA 
and inhibition of CDC42 (10, 26). Also ezrin, an actin-binding 
protein, induces dynamic remodeling of actin in podocytes and 
the process involves the actin-severing protein cofilin-1 (95). 
Loss of ezrin in cultured podocytes increases glucose uptake, 
but apparently this does not occur due to enhanced trafficking 
of GLUT4. In response to insulin, podocytes absorb glucose not 
only via GLUT4 but also via the constitutive GLUT, GLUT1 (10). 
In ezrin-depleted podocytes, GLUT1 was observed at the plasma 
membrane in basal, starved, and insulin-stimulated conditions, 
proposing that an increase in glucose uptake in ezrin-deficient 
podocytes is due to enhanced trafficking of GLUT1 to the plasma 

membrane (95). Interestingly, ezrin is downregulated in the glo-
meruli of obese Zucker rats and in podocytes of human patients 
with T2DM without clinical nephropathy or histopathological 
diagnostic signs of DN (95). The effect of ezrin downregulation 
on GLUTs and glucose uptake in the glomeruli in  vivo awaits 
further studies.

Docking and Fusion
The final step of the GCV trafficking requires docking and 
fusion machinery that merges the lipid bilayer of the GCV with 
that of the plasma membrane. The SD protein nephrin plays 
an important role in this process, as podocytes deficient in 
nephrin or with missense mutations in nephrin are insensitive 
to insulin with respect to glucose uptake (96). Nephrin interacts 
with several key regulators of GLUT4 trafficking, including the 
vesicle-associated VAMP2 on GCVs, and facilitates the insulin-
stimulated GCV fusion with the plasma membrane (96). Nephrin 
also forms a complex with the small filamentous GTPase septin 
7, which negatively regulates glucose uptake into podocytes (97). 
Knockdown of septin 7 strengthens the interaction between 
nephrin and VAMP2 and also between syntaxin 4 and VAMP2 
(97) (Figure 2). This, supported by the previous models proposed 
for septin-5/CDCrel-1 (98), corroborates the idea that septin 7 
forms a physical barrier that hinders GCV trafficking. Thereby, 
depletion of septin 7 allows the SNARE complex formation 
between the v-SNAREs and the plasma membrane-SNAREs (97) 
(Figure 2). Nucleobindin-2 was recently shown to associate with 
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septin 7 (99). As knockdown of nucleobindin-2 prevents insulin-
stimulated translocation of GLUT4 to the plasma membrane, 
the authors suggested that nucleobindin-2 may reverse septin 
7-induced inhibition of insulin-stimulated GLUT4 translocation 
in podocytes (99). This, however, requires detailed studies to 
define whether nucleobinding-2 functionally affects septin 7 and 
to unravel the molecular mechanisms involved.

It is plausible to assume that certain proteins that regulate 
GLUT4 trafficking in muscle and adipose cells function similarly 
in podocytes. One such protein is syntaxin 4-interacting protein 
(synip), which regulates the docking and fusion of GCVs with the 
plasma membrane in adipocytes (100). Synip occupies the same 
binding domain on syntaxin 4 that also interacts with VAMP2. 
Insulin induces phosphorylation of synip on S99, which leads 
to dissociation of synip from syntaxin 4, thereby vacating the 
binding site for VAMP2 and allowing the fusion to occur (100) 
(Figure  2). In line with this, GCVs in podocytes expressing a 
phosphorylation-deficient Synip mutant (S99A) fail to dock 
and fuse with the plasma membrane and the cells present with 
reduced glucose uptake (101).

Another protein that has been shown to regulate glucose 
uptake in both adipocytes and podocytes is non-muscle myosin 
IIA (NM-IIA) (102–104). Knockdown of non-muscle myosin 
heavy chain IIA (NMHC-IIA), a component of the NM-IIA 
hexameric complex, decreases insulin-stimulated glucose uptake 
into podocytes (104). Insulin stimulation activates NM-IIA 
by phosphorylating the regulatory light chain subunit of the 
complex, and this enhances GCV docking and fusion with the 
plasma membrane (103). Interestingly, nephrin, septin 7, and the 
plasma membrane SNARE protein SNAP23 form a complex with 
NMHC-IIA (104). Septin 7 is a regulator of the NM-IIA activity 
in the SNAP23 complex, as knockdown of septin 7 enhances the 
phosphorylation of the NM-IIA regulatory light chain in the 
SNAP23 complex. In line with this, insulin stimulation is coupled 
with a decrease in septin 7 level and an increase in the activity of 
NM-IIA in the SNAP23 complex, enhancing GCV docking and 
fusion and increasing glucose uptake into podocytes (104). Thus, 
in addition to forming a physical barrier, septin 7 reduces glucose 
uptake into podocytes by reducing the activity of NM-IIA in the 
plasma membrane SNARE complex. In diabetic rat glomeruli and 
cultured human podocytes exposed to macroalbuminuric sera 
from patients with T1DM, the activity of NM-IIA is increased 
(104), potentially leading to an increase in glucose uptake.

iNSULiN ReSiSTANCe ASSOCiATeS  
wiTH THe DeveLOPMeNT OF DKD

Mechanisms Leading to insulin Resistance
Insulin resistance is a condition in which cells fail to respond 
to the normal actions of insulin. At the cellular level, the 
mechanisms leading to the development of insulin resistance 
may include mutations in the IR itself, impairments in the PI3K/
AKT signaling pathway or perturbations in the GLUT trafficking. 
These changes may lead to reduced uptake of glucose into cells 
and contribute to the development of hyperglycemia.

Several pieces of evidence suggest that reduced action of insu-
lin may play a role in the development of DKD. Insulin resistance 
has been reported to correlate with microalbuminuria in patients 
with T1DM (4) or T2DM (5–7) and also in non-diabetic subjects 
(8). Both clinical and experimental data suggest that insulin 
sensitizers have a renoprotective role in patients with diabetes 
(105) as well as in experimental animal models of diabetes  
(73, 106, 107). Interestingly, podocytes are insulin sensitive and 
share similarities with skeletal muscle cells and adipocytes in 
respect to the kinetics of the insulin-stimulated glucose uptake 
and the expression of GLUTs, including GLUT1 and GLUT4 
(10). Due to the invasiveness, it is challenging to define whether 
podocytes in human patients with diabetes develop insulin 
resistance and to determine whether podocyte insulin resistance 
per  se contributes to the development of DKD. Identification 
of normoglycemic, insulin-resistant patients presenting DKD 
support the role of insulin resistance as a contributing factor in 
the pathogenesis of DKD, as described in a recent case report 
(108). However, these cases are apparently few, suggesting that 
insulin resistance alone is not enough to lead to the development 
of DKD. Also, only some of the patients with mutations in IR 
and severe insulin resistance develop DKD, and some develop 
other kidney diseases (109), suggesting that insulin resistance, 
in combination with other factors, may contribute to kidney 
injury. A recent review summarizes the consequences of insulin 
resistance and the potential mechanisms associated with the 
progression of DKD (12). These data highlight the importance 
of understanding the mechanisms by which insulin sensitivity 
of podocytes is regulated and helps to identify new targets and 
define new treatment strategies for kidney diseases involving 
insulin resistance.

FACTORS ReGULATiNG GLUTs AND 
THeiR TRAFFiCKiNG iN PODOCYTeS

Insulin signaling in podocytes is influenced by various factors 
and has been reviewed elsewhere (13, 110). Here, we shortly sum-
marize diabetes-associated external factors shown to influence 
GLUTs and their trafficking (Figure 3).

In diabetes, podocytes are exposed to high glucose concentra-
tions prompting to carry out analyses on the effect of high glucose 
on the expression of GLUTs. High glucose treatment of cultured 
human podocytes led to the upregulation of GLUT1 and GLUT3 
and downregulation of GLUT4 (69). In addition, high glucose 
increased the presence of GLUT1, but not of GLUT3 or GLUT4, 
at the plasma membrane (69). Another study defined the effect 
of mechanical stress, modulating increased intracapillary pres-
sure observed in diabetes, in combination with high glucose on 
glucose uptake using cultured rat podocytes (111). The study 
revealed that mechanical stress increased glucose uptake, and the 
effect was potentiated by high glucose. The combination of high 
glucose and mechanical stress decreased the expression of both 
GLUT2 and GLUT4 at the plasma membrane, suggesting that the 
increase in glucose uptake is mediated by other GLUTs under 
these conditions (111).
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Of obesity and insulin resistance-associated factors, free fatty 
acids play a central role in the progression of T2DM. Treatment 
of cultured human podocytes with palmitate, the predominant 
circulating saturated free fatty acid, leads to reduced phospho-
rylation of IRS1 and AKT and diminished glucose uptake (112).  
An increasing number of studies indicate that activation of the 
innate immune system, and inflammatory mechanisms are 
important in the pathogenesis of DKD (113–117). Nucleotide-
binding oligomerization domain containing 2 (NOD2), a member 
of the NOD-like receptor family, plays an important role in innate 
immune response and has been shown to be upregulated in the 
kidney in an experimental model and patients with diabetes 
(118). In line with this, depletion of NOD2 was found to protect 
against diabetes-induced kidney injury. NOD2 was further 
observed to impair insulin signaling and insulin-induced glucose 
uptake in cultured podocytes by inhibiting GLUT4 translocation 
to the plasma membrane (118). Knockdown of NOD2 expression 
also attenuated nephrin downregulation induced by high glucose. 
This is of importance in the context that nephrin enhances GCV 
docking and fusion with the plasma membrane (96). Interestingly, 
also activated macrophages downregulate nephrin expression via 
TNFα and induce podocyte injury (119).

CONCLUSiON

Diabetic kidney disease is the leading cause of end-stage renal 
disease worldwide. Treatments targeting hyperglycemia and 
blood pressure combined with lifestyle interventions have not 
been able to stop the progression of this devastating disease. 

This calls for continued research on the pathophysiological 
mechanisms associated with the progression of DKD, aiming to 
identify new targets for drug development. Studies have shown 
that insulin-sensitizing agents, including metformin and PPARγ 
agonists, are beneficial in preventing kidney damage in both 
T1DM (120) and T2DM (121) as well as in non-DKD (122). 
PPARγ agonist rosiglitazone enhances glucose uptake into 
podocytes by enhancing GLUT1 translocation to the plasma 
membrane (75), and remarkably, GLUT1 overexpression in 
podocytes protects against DKD (72). Concomitantly, proteins 
that enhance the presence of GLUT1 at the plasma membrane 
could have therapeutic potential in preventing the development 
and progression of DKD.

Interestingly, research has revealed that molecules associ-
ated with insulin signaling and glucose uptake in podocytes 
have importance in a context wider than just glucose uptake. 
Accordingly, GLUT4 plays a role in podocyte nutrient sensing, 
and interestingly, depletion of GLUT4 protects podocytes from 
DKD by reducing mTOR signaling (67). In addition to mTOR, 
nutrient-sensing signals AMPK and Sirt1 are altered in the 
diabetic kidney [reviewed in Ref. (76)]. Autophagic activity, 
which is regulated by the above-mentioned nutrient-sensing 
signals, is also altered in both podocytes and proximal tubular 
cells under diabetic conditions (123, 124). This proposes that 
molecules that reduce the expression or functional activity of 
GLUT4 or affect the nutrient sensing pathways in podocytes 
could provide potential treatment targets in DKD. In the next 
few years, additional studies addressing these pathways as well 
as defining the functions of other, thus far less studied GLUTs, 

FiGURe 3 | An overview of the diabetes-associated external factors regulating glucose transporters and glucose uptake in podocytes. In cultured podocytes, 
high glucose leads to upregulation of GLUT1 and GLUT3 and downregulation of GLUT4 and increases the presence of GLUT1 at the plasma membrane. 
Mechanical stress increases glucose uptake and in combination with high glucose, decreases the expression of both GLUT2 and GLUT4 at the plasma 
membrane, and increases glucose uptake. Free fatty acids lead to reduced phosphorylation of IRS1 and AKT and diminished glucose uptake. Also, inflammatory 
mechanisms impair insulin signaling and insulin-induced glucose uptake in cultured podocytes. E, endothelial cell; FP, foot process; GBM, glomerular basement 
membrane.
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