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Abstract: Aquaporin-4 (AQP4) is a water channel expressed on astrocytic endfeet in the brain.
The role of AQP4 has been studied in health and in a range of pathological conditions. Interest in
AQP4 has increased since it was discovered to be the target antigen in the inflammatory autoimmune
disease neuromyelitis optica spectrum disorder (NMOSD). Emerging data suggest that AQP4 may
also be implicated in the glymphatic system and may be involved in the clearance of beta-amyloid
in Alzheimer’s disease (AD). In this review, we will describe the role of AQP4 in the adult and
developing brain as well as its implication for disease.
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1. Introduction

AQP4 belongs to a family of channels that is selectively permeable to water. AQP 1, 4 and
9 are expressed in the mammalian brain [1]. Aquaporin-4 (AQP4) is the most abundant water
channel in the brain, spinal cord and optic nerve and controls brain water homeostasis [2,3].
This bidirectional water channel was first described by Agre’s and Verkman´s groups [4,5] who
previously named it mercury-insensitive water channel (MIWC) because it could not be inhibited by
adding mercury-containing compounds [4]. AQP4 is most abundant in astrocytes and ependymal
cells lining in the ventricles with the highest expression on perivascular astrocytes end feet that
surround blood vessels in the central nervous system (CNS). Density of AQP4 is greatest on the region
of the astrocyte closest to the vessel (also known as polarized expression of AQP4) [2,3]. Loss of
AQP4 polarity refers to AQP4 expression being mislocalized and broadly distributed in the astrocyte,
rather than being focused on the endfeet surrounding blood vessels [6,7]. Due to its particularly high
expression at the blood brain barrier (BBB) and blood cerebrospinal fluid (CSF) barrier, AQP4 controls
bidirectional fluid exchange [8].

A growing numbers of neurological conditions are now associated with an alteration in AQP4
expression or localization. An imbalance in water homeostasis in the brain has been associated
with pathological conditions such as traumatic brain injury and stroke [9,10]. Increasing evidence
suggests that AQP4 is also involved in brain inflammation, glymphatic fluid clearance, synaptic
plasticity and memory formation, regulation of extracellular space (ECS) volume and potassium
homeostasis [8,11,12]. The involvement of AQP4 in several pathogenic conditions is mainly based on
findings in post mortem brain tissue, in vitro studies and the usage of AQP4 deficient rodent models.
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A loss of AQP4 polarization in perivascular astrocytic endfeet such as occurs in many brain
injuries, may result in BBB breakdown. This may be particular relevant for the aging brain and
Alzheimer’s disease (AD) [13].

In contrast to the role of AQP4 in the adult brain, little is known about the role of AQP4 during
early development in the fetal brain.

In this review, we will discuss the role of AQP4 in health and will share some novel insights from
pathological conditions involving AQP4.

2. AQP4 and Its Role during Development

There are scant data about the role of AQP4 during development. Since AQP4 is expressed in
the adult brain on astrocyte endfeet, AQP4 expression during development is mostly considered to
be linked to the time astrocytes appear in the brain. In the early postnatal phase of development,
astrocytes have been described to contribute to postnatal angiogenesis and the formation of the
BBB [14]. Transcriptional analysis of the fetal mouse brain (embryonic day E14.5) showed AQP4
expression in proliferating progenitor cells, much less in differentiated progenitor cells, and none
in neurons [15]. Early expression of AQP4 was further supported by a study showing that AQP4
is expressed on radial glia cells in the developing mouse brain [16]. Using immunohistochemistry,
AQP4 expression was detected as early as embryonic day E16, yet not in a polarized expression
pattern [16]. A functional role of embryonic AQP4 has not been studied so far. One study reported
the unexpected occurrence of sporadic obstructive hydrocephalus in a small subset of AQP4 deficient
mice [17]. Histological analysis of those offspring revealed aqueductal stenosis, which blocks the CSF
flow in the ventricular system, as well as ependymal disorganization. This study suggests a possible
involvement of AQP4 in the pathogenesis of aqueduct stenosis, but does not determine if this occurs
during neurodevelopment or occurs only later on in aged mice.

3. AQP4 and Its Role in the Adult Brain

In the CNS, AQP4 is highly expressed in the perivascular astrocyte foot processes and glial
limiting membrane and at lower levels in perisynaptic astrocytic processes [2,3,18]. Thus, AQP4 is
expressed at very dense levels at the BBB, however it is also expressed at areas of the CNS that lack a
BBB, such as the circumventricular organs [2,3].

AQP4 monomers are ~30 kDa [19]. Each monomer consist of 6 transmembrane helices and 2
helices that do not span the membrane entirely [18]. Each monomer has a central aqueous pore.
AQP4 is expressed as a tetramer in the plasma membrane [20]. AQP4 exists as 2 major isoforms,
M1 and M23 which differ in their translation start sites from methionine M1 (323 amino acids) or
methionine M23 (301 amino acids) [21]. Tetramers comprised of M23 form higher order structures,
called orthogonal arrays of particles (OAP), which are crystal-like supramolecular assemblies in the
plasma membrane [18,22,23]. OAP may consist of co-expressed M1-M23 AQP4 heterotetramers [24].
It was suggested that OAP might enhance water permeability, alter cell-cell adhesion and facilitate
AQP4 polarization to astrocyte endfeet [25–27], yet the biological significance remains unknown [28].
OAP is the target of anti-AQP4 antibodies in neuromyelitis optica spectrum disorder (NMOSD), in
which antibodies target specifically the OAP rather than monomeric M1 AQP4 [29–32] (see further
discussion below).

In addition to the relevance of OAP, little is known about the regulation of the polarized expression
of AQP4 at the perivascular endfeet. It has been hypothesized that AQP4 interacts with α-syntrophin or
agrin, which both show polarized expression in astrocyte endfoot processes [33]. Contact by astrocytes
with endothelial and pial cells may also influence AQP4 polarization, as loss of these contacts in
pathological conditions may disturb AQP4 polarization [34,35].
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Insights from AQP4 Deficient Mice

Constitutive AQP4 deficient mice as well as glial-conditional AQP4 deficient mice have been used
to understand the role of AQP4 in the brain [7,36].

AQP4 deficient mice revealed a role for AQP4 in cognition and memory. These mice show
cognitive deficit in the object location memory test [37] and a spatial memory impairment in the Morris
water maze [38].

One study suggested that AQP4 deficient mice have an impaired BBB, decreased tight junction
proteins and swollen astrocyte endfeet [39], yet, other studies could not replicate these findings and
observed no alterations in the BBB [36,40].

AQP4 deficient mice show a more pronounced phenotype under certain insults or injury. When the
role of AQP4 in brain water balance was studied in non-stressed conditions, no obvious change in
water homeostasis was observed in vivo [35]. In contrast, AQP4 deficient mice exposed to stress
conditions often show either worse outcomes or beneficial effects depending on the disease model.
AQP4 deficient mice have a better survival in an acute water intoxication model for brain edema [41],
since in this model AQP4 is facilitating water movement into the brain across an intact BBB. In contrast,
AQP4 deficient mice with vasogenic edema have a worse outcome with increased brain swelling, as in
this pathological condition, AQP4 is required for edema resolution [42].

4. AQP4 during Disease

4.1. Role of AQP4 in Inflammation

Autoantibodies to Astrocytic AQP4 in NMOSD and Its Disease Spectrum

Over recent years, interest in AQP4 has increased due to the discovery that it is the target antigen in
the neurological autoimmune disease Neuromyelitis spectrum disorder (NMOSD) [43,44]. NMOSD is
an autoimmune astrocytophathy commonly characterized by astrocyte loss, demyelination in the
spinal cord, optic nerve and brain. Typically patients present with demyelinating lesions spanning
three or more vertebral segments. Around 80% of NMOSD patients harbor autoantibodies that target
AQP4 (AQP4-IgG) in the brain. These antibodies were first discovered upon incubation of serum
samples with rodent tissue which resulted in a perivascular binding pattern [43]. Because antibodies
to AQP4 are not found in serum of healthy controls and multiple sclerosis (MS) patients [29,45],
their presence is a diagnostic criterion for NMOSD [46,47], and allows early diagnosis as the clinical
presentation of NMOSD patients can resemble MS and other neurological disease. Since the course of
treatment for NMOSD patients is different than from MS, early correct diagnosis is critical. For example,
Interferon beta treatment, commonly used for treating MS can worsen the disease outcome of NMOSD
patients [48].

As the presence of AQP4-IgG is an important biomarker for NMOSD, which can predict disease
development [46,47] and allows faster initiation of appropriate treatment, there has been a strong
focus on assay development [49]. AQP4-IgG antibodies are detected with highest sensitivity and
specificity using a live cell based assay [50,51] in which human embryonic kidney cells (HEK cells) are
transfected to express a fluorochrome-tagged M23 AQP4 on their cell surface to closely resemble the
native conformation of AQP4 on astrocytes. Serum from patients is then incubated with the cells, and
co-localization of human IgG and AQP4 is assessed [29,52].

Cell based assays are now considered the gold standard for AQP4-IgG testing [29–32,53].
AQP4 antibodies target primarily the extracellular part of the M23-AQP4 isoform rather than the
extracellular part of full length M1 AQP4 isoform [53,54]. This is associated with the ability of M23
AQP4 to form OAP. Patients’ antibodies bind with high affinity to the OAP, as has been shown for
monoclonal AQP4-IgG as well as for AQP4-IgG positive serum samples [29,55]. Fryer and colleagues
noted that in flow cytometry assay, nonspecific binding was observed with some samples when cells
were transfected with M23-AQP4, but not when transfected with a combination of M1/M23 AQP4 [56].
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Nevertheless, cells transfected with M23-AQP4 are considered to detect the presence of AQP4-IgG in
serum with high sensitivity and specificity [29,49].

It is suggested that the higher binding affinity of AQP4-IgG to OAP is associated with structural
changes in the AQP4 epitope upon array assembly [18] or enhanced avidity binding to a multivalent
antigen [57].

It is not clear whether the antibodies by themselves are sufficient to cause pathology, or whether
ongoing inflammation is required. CNS reactive T cells may be important to breach the BBB and allow
antibody entry into the brain [58]. In rodent models of NMOSD, encephalitogenic CNS reactive T cells
are used to open the BBB and to allow human AQP4-IgG to penetrate the brain [59–62]. It has also
been suggested that pathogenic T cells may not only be involved in opening the BBB, but contribute to
disease pathogenesis since AQP4 reactive T cells that were generated in AQP4 knockout mice result in
NMOSD like lesion when transferred to wild type mice [63].

It has also been proposed that patients with NMOSD have, in addition to anti-AQP4 antibodies,
anti-endothelial antibodies that can breach the BBB [64]. Using a novel proteomic approach
investigators showed that brain microvasculature endothelial antibodies target glucose regulated
protein 78 (GRP78). Repeated systemic injection of rodents with patient derived monoclonal antibodies
to GRP78 breaches the BBB and allows AQP4-IgG to enter the CNS. This would suggest that AQP4-IgG
can be pathogenic to the brain, even in absence of pathogenic T cells or BBB insults such as infection.
A recent study demonstrated for the first time that a circulating rodent high affinity anti-AQP4
monoclonal antibody that was injected into rats can enter the CNS by itself and cause tissue destruction
without addition of pathogenic T cells or active complement [65]. However, this has not been shown for
human derived AQP4-IgG so far, and so may be limited to few antibodies or to an unidentified aspect
of the experimental protocol. Another study showed that AQP4-IgG binding to astrocytes induces
Interleukin-6 (IL6) production, which might decrease BBB function, increase chemokine production
and result in increased leukocyte transmigration, and a feed-forward pathologic process (Figure 1) [66].
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Figure 1. Multiple mechanisms for AQP4-IgG access to the brain: Insights from rodent models.
Cross section of a blood vessel demonstrating how AQP4-IgG can enter the brain according to findings
from rodent models. BBB breach can occur through encephalitogenic CNS reactive T cells [59,60],
inflammatory agents [67] (LPS, TNF alpha, IL-1) and antibodies that alter endothelial cells functional
(e.g., anti-GRP78 antibodies [64]). Recently, it was postulated that high affinity AQP4-IgG could enter
the brain through circumventricular organs and meningeal or even parenchymal blood vessels without
prior BBB insult [65].
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Several mechanisms can account for the tissue damage following the binding of AQP4-IgG
to AQP4 expressed in the brain. The mechanism for which there is most evidence is complement
dependent cytotoxicity (CDC) [68,69], in which AQP4-IgG activates complement, leading to irreversible
astrocyte loss through the formation of the membrane attack complex (MAC). This mechanism is
supported by the fact that most AQP4-IgG are IgG1 [69], which is potent at complement activation.
Complement deposition products are indeed present in the brain of NMOSD patients [70], and early
clinical trials suggest a benefit of complement inhibitors in NMOSD [71].

Some studies have suggested that rodent complement, particularly mouse, may not be sufficient to
activate human antibody mediated CDC [72,73]. Human AQP4-IgG that was directly injected into the
brain of rodents required the addition of human complement to induce pathogenicity [73]. However,
one has to keep in mind that under quiescent conditions, such as in models in which antibody is
injected directly to the brain, there may be less complement in the brain parenchyma than in NMOSD
patients [74] with a BBB breach or under inflammatory conditions.

New evidence suggests that AQP4-IgG can also induce complement independent
pathologies [65,67,68,75]. Brain lesions, with or without complement deposition, can be found in
NMOSD patients, even within the same patient, suggesting that different mechanisms of AQP4-IgG
may act concurrently. Little is known about the mechanism by which AQP4-IgG mediates brain lesions
in the absence of complement activation [75]. An in vitro study of cultured human astrocytes provided
evidence that both complement dependent and independent astrocytopathy can occur as AQP4-IgG
may decrease antigen density in the absence of complement, which could be partially reversed by
the removal of IgG from the culture [68]. This may alter astrocyte function. In an in vivo study, IgG
from an NMOSD patient was passively transferred to mice with a compromised BBB by prior LPS
injection. The mice showed AQP4 astrocyte loss in the spinal cord in the absence of complement
activation [67]. There was a massive increase of Iba1 positive microglial cells found in close proximity
to the astrocytes [67]. This study proposed a mechanism in which AQP4-IgG acts through antibody
dependent cell mediated cytotoxicity (ADCC) by activating microglia expressing FcR including FcγRI,
FcγRII, and FcγRIII. Interestingly, anti-AQP4-IgG engineered to have nine fold stronger CDC, but no
ADCC, produced much less pathology than wildtype AQP4-IgG in one study [76].

Understanding the mechanisms of tissue destruction caused by AQP4-IgG will pave the way for
therapeutic intervention. To date most patients with NMOSD receive immunosuppressive medications.
Acute symptoms are commonly treated with Methylprednisolone or plasma exchange [71,77,78].
As preventative therapy, the monoclonal antibody Rituximab, targeting CD20 positive B cells [71], but
not antibody secreting plasma cells is commonly used. Patients show improvement with Rituximab
therapy [79], despite persistent AQP4-IgG levels [80,81]. Since AQP4-IgG persist following rituximab
and patients show beneficial effect, the question remains if AQP4-IgG by itself can cause damage. It is
possible that Rituximab may have a different effect, such as depleting B cells that present antigen to
pathogenic T cells, or increasing T regulatory cells (Treg) [82,83].

Blocking the binding of pathogenic AQP4-IgG through administration of non-pathogenic
AQP4-IgG that lacks CDC and ADCC is emerging as potential therapeutic intervention in NMOSD [84],
which would allow avoiding immunosuppressive therapy. If, however, AQP4-IgG acts also through
mechanisms other than CDC or ADCC, this type of treatment may not be sufficient to mitigate
all pathology. The alternative would be to administer peptide mimeotopes to block pathogenic
AQP4-IgG. Such an approach was been suggested for neutralization of brain-reactive antibodies
in Neurospsychiatric Systemic Lupus Erythematosus. Blocking the pathogenic epitope may be a
challenge as, however there may be multiple epitopes targeted by patients’ antibodies [85].
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4.2. Role of AQP4 in Controlling Brain-Water Balance

AQP4 and Hydrocephalus

Hydrocephalus is a pathologic condition in which increased CSF accumulation in the ventricles
often results in increased pressure. Untreated hydrocephalus can lead to brain swelling, brain damage
and death. Hydrocephalus is usually caused by impaired clearance of CSF outflow from the brain into
the circulatory system.

Animal models have implicated AQP4 in both hydrocephalus initiation and resolution. The role
of AQP4 depends on the disease stage and brain region. In models that use kaolin to induce acute
hydrocephalus, there is an increase of AQP4 expression [86,87]. In a rodent model where hydrocephalus
is induced by L-alysophosphatidylcholinestearoyl injection, upregulation in AQP4 expression in
astrocytes, both on astrocytic endfeet and on the entire membrane of the astrocyte was recorded [88].
AQP4 deficient mice exhibit a sporadic rate of spontaneous hydrocephalus [17] and kaolin induced
hydrocephalus in AQP4 deficient mice results in an accelerated progression of hydrocephalus [89].
In patients with congenital hydrocephalus, AQP4, measured by Western blot and ELISA, is elevated
in CSF and in the parenchyma [90]. In addition, hydrocephalus has been reported in AQP4-IgG
seropositive NMOSD patients [91] as well as vasogenic edema that manifests as posterior reversible
encephalopathy syndrome [92].

While it is clear that AQP4 has a role in hydrocephalus, it remains unclear whether AQP4 has a
protective or deleterious effect. It may contribute to hydrocephalus development at the initial disease
stage or be important for edema resolution at a later time point. In addition, AQP4 is considered to
have different roles for cytotoxic brain edema, vasogenic brain edema, and hydrocephalus, which may
reflect to the different sites where water is accumulated in these conditions.

This needs to be resolved before addressing a potential treatment approach that would limit
water flow into the brain and accelerate outflow into the systemic circulation by modulating AQP4
and might diminish the need for a surgical intervention.

4.3. Role of AQP4 in Glymphatic Clearance, Synaptic Plasticity and Memory

AQP4 and Alzheimer Diseases

With the elucidation of the glymphatic (glial lymphatic) system in 2012 as a system of waste
clearance for the brain [93], several studies have associated a breakdown of the glymphatic pathway in
different neurodegenerative diseases including AD (Figure 2) [94]. It is believed that the recirculation
of CSF flow is driven by active fluid transport through the brain parenchyma from para-arterial to
para-venous spaces and that AQP4 supports the clearance of interstitial solutes including beta-amyloid
and tau to prevent their aggregation. Accumulation of beta-amyloid is a hallmark of AD and can
begin years before disease onset [95]. The glymphatic system is proposed to be most effective during
sleep and dysfunctional sleep is further associated with beta-amyloid accumulation [93,96]. It has
been shown that glymphatic function is reduced in the mid- to late-stage of AD due to the loss of
polarity of AQP4 at the astrocyte endfeet [13]. A recent study suggested that people with certain
genetic variations in AQP4 who have poor sleep patterns have more beta-amyloid deposition in the
brain due to a dysfunctional glymphatic system [97]. The role of AQP4 in the glymphatic system
should be further investigated [98].

AQP4 is also implicated in regulating glutamate transporter-1 (GLT-1) function. Astrocytes in
AQP4 deficient mice have reduced GLT-1 levels as well as reduced glutamate clearance, which in turns
affects synaptic plasticity and memory since function can be rescued by a potent GLT-1 stimulator [99].
This further emphasizes that AQP4 may be an interesting and novel target in many diseases.
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affects the efficiency of the glymphatic system in waste clearance such as beta-amyloid. Accumulation
of beta-amyloid is a hallmark of AD [98]. Image modified from [100,101].

5. Conclusions

Alterations in AQP4 expression or loss of polarization, or both, is now reported in many diseases
(Table 1). In some conditions, such as hydrocephalus and stroke, the role of AQP4 has been studied for
some time, while, in other diseases such as AD the role for AQP4 emerged only recently.

AQP4 function, particularly regarding its role in brain water balance, may differ in different brain
areas. Moreover the consequence of AQP4 dysfunction may depend on the stage of the disease that is
being studied. Rodent models trying to elucidate the role of AQP4 in different disease models can
therefore be conflicting. Moreover, it is emerging that AQP4 helps regulate glutamate levels and GLT-1
expression [102]. More will be learned about changes in brain homeostasis following dysfunction of
AQP4 in the coming years.

AQP4 inhibitors or down regulators may provide future potential treatment of some conditions
such as for cytotoxic brain edema [103]. 2-(nicotinamide)-1,3,4-thiadiazole (TGN-020) was shown to
serve as a potent AQP4 inhibitor in an ischemic rodent stroke model [104]. In contrast, enhancers of
AQP4 expression may be beneficial in reducing vasogenic brain swelling.
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Table 1. AQP4 in different pathological conditions.

Disease Mechanism AQP4 Related Pathology Rodent Models (Potential) Therapeutic

NMOSD -AQP4-IgG dependent tissue
astrocytophathy:
-CDC
-ADCC
-other mechanisms

-Presence of AQP4-IgG in
serum [44]
-Loss of AQP4 in NMOSD
lesions [105]
-Massive demyelination (brain,
optic nerve, spinal cord) [70,75]

1. Injection of anti-AQP4-IgG into the
brain [73]
2. Intravenous injection of AQP4-IgG
following BBB disruption through T cell-
mediated EAE [59,60], bacterial proteins [67]
or anti-endothelial antibody [64].
3. High affinity circulating rodent AQP4-IgG
enter the CNS without BBB impairment [65]

-Decoy antibody lacking FcR or
complement binding [84]
-Recombinant IgG1 Fc hexamers
that block cytotoxicity and
pathological changes [106]

Alzheimer’s
Disease

Loss of AQP4 polarization with impaired
clearance of interstitial solutes and
increased aggregation (beta- amyloid)

Mislocalization of AQP4 [13] AQP4 gene knockout of beta-amyloid
precursor protein /presenilin 1 (APP/PS1)
transgenic mice [107]

AQP4 receptor agonists [107]

ALS Loss of AQP4 polarization and altered
AQP4 expression is contributing to motor
neuron degeneration [107] and BBB
impairment [108]

AQP4 overexpression in
astrocytes [109]

Superoxide dismutase 1 (SOD1) G93A
transgenic mice (mouse model of ALS) [109]

Targeting AQP4 as potential
treatment to restore BBB in
ALS [108]

Parkinson’s
Disease (PD)

AQP4 dysfunction contributing to
synuclein deposition and water
accumulation in the substantia
nigra [110]

Enriched AQP4-positive astrocytes
in the neocortex [111]

AQP4 deficient mice treated with
MPTP [112]

N/A

Ischemic Stroke AQP4 enhances edema formation or
diminishes resolution

Enhanced expression of AQP4 at
site of infarction [10].

Brain edema caused by acute water
intoxication using AQP4 knock out mice [41]

AQP4 inhibitors during edema
formation

Traumatic brain
injury (TBI)

AQP4 is altering water homeostasis and
AQP4 may be associated with
neuroinflammation (through astrocyte
and microglia activation)

Increased expression of AQP4 and
loss of AQP4 polarity [9]

TBI mouse model [9] AQP4 inhibitors may be
beneficial [103]

Hydrocephalus Control of water homeostasis -Increased AQP4 in CSF of
congenital communicating
hydrocephalus [90],
-Hydrocephalus has been reported
in AQP4-IgG positive NMOSD [91]

Rat kaolin model [86] Increasing AQP4 to support CSF
clearance at a later disease stage or
decreasing AQP4 in areas of CSF
production particularly at disease
onset [113].

Glioma -AQP4 is contributing to increased tumor
cell migration possibly through
increasing water permeability [114].
-Involvement of AQP4 in tumor edema

Expression of AQP4 in human
glioblastoma [115]

N/A Use of AQP inhibitors to reduce
tumor growth [18]
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Table 1. Cont.

Disease Mechanism AQP4 Related Pathology Rodent Models (Potential) Therapeutic

Schizophrenia Reduced AQP4 is contributing to
neurovascular dysfunction and BBB
hyperpermeability

Astroglial loss and reduced AQP4
expression in the deep layers of the
anterior cingulated gyrus [116]

N/A N/A

Major depressive
disorder (MDD)

AQP4 is contributing to poor water
balance

Reduced coverage of blood vessels
by AQP4 positive astrocytic endfeet
in the orbitofrontal cortex [117]

N/A N/A

Epilepsy Impairment of K+ homeostasis AQP4 expression is increased in
samples from atrophic
hippocampus from epileptic
patients [118]

AQP4 deficient mice [119] AQP4 modulators to increase
seizure thresholds [103]

Autism Abnormal glial-neuronal communication
in brains of subjects with autism

Decreased AQP4 expression in
cerebellum of post mortem
tissue [120]

N/A N/A
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Therapeutic strategies need to address access of AQP4 modulators across a functionally intact
BBB, since not all pathological conditions are associated with impaired BBB. Aquaporumab is an
example of an AQP4-targeted antibody therapeutics [84]. This is a non-pathogenic- AQP4-IgG lacking
CDC and ADCC, so it can bind AQP4 without causing NMO lesions, blocking the ability of pathogenic
AQP4-IgG to bind. AQP4 blocking antibodies as well as AQP4-IgG enzymatic inactivation are in
preclinical development, and it will be important to determine when and where it traverses the BBB.

It is abundantly clear that the functions of AQP4 in the CNS are more diverse and more complex
than previously appreciated. Targeted therapeutics with maximum benefit and limited toxicity will
depend on a thorough understanding of the biology or AQP4 in health and in the myriad pathologic
conditions that we know include aberrant AQP4 expression.
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