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Simple Summary: Lymph node status is one of the best prognostic factors in breast cancer, however,
its association with distant metastasis is not straightforward. Here we compare molecular mechanisms
of nodal and distant metastasis in molecular subtypes of breast cancer, with major focus on luminal
A patients. Our results indicate that lymph node positivity is associated with NF-κB and Src pathways
and is related to high risk of distant metastasis in luminal A patients. Distant metastasis of lymph node
negative tumors is related to cell proliferation control and thrombolysis, whereas distant metastasis
of lymph node positive tumors is associated mostly to immune response. These mechanisms vary in
other molecular subtypes. Our data indicate that the management of breast cancer and prevention of
distant metastasis requires stratified approach based on targeted strategies.

Abstract: Lymph node status is one of the best prognostic factors in breast cancer, however, its
association with distant metastasis is not straightforward. Here we compare molecular mechanisms
of nodal and distant metastasis in molecular subtypes of breast cancer, with major focus on luminal
A patients. We analyze a new cohort of 706 patients (MMCI_706) as well as an independent cohort of
836 primary tumors with full gene expression information (SUPERTAM_HGU133A). We evaluate the
risk of distant metastasis, analyze targetable molecular mechanisms in Gene Set Enrichment Analysis
and identify relevant inhibitors. Lymph node positivity is generally associated with NF-κB and Src
pathways and is related to high risk (OR: 5.062 and 2.401 in MMCI_706 and SUPERTAM_HGU133A,
respectively, p < 0.05) of distant metastasis in luminal A patients. However, a part (≤15%) of
lymph node negative tumors at the diagnosis develop the distant metastasis which is related to
cell proliferation control and thrombolysis. Distant metastasis of lymph node positive patients is
mostly associated with immune response. These pro-metastatic mechanisms further vary in other
molecular subtypes. Our data indicate that the management of breast cancer and prevention of
distant metastasis requires stratified approach based on targeted strategies.
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1. Introduction

Breast cancer is the most often diagnosed cancer, and the most lethal cancer in women worldwide
in absolute numbers [1]. In most cases, primary tumors do not represent the main cause of the
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death, and about 90% of deaths is caused by development of the secondary tumors, metastases [2].
The presence of cancer cells in regional lymph nodes is an established prognostic factor for development
of distant metastases and patient survival [3–8]: regional lymph node metastases have been observed
in about one third of breast cancer patients at the time of diagnosis [9], and patients with more than
three positive axillary lymph nodes have been shown to have five-fold higher probability of distant
metastasis development [10–13]. The relationship between lymph node and distant metastasis is,
however, not straightforward in two typical cases: (i) approximately one third of breast cancer patients
with negative regional lymph nodes develop distant metastasis in disagreement with the prognosis
based on lymph node status [14–16], and (ii) one third of breast cancer patients with positive lymph
nodes do not develop distant metastases at all [17,18]. This leads to underestimation of the risk in the
first case, and overtreatment in the second case in the clinical practice. As such, the mechanisms that
develop lymph node metastases are hypothetically at least partially, or even completely different from
the mechanism responsible for distant metastasis since cancer cells spreading to lymph nodes utilize
transport modes different from the cells that spread via blood circulation [19].

A confounding factor that contributes to the unstraightforward association between lymph node
and distant metastasis is the molecular heterogeneity of breast cancer. It is well known that different
combinations of estrogen receptor (ER), progesterone receptor (PgR), human epidermal growth factor
receptor 2 (Her2) status [20] and tumor grade define at least four molecular subtypes of breast cancer,
luminal A, luminal B, Her2-enriched (Her2+), and basal/triple-negative [21]. Patients of luminal A and
basal subtype form the regional lymph node metastases less frequently [10,22–29] (see Table S1 for
overview of the studies) and non-luminal tumors tend to metastasize into distant organs more often
than luminal tumors [22,27,29,30] (see Table S2 for overview of the studies). Although the conclusions
made in these individual studies correspond to their different experimental design, the results indicate
that the uncertain association between lymph node and distant metastasis is further complicated by
molecular heterogeneity of breast cancer.

Buonomo et al. compared lymph node involvement and occurrence of distant metastases in 324
breast cancer patients and indicated that Her2+ patients and the basal patients show the highest and
the lowest risk, respectively, of distant metastasis based on lymph node status [31]. The association
between lymph node and distant metastasis in non-luminal patients was overall stronger than in
luminal patients. Within the luminal patient group, luminal A patients showed lower chance on
distant metastasis in lymph node positive cases than patients of luminal B subtype. As there was no
independent study specifically comparing the association between lymph node and distant metastasis
in luminal A subtype, we have analyzed a newly established cohort of 706 patients treated at Masaryk
Memorial Cancer Institute (MMCI) and used it to confirm whether the risk of distant metastasis is
associated with nodal positivity of luminal A patients. To validate these findings in an independent
cohort and to study the underlying molecular mechanisms of lymph node and distant metastasis, we
analyzed the dataset SUPERTAM_HGU133A [32] that was available, as the only one, for immediate
download including the information on lymph node and distant metastasis and the gene expression
microarray profiles. Using the data from the second dataset, we identified molecular pathways enriched
in tumors developing distant metastasis in relation to their lymph node status at the time of diagnosis.
Based on the literature research of the enriched pathways, corresponding key biomarkers and their
validation data referenced here, we then proposed a panel of currently available inhibitors targeting
these pathways and discuss their potential applicability for improvement of breast cancer treatment.

2. Results

2.1. Association between Lymph Node Status and Development of Distant Metastasis in Two Independent
Patient Cohorts

To study the association between lymph node status and development of distant metastasis, we
enrolled a new cohort of 706 patients initially diagnosed at MMCI between 2004 and 2007 with at
least 5-year follow-up, referred as MMCI_706, containing 381 luminal A, 218 luminal B, 32 Her2+ and
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75 basal patients, please see Table S3 for descriptive statistics of lymph node positive (N1) “cases”
and lymph node negative (N0) “controls” at the time of diagnosis. Then we evaluated the risk of
distant metastasis development in N1 vs. N0 patients in all breast cancer subtypes. In Table 1 we
show the highest risk (the highest odds ratios, p < 0.05) of distant metastasis related to lymph node
status for luminal A subtype, followed by basal and luminal B. In order to validate these results in an
independent patient cohort containing full gene expression data for subsequent pathway analyses,
we analyzed SUPERTAM_HGU133A dataset of 836 patients containing 341 luminal A, 281 luminal
B, 71 Her2+ and 143 basal patients with Affymetrix Human Genome U133A gene expression data
and performed the same evaluation as for MMCI_706 dataset. We found the highest risk of distant
metastasis related to lymph node status for luminal A subtype (Table 1). The data from both datasets
show that luminal A tumors (OR 5.062 and 2.401, p < 0.05) have the strongest association between
lymph node metastasis and distant metastasis.

Table 1. Increase of distant metastasis risk dependent on lymph node positivity in patients of
four molecular subtypes from MMCI_706 study cohort and SUPERTAM_HGU133A dataset using
logistic regression.

Tumor Molecular
Subtype

MMCI_706 SUPERTAM_HGU133A

n OR 95% CI p-Value n OR 95% CI p-Value

Luminal A 381 5.062 1.973–12.989 0.000 341 2.401 1.316–4.380 0.004
Luminal B 218 2.422 1.151–5.096 0.018 281 1.386 0.787–2.442 0.258

Her2+ 32 3.462 0.32–37.475 0.285 71 5.375 1.421–20.332 0.008
Basal 75 4.400 1.479–13.091 0.006 143 0.299 0.037–2.448 0.416

All patients 706 3.634 2.228–5.928 0.000 836 1.739 1.207–2.505 0.003
Luminal A + luminal B 599 3.536 1.994–6.271 0.000 622 1.762 1.176–2.641 0.006

Her2+ + basal 107 3.948 1.492–10.450 0.004 214 1.864 0.752–4.619 0.174

CI, confidence interval; OR, odds ratio.

2.2. Molecular Mechanisms of Metastatic Events Depend on Breast Cancer Subtype

To understand the molecular basis of lymph node vs. distant metastasis in breast cancer subtypes,
we compared gene expression in N1 vs. N0 primary tumors at the time of diagnosis and in distant
metastasis positive (M1) and distant metastasis negative (M0) primary tumors during the follow-up
for all breast cancer subtypes in SUPERTAM_HGU133A dataset. Then we performed GSEA analyses
of the gene expression data for all subtypes separately to identify pathways associated with lymph
node and distant metastasis.

Figure 1 shows up to 10 top enriched pathways for all kinds of comparisons with nominal (NOM)
p-value < 0.05 (see Table S6 for full data). The data clearly show that the molecular pathways enriched
in lymph node positive (vs. negative) primary tumors, distant metastasis positive (vs. negative) tumors
and relevant combinations thereof are highly distinct for every subtype. This is further detailed below.

2.2.1. Luminal A Subtype

GSEA analysis of gene expression profiles of primary luminal A tumors showed enrichment of two
pathways, RANKL and CELL2CELL, in comparison of lymph node positive vs. negative tumors (N1
vs. N0 in Figure 1). These pathways participate in NF-κB activation and in cell adhesion and migration,
respectively, and are thus biologically relevant for the local invasion. RANKL pathway was enriched
also in lymph node positive vs. negative luminal A tumors in a subgroup of distant metastasis negative
tumors (M0: N1 vs. N0 comparison), together with NUCLEARRS pathway. Similarly, FREE and IL10
pathways (both involving pro-inflammatory cytokines connected to NF-κB pathway) were enriched in
lymph node positive vs. negative tumors in a distant metastasis positive tumor subgroup (M1: N1 vs.
N0 comparison). Thus, we suggest that NF-κB pathway plays an important role in migration of cancer
cells in regional lymph nodes in luminal A patients regardless of distant metastatic events.
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Figure 1. Top 10 statistically significant pathways (NOM p-value < 0.05) resulting from Gene Set Enrichment Analysis (GSEA) based on transcriptomic profiles of 
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M0) related to these two events. Pathways were searched against Biocarta pathway database. Up to 10 statistically significant pathways are shown for each condition 

within each subtype. No statistically significant pathways were identified under M1 vs. M0 condition for patients with all breast cancer subtypes. 

 
Figure 1. Top 10 statistically significant pathways (NOM p-value < 0.05) resulting from Gene Set Enrichment Analysis (GSEA) based on transcriptomic profiles of
breast cancer patients from SUPERTAM_HGU133A dataset. Using SCMOD2 classifier, patients were classified into 4 breast cancer molecular subtypes, resulting in 341
luminal A, 281 luminal B, 71 Her2+ and 143 basal patients. To demonstrate differences in molecular mechanisms included in lymph node metastasis (N1) and distant
metastasis (M1), expression profiles were compared under 6 conditions (N1 vs. N0, M0: N1 vs. N0, M1: N1 vs. N0, N1: M1 vs. M0, N0: M1 vs. M0, M1 vs. M0) related
to these two events. Pathways were searched against Biocarta pathway database. Up to 10 statistically significant pathways are shown for each condition within each
subtype. No statistically significant pathways were identified under M1 vs. M0 condition for patients with all breast cancer subtypes. M0: N1 vs. N0, lymph node
positive vs. negative tumors; all distant metastasis negative; M1: N1 vs. N0; lymph node positive vs. negative tumors; all distant metastasis positive; M1 vs. M0,
distant metastasis positive vs. negative tumors; N0: M1 vs. M0, distant metastasis positive vs. negative tumors; all lymph node negative; N1: M1 vs. M0; distant
metastasis positive vs. negative tumors; all lymph node positive; N1 vs. N0, lymph node positive vs. negative tumors.
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On the other hand, GSEA analysis of primary luminal A tumors showed no enriched pathways
in comparison between distant metastasis positive vs. negative tumors (M1 vs. M0). Interestingly,
comparisons of distant metastasis positive vs. negative tumors within the subset of lymph node
negative tumors (N0: M1 vs. M0) and distant metastasis positive vs. negative tumors within the
subset of lymph node positive tumors (N1: M1 vs. M0) led to enrichment of different sets of pathways.
Especially, N0: M1 vs. M0 comparison indicated enrichment of MCM, ATRBRCA and FIBRINOLYSIS
pathways consisting of proteins participating in cell cycle progression, DNA repair and plasminogen
activation, respectively. On the other hand, N1: M1 vs. M0 comparison resulted in enrichment of
TH1TH2 and CTLA4 pathways that involve proteins of specific immune response. This indicates
distinct mechanisms of distant metastasis in lymph node positive and lymph node negative patients.

Comparisons of expression profiles between N1 and N0 or M1 and M0 patients within each
condition are visualized using heatmap and hierarchical cluster analysis that show more conserved
profiles in N1 than in M1 patients, probably reflecting different organs affected by distant metastasis
(Figure S1). Volcano plots show higher number of differentially expressed genes in lymph node positive
to lymph node negative comparisons than in distant metastasis positive to distant metastasis negative
comparisons (Figures S2–S7).

In a summary, while lymph node positivity of luminal A primary tumors seems to be associated
with NF-κB pathway, the occurrence of distant metastasis appears to be connected with stronger
mechanisms related to proliferation and cell cycle progression (Figure 2). The data confirm that
molecular mechanisms of lymph node and distant metastasis are highly distinct even in luminal
A subtype which exhibited the strongest association between lymph node metastasis and distant
metastasis in both tested patient cohorts.Cancers 2020, 12, x FOR PEER REVIEW  7 of 29 
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Figure 2. Enriched pathways and key biomarkers associated with lymph node metastasis (N1 vs.
N0) and distant metastasis based on lymph node status (N0: M1 vs. M0, N1: M1vs.M0) in luminal
A breast tumors.

2.2.2. Luminal B Subtype

GSEA analysis of gene expression profiles of luminal B tumors uncovered 31 pathways enriched
in lymph node positive primary tumors (N1) in comparison with their lymph node negative (N0)
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counterparts (see Table S6 and Figure 1). Further, 14 and 31 pathways were statistically significantly
enriched also in M0: N1 vs. N0; and M1: N1 vs. N0 comparisons, respectively. From these, CERAMIDE,
RAS, P38MAPK and EDG1 pathways are involved in cell proliferation, FMLP and BCELLSURVIVAL
pathways in immune response and RAS and RHO pathways in cytoskeletal rearrangement that could
promote cell migration. Enriched pathways frequently included MAP kinase signaling cascades and
phosphatidylinositol kinase activity. Similarly, as in luminal A breast cancer, some of these pathways
(such as HCMV, FMLP, CERAMIDE, RAS) contain enriched proteins of NF-κB pathway.

Molecular changes associated with distant metastasis in luminal B patients were distinct in lymph
node positive and lymph node negative patients, similarly as in luminal A tumors: lymph node
negative tumors with developed distant metastases exhibited enrichment of PTC1 and STEM pathways
representing Sonic Hedgehog signaling and cytokines supporting immune response, respectively.
On the other hand, lymph node positive tumors that developed distant metastasis had enriched
INTRINSIC and PLATELETAPP pathways that integrate the factors participating in coagulation
cascade and platelet clotting, respectively.

These results indicate high number of deregulated pathways in primary luminal B tumors
associated with lymph node metastasis. Moreover, pathways enriched in luminal B tumors with
distant metastasis were distinct in lymph node positive and lymph node negative patients.

2.2.3. Her2+ Subtype

GSEA analysis of gene expression profiles of Her2+ tumors uncovered SALMONELLA and HCMV
pathways weakly enriched in lymph node positive primary tumors (N1) compared to their lymph node
negative (N0) counterparts (Figure 1). These pathways participate in cytoskeletal remodeling. Moreover,
HCMV pathway includes enriched MAP kinases and NF-κB transcription factor RELA. Similarly,
FMLP, PS1, and GSK3 pathways were weakly enriched in M0: N1 vs. N0 comparison, contributing
to immune response, Notch and Wnt signaling, NF-κB activation and beta-catenin. PYK2, RANKL,
SALMONELLA and AT1R pathways were enriched in M1: N1 vs. N0 comparison, participating in
cell cycle progression via MAP kinase cascade, NF-κB activation, cytoskeletal remodeling and c-Jun
activation, respectively. In the case of distant metastasis, several pathways related to coagulation and
cell cycle regulation were enriched in N1: M1 vs. M0 comparison, however, the number of cases in this
comparison was rather low.

2.2.4. Basal Subtype

Additionally, the number of enriched pathways associated with lymph node and distant metastasis
was low in patients of basal subtype, primarily because of the low number of basal tumors available in
SUPERTAM_HGU133 dataset. Only NUCLEARRS and RAC1 pathways affecting lipid and xenobiotic
metabolism and cytoskeletal structure, respectively, were enriched in lymph node positive patients, as
well as in their distant metastasis negative subset (M0: N1 vs. N0 comparison). No pathways were
enriched in distant metastasis positive vs. negative basal tumors, possibly due to high heterogeneity in
this subtype [33].

In a summary, our results clearly show that enriched pathways and underlying molecular
mechanisms strongly differ between primary tumors that form lymph node vs. distant metastasis.
In addition, patterns of enriched pathways related to nodal or distant metastasis are dependent on the
molecular subtype of the breast cancer. Nevertheless, some components of these enriched pathways
are shared among tumors of different subtypes, namely pleiotropic transcription factors of NF-κB
family in tumors spreading through the lymphatic vessels or plasminogen-activating proteases in
tumors disseminated via bloodstream.

2.3. Inhibitors of Pathways Enriched Specifically in Metastatic Luminal A Tumors

As shown above, the best associations between lymph node and distant metastasis were found for
luminal A subtype. However, the pathways enriched in lymph node vs. distant metastatic tumors were
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highly distinct even in luminal A subtype. Although chemotherapy in adjuvant treatment generally
decreases the risk of distant metastasis (Table S4), it is associated with number of undesirable effects
for the patients. Development of more targeted therapies is of the clinical need and identification of
pathways and targets responsible for various modes of metastasis is the key step toward. We selected
luminal A as a model subtype and proposed a panel of potential anti-metastatic inhibitors based on
literature search of GSEA analysis results. We identified a panel of total 42 inhibitors targeting all key
pathways enriched in lymph node and distant metastasis of luminal A tumors: RANKL, CELL2CELL,
TH1TH2, CTLA4, MCM, FIBRINOLYSIS and ATRBRCA BIOCARTA pathways, see Table 2. We comment
on their role in breast cancer metastasis in Discussion. Table 3 summarizes results of their testing in clinical
trials relevant for breast cancer treatment.

Table 2. BIOCARTA pathways (NOM p-value < 0.05) significantly enriched in luminal A primary
tumors in SUPERTAM_HGU133A dataset including core enriched genes and their inhibitors.

Pathway Name Core Enriched Genes Inhibitors

SUPERTAM_HGU133A Luminal A—N1 vs. N0

RANKL FOS, MAPK8, TNFSF11, RELA, TRAF6,
FOSL1, IFNAR1, TNFRSF11A

denosumab, curcumin, parthenolide,
BAY-11-7082, DHMEQ

CELL2CELL ACTN1, PECAM1, CTNNA3, SRC,
ACTN2, CSK, CTNNA2 dasatinib, PP2, nobiletin, (-)-Liriopein B

SUPERTAM_HGU133A Luminal A—N1: M1 vs. M0

TH1TH2 CD86, IL2RA, CD40, CD40LG, IFNG,
IL12RB1, CD28, HLA-DRB1 cyclosporin A, CP-870,893

CTLA4
CD86, LCK, CD3D, CD80, ITK, CD3E,
GRB2, ICOSLG, TRA@, CTLA4, CD28,

HLA-DRB1, CD247

tremelimumab, ipilimumab, ibrutinib,
dasatinib, (-)-Liriopein B

SUPERTAM_HGU133A Luminal A—N0: M1 vs. M0

MCM MCM4, MCM2, CDC6, MCM6,
CDK2, CDKN1B

alisertib, cepharantine, roscovitine,
norcantharidin, lycopene, troglitazone,

SNS-032, trichostatin A, NU2058,
NU6102, SU9516, furanodiene, MHY412,

retinoic acid, AZD5438, ICEC-0782,
euphol, tehranolide,

gallic acid, pentagalloylglucose,
15,16-dihydrotanshinone I, hesperetin

FIBRINOLYSIS PLAT, PLAU, F13A1, SERPINB2, F2R mesupron, nimbolide

ATRBRCA
MRE11A, BRCA1, BRCA2, ATR,

RAD9A, FANCG, RAD51,
FANCF, HUS1

schisandrin B, NU6027,
VE-821, KU60019

N0: M1 vs. M0, distant metastasis positive vs. negative tumors; all lymph node negative; N1: M1 vs. M0;
distant metastasis positive vs. negative tumors; all lymph node positive; N1 vs. N0, lymph node positive vs.
negative tumors.

Table 3. Overview of clinical trials of selected inhibitors.

Inhibitor
Name Condition Pathway Target Disease Outcomes of Clinical Trials Ref.

Denosumab N1 vs. N0 RANKL RELA Breast cancer Reduced bone turnover and
bone events (phase II) [34]

Improved DFS in ER+ patients
due to reduced occurrence of
clinical fractures (phase III)

[35]

Dasatinib N1 vs. N0 CELL2CELL Src Breast cancer
Showed clinical activity with

paclitaxel in metastatic patients,
but with slow accrual (phase II)

[36]
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Table 3. Cont.

Inhibitor
Name Condition Pathway Target Disease Outcomes of Clinical Trials Ref.

Breast cancer Limited single-agent activity in
ER+ patients (phase II) [37]

Breast cancer

Dasatinib + zoledronic acid
was well tolerated with

responses in ER+ patients
(phase II)

[38]

Breast cancer

Dasatinib + trastuzumab
prolonged progression-free

survival in Her2+ breast cancer
patients (phase II)

[39]

Curcumin N1 vs. N0 RANKL RELA Solid cancer
Well tolerated in patients with
local advanced and metastatic

cancer (phase I)
[40]

Breast cancer

In combination with
hydroxytyrosol and omega-3

fatty acids reduced
inflammation and pain

[41]

Tremelimumab N1: M1 vs. M0 CTLA4 CTLA4 Breast cancer
Tremelimumab + exemestane
maintained a stable disease in

42% patients (phase I)
[42]

Melanoma
Tremelimumab + CP-870,893

reached overall response rate in
27.2% patients (phase I)

[43]

Ipilimumab N1: M1 vs. M0 CTLA4 CTLA4 Breast cancer

Safe in early stage breast cancer
patients with potential to

induce immune antitumor
activities

[44]

Cyclosporin
A N1: M1 vs. M0 TH1TH2 CD40LG Breast cancer

Cyclosporin A + docetaxel was
an effective and safe treatment

in patients with advanced
disease (phase II)

[45]

Lung cancer Increased survival of patients
(phase I/II) [46]

CP-870,893 N1: M1 vs. M0 TH1TH2 CD40LG Solid tumors Well tolerated with observed
antitumor activity (phase I) [47]

Pancreatic
cancer

CP-870,893 + gemcitabine was
well-tolerated and associated

with antitumor activity
[48]

Melanoma
CP-870,893 + tremelimumab

reached overall response rate in
27.2% patients (phase I)

[43]

Ibrutinib N1: M1 vs. M0 CTLA4 ITK Breast cancer Clinical trial with Her2+
patients is in process (phase II) NCT03379428

Alisertib N0: M1 vs. M0 MCM CDK2 Breast cancer
Alisertib + paclitaxel showed
promising antitumor activity

(phase II)
[49]

Breast cancer

Alisertib + fulvestrant showed
antitumor activity in metastatic,

endocrine-resistant, ER+
patients (phase I)

[50]

Cepharantine N0: M1 vs. M0 MCM CDK2 Breast cancer

CEP showed an efficacy on
preventing leukocytopenia

induced by chemotherapy in
breast cancer patients

[51]

Breast cancer

CEP prevented bone marrow
suppression induced by

adjuvant chemotherapy in
breast cancer patients

[52]
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Table 3. Cont.

Inhibitor
Name Condition Pathway Target Disease Outcomes of Clinical Trials Ref.

Roscovitine N0: M1 vs. M0 MCM CDK2 Breast cancer
Roscovitine + capecitabine in
metastatic patients, no results

available (phase II)
[53]

Solid tumors

Roscovitine + sapacitabine
show antitumor activity in

metastatic patients with BRCA
mutations (phase I)

[54]

Nasopharyngeal
cancer

Roscovitine was effective in
reducing cervical lymph node

size and maintaining stable
disease

[55]

Norcantharidin N0: M1 vs. M0 MCM CDK2 Hepatic cancer Clinically used to treat liver
cancer in China [56]

Lycopene N0: M1 vs. M0 MCM CDK2 Prostate cancer

Reduced disease progression
with decreased serum

prostate-specific antigen
concentrations

[57]

Troglitazone N0: M1 vs. M0 MCM CDK2 Prostate cancer
Increased incidence of

prolonged stabilization of
prostate-specific antigen

[58]

SNS-032 N0: M1 vs. M0 MCM CDK2 Solid tumors SNS-032 was well tolerated
(phase I) [59]

Mesupron N0: M1 vs. M0 FIBRINOLYSIS PLAU Breast cancer
Mesupron + capecitabine

improved PFS in Her2-
metastatic patients (phase II)

[60]

Pancreatic
cancer

Mesupron + gemcitabine
increased patient survival

(phase II)
[61]

BRCA, breast cancer susceptibility protein; CEP, cepharantine; DFS, disease-free survival; ER, estrogen receptor;
Her2, human epidermal growth factor receptor 2; N0: M1 vs. M0, distant metastasis positive vs. negative tumors;
all lymph node negative; N1: M1 vs. M0; distant metastasis positive vs. negative tumors; all lymph node positive;
N1 vs. N0, lymph node positive vs. negative tumors; PFS, progression-free survival. Breast cancer clinical trials are
highlighted in bold.

3. Discussion

3.1. Lymph Node and Distant Metastasis are Based on Different Molecular Mechanisms

Lymph node status is generally considered as one of the best prognostic factors in breast cancer [3].
However, our data from two patient cohorts, MMCI_706 and SUPERTAM_HGU133A, show ability of
(not only) lymph node positive, but also lymph node negative tumors to develop distant metastases.
Specifically, 20.1% and 36.9% of lymph node positive MMCI and SUPERTAM_HGU133A patients,
respectively, developed distant metastasis during the follow-up period. This well corresponds with
18.5% in a relevant study by Colzani et al. [62] and 29.9% by Tchou et al. [63]. On the other hand, 6.5%
and 25.1% of lymph node negative MMCI_706 and SUPERTAM_HGU133A patients, respectively, also
developed distant metastases, which indicates that absence of lymph node dissemination at the time of
diagnosis does not exclude development of distant metastasis in the follow-up period. These results
correspond with 5.8% and 13.2% by Colzani et al. [62] and Tchou et al. [63], respectively, keeping in
mind different populations and other confounding factors that may affect the statistics in the individual
studies. This observation is also well supported by the fact that tumor cells spread via different ways
to form lymph node, or distant metastasis—lymphatic vessels, or bloodstream, respectively. We thus
hypothesized that molecular mechanisms responsible for nodal and distant metastasis are different.

Indeed, GSEA analysis confirmed this premise: lymph node metastasis was associated with
number of pathways that include transcription factors of the NF-κB family which were previously
associated with the lymph node metastasis of breast tumors [64]. On the other hand, distant metastasis
was primarily connected to pathways regulating stronger mechanisms related to cell cycle and
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proliferation control, in agreement with Chowdhury et al. [65]. Other key pathways related to distant
metastasis involved fibrinolytic proteases including urokinase plasminogen activator (uPA), well
known in term of distant metastasis in breast cancer [66].

3.2. Molecular Mechanism Associated with Lymph Node and Distant Metastasis Are Also Dependent on Breast
Cancer Subtype

Association between lymph node and distant metastasis is further affected by the molecular subtype
in breast cancer and thus dependent on the hormonal background of the tumors. Buonomo et al. [31]
revealed strong association between N1 and M1 status in patients of Her2+ subtype. We observed
this connection for Her2+ in SUPERTAM_HGU133A dataset and showed the similar association for
luminal A subtype in both tested cohorts. In term of molecular mechanisms, lymph node positive
luminal A tumors exhibited enrichment of NF-κB related proteins as well as intercellular interaction
pathway including Src proto-oncogene. Both NF-κB transcription factors and Src proto-oncogene were
previously connected with tumorigenesis [67] and breast cancer metastasis [68]. Distant metastasis
developed in lymph node negative luminal A patients was associated with cell cycle, DNA repair and
immune response mechanisms [69–71]. In lymph node positive luminal A patients, distant metastasis
was related to mechanisms of T lymphocyte differentiation and activation [72,73] (Figure 2).

Lymph node positive luminal B tumors were enriched in pathways related to cell proliferation,
immune response and cytoskeletal changes such as enrichment of PIK3CA, MAP kinases, NF-κB factors
and RHOA, pathways which play role in breast cancer progression [67,74–76]. Distant metastasis
of luminal B tumors was associated with activation of Sonic Hedgehog proliferative signals and
production of immunogenic cytokines in lymph node negative patients at the time of diagnosis,
but with coagulation pathways in lymph node positive patients. These mechanisms were already
associated with breast cancer progression and metastasis [77–80].

Occurrence of lymph node metastases in patients of basal subtype was associated with enrichment
of proteins that participated in cytoskeletal reorganization and enhanced lipid and xenobiotic
metabolism. Of these, peroxisome proliferator-activated receptor delta (PPARD) protein showed
increased expression in breast cancer with negative impact on relapse free survival [81]. Expression of
PPARD in breast cancer cells increased cell migration in vitro and induced creation of lung metastases
in vivo [81]. ABCB1 and ABCC3 proteins, members of ATP binding cassette (ABC) transporter family,
are associated with chemoresistance in breast cancer cells [82,83].

Based on the above findings, we assume unique pattern of molecular processes leading to nodal
and distant metastases, which further differ in breast cancer subtypes. We selected luminal A subtype
as a model to propose inhibitors for both metastatic modes based on the current literature to suggest
potential improvements in the treatment.

3.3. Treatment of Luminal A Patients and Possibilities of Therapy Modulation

Luminal A patients from MMCI_706 and SUPERTAM_HGU133A cohorts exhibited the strongest
association between lymph node positivity and distant metastasis development. Moreover, patients of
luminal A subtype, despite the good prognosis and advances in therapy, comprise significant part of
distant metastatic cases, 12.6% to 45.4% in various studies [22,27,29,30]. Current treatment of luminal
A patients typically includes hormonal therapy [84] based on tamoxifen or aromatase inhibitors such as
letrozole or exemestane [85]. Patients with high risk of tumor recurrence receive chemotherapy (typically
based on anthracyclines and taxanes), however, these well differentiated tumors poorly respond to it.
In case of metastatic luminal A patients, endocrine therapy and chemotherapy is administered. Other
treatment possibilities include more targeted therapies—cyclin-dependent kinase 4 and 6 inhibitors
(palbociclib, ribociclib, abemaciclib) that were recently approved by FDA in combination with hormone
therapies for treatment of ER+ Her2- advanced breast cancer [86]. For example, palbociclib showed in
combination with letrozole [87] and in combination with fulvestrant [88] increased progression-free
survival (PFS) of hormonal receptor positive Her2- breast cancer patients compared to control patient
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groups. Another approved targeted treatment for metastatic breast cancer is mTOR inhibitor everolimus
that in combination with exemestane demonstrated a 4.7-month improvement in PFS compared to
exemestane alone [89].

Despite actual progress in breast cancer therapy and undergoing clinical studies, the treatment
still requires further development to improve patient outcomes, because up to 13.6% of breast cancer
patients (diagnosed in stage I–III) still develop bone metastasis within 15 years of follow-up [90].
We have proposed 42 inhibitors of potential therapeutic targets found using GSEA analysis (Table 2)
that have previously exhibited potential to suppress luminal A breast cancer in vitro and eventually
in vivo. To our knowledge, 16 of these compounds were clinically tested in patients with solid tumors
(Table 3) and 11 of these were examined for clinical use in breast cancer patients (marked in Table 3),
and some of these trials already showed beneficial activity of these compounds in breast cancer patients
(please see Outcomes of clinical trials in Table 3). The corresponding molecular mechanisms and the
relevant clinical scenarios are discussed in the following paragraphs.

3.4. NF-κB, Intercellular Adhesion and Nuclear Proteins are Potential Therapeutic Targets in Lymph Node
Positive Luminal A Patients (N1 vs. N0)

Lymph node positive tumors compared to lymph node negative ones (N1 vs. N0) of luminal
A subtype exhibited enrichment of RANKL and CELL2CELL pathways. Receptor activator of
nuclear factor NF-κB (RANK) and its ligand (RANKL) are involved in progression of breast
cancer [91,92]. Moreover, RANKL pathway is a downstream pathway in progesterone signalization [93].
In PgR-positive tumor cells, progesterone induces up-regulation of RANKL and enhances proliferation.
Hence, we suggest that inhibition of RANKL could have significant anti-tumor effect in these tumors [93].
In GSEA results, NF-κB transcription factor RELA (p65) was enriched in RANKL pathway. RELA
was overexpressed in lymph node positive vs. negative luminal A primary tumors in the set of 48
luminal A breast tumors at both protein and transcript level together with another NF-κB modulators
(Table S5, [64]) that exhibited activating role on migration and invasion capacity of MCF7 breast cancer
cells (Figure 3B in [94] and Figure 1C in [95]). Denosumab specifically binds to RANKL preventing
NF-κB activation by RANKL cascade [96]. Denosumab already showed potential for clinical use
in breast cancer treatment by reducing bone turnover and bone events in metastatic breast cancer
patients in phase II trial [34]. Moreover, denosumab improved disease-free survival (DFS) in ER+,
non-metastatic breast cancer patients by decreasing risk for osteoporosis and bone fractures (phase
III) [35]. Although some studies showed that denosumab does not improve disease-related and survival
outcomes for women with high-risk and metastatic breast cancer [97,98], its efficacy in these clinical
trials was not assessed for specific breast cancer subtypes. Other compounds showed ability to inhibit
NF-κB pathway in vitro [99–102]. From these inhibitors, curcumin was studied in phase I clinical trial
in breast cancer patients [40]. Moreover, curcumin in combinatorial therapy reduced inflammation
and pain in breast cancer patients with aromatase-induced musculoskeletal symptoms [41].

CELL2CELL pathway consists of proteins participating in intercellular interactions. These include
proto-oncogene Src that was found to play an important role in metastatic spread of breast cancer cells
to bones [68] and in resistance to anti-hormonal therapy [103,104]. Its expression was associated with
axillary lymph node positivity in the set of 392 tamoxifen-treated ER-positive breast tumors (Table 2
in [105]) and its inhibition as well as siRNA knockdown led to reduced MCF7 cell migration and
E-cadherin induction (Figures 1B, 2A,B and 3 in [106]). This supports Src association with metastatic
potential. Src inhibitor dasatinib, FDA-approved compound for the treatment of chronic myeloid
leukemia, was found to suppress resistance of breast cancer cells to endocrine therapy [107,108] and
to doxorubicin [109]. Dasatinib in phase II clinical trials exhibited limited single-agent activity in
ER+ patients [37] and also showed potential in combinatory therapies with zoledronic acid in ER+

patients [38] as well as with paclitaxel in metastatic breast cancer patients [36]. Moreover, dasatinib in
combination with trastuzumab prolonged progression-free survival in Her2+ breast cancer patients [39].
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Other Src inhibitors showed potential in vitro for treatment of ER+ breast cancer, namely PP2, [110],
nobiletin [111] and (-)-Liriopein B [112].

Based on clinical trials of the selected NF-κB and Src inhibitors we presume the highest potential
of denosumab and dasatinib for NF-κB and Src-targeted treatment of lymph node positive luminal
A breast cancer patients.

3.5. Inhibition of DNA-Repair, Cell Cycle Control and Plasminogen-Activating Proteases Could be Beneficial
for Treatment of Lymph Node Negative Luminal A Patients to Block Development of Distant Metastasis (N0:
M1 vs. M0)

Lymph node negative luminal A tumors that developed distant metastases during follow-up period
versus those that did not develop distant metastasis exhibited enrichment of MCM, FIBRINOLYSIS
and ATRBRCA pathways. Of these, cyclin-dependent kinase 2 (CDK2) belonging to minichromosome
maintenance protein complex (MCM) pathway plays an important role in cell cycle regulation [69].
CDK2 activity is a significant prognostic factor for relapse, especially in node-negative breast cancer,
as confirmed in the set of 284 patients (Table 1 in [113]). siRNA knockdown of CDK2 retained
MCF7 cells in G1 cell cycle phase (Figure 2B in [114]) and moreover, CDK2 inhibition slowed the
proliferation of MCF7 cells down (Figure 3 in [114]). Expression of MCM2, MCM4 and MCM6 was
associated with histological grade in the set of 3520 breast tumors (Figure 7 in [115]). Moreover,
high expression of MCM2, MCM4 and MCM6 was related to shorter relapse-free survival in the set
of 2069 luminal A breast cancers (Figure 11 in [115]). We have found total 22 compounds (Table 3)
capable of inhibiting CDK2 in luminal A breast cancer models in vitro with inhibitory effects on cell
viability and/or motility. These inhibitors include clinically tested alisertib [116], cepharanthine [117],
roscovitine [118], norcantharidin [119], lycopene [120–122], troglitazone [123] and SNS-032 [124].
Alisertib displayed potential for treatment of endocrine-resistant, ER+ metastatic breast cancer patients
in combination with fulvestrant (phase I clinical trial) [50] and a prolonged median PFS in patients
with advanced breast cancer in combination with paclitaxel (phase II) [49]. Cepharantine decreased
adjuvant chemotherapy-induced bone marrow suppression, leukopenia and thrombocytopenia in
breast cancer patients [125]. However, the anti-tumor effect of cepharantine in breast cancer patients
has not been studied. Roscovitine in combination with capecitabine underwent phase II clinical trial
in metastatic breast cancer patients [53]. Roscovitine exhibited clinical potential in patients with
nasopharyngeal carcinomas [55] and with other several advanced solid tumors [54]. Norcantharidin is
clinically used drug for treatment of liver cancer in China [56]. Lycopene and troglitazone showed
clinical potential for prostate cancer treatment [57,58], and SNS-032 was well tolerated in patients with
advanced solid tumors in phase I clinical trial [59].

FIBRINOLYSIS pathway consists of proteases inducing coagulation cascade. Urokinase-type
plasminogen activator (PLAU) is associated with increased risk of metastasis in breast cancer [70] and
is considered as the strongest indicator of poor prognosis in patients with metastatic breast cancer
(Figure 3 in [126]). Higher PLAU levels were also found as a strong predictor of locoregional and
distant recurrence in the set of 1119 breast tumors (Table 4 in [127]). PLAU expression was significantly
associated with a shorter distant metastasis-free survival (DMFS) (Figure 4A in [128]) and increased
risk of distant metastasis (Table 2 in [128]). Nguyen et al. demonstrated that PLAU enhances MCF7
cell migration by uPAR-dependent mechanism (Figure 1 in [129]). Mesupron and nimbolide are PLAU
inhibitors with potential for luminal A breast cancer treatment in vitro [130,131]. Moreover, mesupron
increased PFS of Her2- metastatic breast cancer patients treated with capecitabine in phase II trial [60].
Mesupron also indicated potential for treatment of pancreatic cancer (phase II) [61].

ATRBRCA pathway includes factors mediating cell response to DNA damage, such as Ataxia
Telangiectasia and Rad3 related (ATR) factor [71]. High ATR expression was associated with a poor
survival in the set of 385 breast tumors (Figure 1C in [132]). ATR inhibition using VE-281 reduced
MCF7 cell growth (Figure 3A in [133]), and NU6027 inhibition enhanced chemotherapeutic cytotoxicity
to MCF7 cells (Figure 3 in [134]). Other ATR inhibitors, schisandrin B [135–137] and KU60019 [138,139],
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presented promising anti-tumor properties in vitro and partly in vivo in luminal A breast cancer
models, however, they have a limited clinical use due to a poor bioavailability. Newer ATR inhibitors
with better pharmacological properties (such as M6620, AZD6738 and BAY1895344) [140] have not
been tested for luminal A breast cancer yet.

In conclusion, based on results of our GSEA analysis and knowledge from clinical trials we suggest
the highest potential of alisertib and mesupron for CDK2 and PLAU-targeted therapy of lymph node
negative luminal A breast cancer patients with high risk of distant metastasis.

3.6. Regulatory Mechanisms of T Lymphocyte Immune Response Play Role in Development of Distant
Metastasis in Lymph Node Positive Luminal A Patients (N1: M1 vs. M0)

Comparison of tumors that develop distant metastases versus tumors that do not develop distant
metastases during the follow-up period in the group of luminal A patients with positive lymph nodes
(N1: M1 vs. M0) was associated with enrichment of genes belonging to TH1TH2 and CTLA4 pathways.
These pathways participate in regulation of T lymphocyte differentiation and activation. CD40 and
its ligand CD40L, signal molecules for immune and inflammatory responses [141] were enriched in
TH1TH2 pathway. Tong et al. [142] detected CD40 expression in breast tumors including infiltrating
ductal and lobular carcinomas and carcinomas in situ and showed weaker expression of CD40 in benign
ductal epithelial tissues (Table 4 in [142]). CD40 and CD40L were associated with pathological grade
and lymph node metastasis in breast cancer patients [72] and were related to immune response (Figures
1E,F and 2C in [143]). Gladue et al. reported that anti-CD40 antibody slowed the growth of the breast
tumors down in SCID-beige mice model (Figure 4A,B in [144]). CD40L Inhibitor cyclosporin A [145]
that already exerted potential for breast cancer therapy in vitro [146] represented in combination with
docetaxel an effective treatment in patients with advanced breast cancer in phase II clinical trial [45].
Moreover, cyclosporin A significantly increased survival of patients with advanced non-small cell
lung carcinoma [147]. CP-870,893, CD40 agonist antibody, induced antitumor activity for breast cancer
in vivo [144] and is currently in phase I study in patients with pancreatic cancer and three other phase
I trials in patients with advanced solid tumors [148]. CP-870,893 also reached clinical response in
patients with metastatic melanoma in phase I trial [43].

CTLA4 pathway includes ITK, CTLA-4 and LCK biomarkers. ITK inhibitor ibrutinib inhibits
luminal A breast cancer cells in vitro [149], represents safe treatment of solid tumors [150] and
is currently being tested in a phase II clinical trial in Her2+ breast cancer patients (trial number:
NCT03379428). Ibrutinib slowed down, in combination with anti–PD-L1 antibody, the growth of 4T1
tumors in BALB/c mice and reduced lung metastases (Figure 2 in [151]). ITK inhibition was reported
to enhance T-cell anti-tumor immunity [73]. In term of CTLA4, its high expression in 130 breast
tumors was significantly associated with shorter DFS (Figure 2 in [152]). Chen et al. demonstrated that
antibody-based CTLA4 inhibition reduces proliferation and induces apoptosis of breast cancer cells
(Figure 7B,D in [153]). Qu et al. [154] showed that CTLA4 antibody in combination with IL36 local
overexpression inhibits lung metastasis growth in BALB/c mice model (Figure 3D,E, [154]). Anti-CTLA4
antibody tremelimumab in combination with exemestane supported tumor immunosuppression in ER+

breast cancer patients (phase I) [42]. Another CTLA4 inhibitor ipilimumab, an FDA-approved drug for
treatment of melanoma, induced in combination with cryoablation antitumor activities of immune
system in early stage breast cancer patients [44]. It is currently being tested, in combination with
nivolumab, in two trials in breast cancer patients (Trial numbers: NCT01928394, NCT02833233). LCK
is a regulatory factor in hypoxia-induced tumor progression and angiogenesis [155]. LCK expression
was significantly higher in 81 metastatic breast tumors compared to 48 non-malignant and 10 normal
breast tissue samples (Figure 1C in [156]). Moreover, LCK was detected in 30 early stage primary breast
tumors and their lymph node metastases, but not in normal breast tissues (Figure 3 in [157]). LCK was
found to play a crucial role in hypoxia/reoxygenation-induced migration of MCF7 and MDA-MB-231
cells (Figure 4 in [158]). Dasatinib and (–)-Liriopein B, Src inhibitors mentioned previously, inhibited
LCK in breast cancer cells as well [107,108,112].



Cancers 2020, 12, 2638 14 of 26

Based on our GSEA results and clinical trials we presume the highest potential of cyclosporin
A and tremelimumab for targeted therapy of lymph node positive luminal A breast cancer patients
with high risk of distant metastasis.

4. Materials and Methods

4.1. MMCI_706 Patient Cohort

706 breast cancer patients initially diagnosed in MMCI, Brno, Czech Republic between 2004 and
2007 were retrospectively enrolled in the study. Inclusion criteria were: availability of medical records
for review, at least 5-year follow up. The key clinicopathological variables (age, tumor size, estrogen
receptor, progesterone receptor and Her2 status, Ki-67 percentage of stained cells, tumor grade, lymph
node status at the time of diagnosis, distant relapse) are available as Table S7. Exclusion criteria
were as follows: cancer duplicity, metastatic disease at the time of diagnosis, neoadjuvant treatment,
local relapse not accompanied by distant relapse during the follow-up period. Node positivity was
considered as metastasis in one or more regional lymph nodes. Informed consent confirming the
availability of redundant tissue samples for research use was obtained from each participating subject.
MMCI_706 patient characteristics is summarized in Table 4.

Table 4. Patient characteristics in MMCI_706 set of patients.

MMCI_706
All Luminal A Luminal B Her2+ Basal

(n = 706) (n = 381) (n = 218) (n = 32) (n = 75)

Age (years)

median 57 59 55 53.5 53

<60 414 (58.6%) 181 (47.5%) 139 (63.8%) 23 (71.9%) 52 (69.3%)

≥60 292 (41.4%) 200 (52.5%) 79 (36.2%) 9 (28.1%) 23 (30.7%)

pT

T1 431 (61.0%) 255 (66.9%) 120 (55.0%) 21 (65.6%) 35 (46.7%)

T2 237 (33.6%) 107 (28.1%) 85 (39.0%) 10 (31.3%) 35 (46.7%)

T3–4 36 (5.1%) 19 (5.0%) 12 (5.5%) - 5 (6.6%)

NA 2 (0.3%) - 1 (0.5%) 1 (3.1%) -

Grade

G1 238 (33.7%) 207 (54.3%) 29 (13.3%) - 2 (2.7%)

G2 259 (36.7%) 151 (39.7%) 101 (46.3%) 3 (9.4%) 4 (5.3%)

G3 203 (28.8%) 21 (5.5%) 87 (39.9%) 26 (81.2%) 69 (92.0%)

NA 6 (0.8%) 2 (0.5%) 1 (0.5%) 3 (9.4%) -

ER

negative 107 (15.2%) - - 32 (100%) 75 (100%)

positive 599 (84.8%) 381 (100%) 218 (100%) - -

HER2

negative 628 (88.9%) 381 (100%) 46 (21.1%) - 75 (100%)

positive 78 (11.1%) - 172 (78.9%) 32 (100%) -

Nodes

negative 388 (55.0%) 225 (59.1%) 108 (49.5%) 16 (50.0%) 39 (52.0%)

positive 318 (45.0%) 156 (40.9%) 110 (50.5%) 16 (50.0%) 36 (48.0%)
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Table 4. Cont.

MMCI_706
All Luminal A Luminal B Her2+ Basal

(n = 706) (n = 381) (n = 218) (n = 32) (n = 75)

Distant
metastasis

negative 617 (87.4%) 356 (93.4%) 180 (82.6%) 28 (87.5%) 53 (70.7%)

positive 89 (12.6%) 25 (6.6%) 38 (17.4%) 4 (12.5%) 22 (29.3%)

Adjuvant
chemotherapy

no 335 (47.5%) 246 (64.6%) 73 (33.5%) 6 (18.8%) 10 (13.3%)

yes 371 (52.5%) 135 (35.4%) 145 (66.5%) 26 (81.2%) 65 (86.7%)

ER, estrogen receptor; Her2, human epidermal growth factor receptor 2; pT, tumor size category.

This study was approved by Ethics committee of Masaryk Memorial Cancer Institute
(2016/621/MOU, JID: MOU 107 995). All patients involved in this study gave permission to publish
their anonymized clinical information.

4.2. Classification of MMCI_706 Patients into Molecular Subtypes

The estrogen receptor and progesterone receptor status were examined by immunohistochemistry
(IHC), using antibodies provided by Lab Vision (SP1 resp. SP2 monoclonal rabbit antibody, Lab Vision
Thermo Fisher Scientific, Fremont, CA, USA). ER and PgR status were considered positive if >1% of
cells were stained in cell nuclei and was considered negative in all other cases. The expression of Her2
protein was determined by Dako Herceptest (Dako, Sweden) and scored on a qualitative scale from
0 to 3+ according to Dako manual and American Society of Clinical Oncology/College of American
Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in
breast cancer. HER2 gene status was evaluated by fluorescence in situ hybridization (FISH) method
using Abbott PathVysion HER2 kit (Abbott Laboratories, Chicago, IL, USA). HER2 gene status was
considered as positive (FISH amplified) in case where a HER2 gene/centromer of chromosome 17 ratio
was higher than 2.2 or if the number of HER2 gene copies was higher than 6 per nucleus as measured
by FISH. All Her2 positive tumors were IHC 3+ and/or FISH-positive [159]. Patients were classified
into four molecular subtypes based on IHC profile according to Maisonneuve et al. [160] and St. Gallen
2013 consensus [161]. Luminal A patients were defined as ER+ and Her2- with low Ki-67 expression
(<14%) or with intermediate Ki-67 expression (14% to 19%) and high PgR levels (≥20%). Luminal B
patients were classified as ER+ and Her2- with intermediate Ki-67 expression (14% to 19%) and low
PgR levels (<20%) or with high Ki-67 expression (≥20%) or ER+ and Her2+ with any Ki-67 and any
PgR. Her2+ (non-luminal) patients showed over-expression or amplification of Her2, lacking ER and
PgR expression. Basal/triple negative patients were ER, PgR and Her2 negative.

4.3. Publicly Available Microarray Dataset

Publicly available gene expression dataset SUPERTAM_HGU133A was downloaded from [32,162].
This dataset consists from MDA5, TAM, VDX and VDX3 datasets (all platform Affymetrix Human
Genome U133A, 856 samples in total) originally deposited in Gene Expression Omnibus (GEO)
database under the following IDs: GEO: GSE17705 (MDA5), GEO: GSE6532/GSE9195 (TAM), GEO:
GSE2034/GSE5327 (VDX) and GEO: GSE12093 (VDX3) processed as previously described [32], please
see Figure S8 for the diagram excluding a potential batch effect in SUPERTAM_HGU133A dataset.
The most variable probeset per gene based on interquantile range (IQR) was selected. Samples with
available lymph node status and documented distant relapse (836 samples in total) were classified into
four molecular breast cancer subtypes using a SCMOD2 classification model [163], as it showed higher
robustness [32] and better correlation [164] with St. Gallen 2011 classification [165] than commonly
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used PAM50. This resulted in 341 luminal A, 281 luminal B, 71 Her2+ and 143 basal patient samples.
All calculations were performed in R 3.4.1 [166] using limma 3.32.2 package, SCMOD2 classification was
performed using genefu package from Bioconductor [167]. Association between gene expression and
local or distant metastases was assessed by moderated t-statistics (method implemented in the limma
package) on the set of 13,091 genes. The most variable probesets per gene was selected from the original
22,283 probesets. p-values were adjusted for multiple hypothesis testing by Benjamini-Hochberg
FDR correction.

4.4. Gene set Enrichment Analysis (GSEA)

To find the most involved pathways in the metastasis associated processes, we used javaGSEA
4.0.3 desktop application [168,169]. Student t-test was used for ranking the genes, minimal size of
small sets for exclusion was set to 10, 1000 permutations were used, and default settings were applied
for other parameters. Enrichment analysis applied pathways information from BIOCARTA database.
Enrichment score (ES) was calculated for each gene set. Pathways were considered significant (i) if
nominal p-value was below 0.05 and (ii) the pathways were enriched in lymph node positive or distant
metastasis positive phenotype.

The processed data used for GSEA analysis and its raw outputs are available in Mendeley Data as
dataset “SUPERTAM_HGU133A Gene Set Enrichment Analysis (GSEA) in term of lymph node and
distant metastasis” [170].

4.5. Statistical Evaluation of Distant Metastatic Risk in Association with Nodal Metastasis

Association between risk of distant relapse and lymph node status was assessed in MMCI_706 and
SUPERTAM_HGU133A patients for each breast cancer subtype. For this purpose, logistic regression
(calculated in Microsoft Excel) was used with distant metastasis as the dependent variable and lymph
node status as independent variable, Chi-Square Statistics was calculated in GraphPad Prism 8.4.3.

5. Conclusions

We observed that pathways associated with lymph node and distant metastasis are different and
dependent on molecular subtype of the tumor. We identified panels of inhibitors based on GSEA that
have potential to improve the outcome of luminal A breast cancer patients who (i) are lymph node
positive, (ii) who are lymph node negative with higher risk of metastasis development, and (iii) who
are lymph node positive with high risk of metastasis development. We hope that further clinical trials
have potential to translate current knowledge from the laboratory to the improved treatment of breast
cancer patients.
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