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ABSTRACT

Objectives: This manuscript reviews the current state of veterinary medical electronic health records and the

ability to aggregate and analyze large datasets from multiple organizations and clinics. We also review analyti-

cal techniques as well as research efforts into veterinary informatics with a focus on applications relevant to hu-

man and animal medicine. Our goal is to provide references and context for these resources so that researchers

can identify resources of interest and translational opportunities to advance the field.

Methods and Results: This review covers various methods of veterinary informatics including natural language

processing and machine learning techniques in brief and various ongoing and future projects. After detailing

techniques and sources of data, we describe some of the challenges and opportunities within veterinary infor-

matics as well as providing reviews of common One Health techniques and specific applications that affect both

humans and animals.

Discussion: Current limitations in the field of veterinary informatics include limited sources of training data for

developing machine learning and artificial intelligence algorithms, siloed data between academic institutions,

corporate institutions, and many small private practices, and inconsistent data formats that make many integra-

tion problems difficult. Despite those limitations, there have been significant advancements in the field in the

last few years and continued development of a few, key, large data resources that are available for interested

clinicians and researchers. These real-world use cases and applications show current and significant future po-

tential as veterinary informatics grows in importance. Veterinary informatics can forge new possibilities within

veterinary medicine and between veterinary medicine, human medicine, and One Health initiatives.

Key words: informatics, one health, translational science, veterinary medicine, medicine

VC The Author(s) 2020. Published by Oxford University Press on behalf of the American Medical Informatics Association.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com 306

JAMIA Open, 3(2), 2020, 306–317

doi: 10.1093/jamiaopen/ooaa005

Advance Access Publication Date: 11 April 2020

Review

http://orcid.org/0000-0003-4386-3044
https://academic.oup.com/
https://academic.oup.com/


INTRODUCTION

Biomedical informatics has become well-known within the human

medical community for its breadth and depth of integration between

medicine, computer science, statistics, and biology. This cross-disci-

plinary approach has led to discoveries in diseases, trends in success

and failures for diagnosis and therapies, and evidence-based deci-

sion-making. It is now a regular part of physician’s training. While

there has been significant progress integrating informatics with hu-

man medicine both in practice and education, veterinary medicine

lags in both areas. However, informatics in veterinary medicine

offers significant possibilities for translational research.

Use of biomedical informatics in veterinary medicine, what we

term veterinary informatics, combines the knowledge and techni-

ques currently utilized within the human medical field of biomedical

informatics with veterinary domain knowledge. There has been

some examination of veterinary informatics within the veterinary

sphere,1–4 and the benefits of this combination are starting to

emerge with a recent increase in the number of publications.5–8 Even

though advances in veterinary informatics offer significant possibili-

ties for translational research, this space remains far behind many

other areas of informatics.2–4,9–13

One key factor limiting the advancement and integration of vet-

erinary informatics into everyday clinical practice is a lack of exter-

nal drivers to enforce structure on veterinary data. Unlike in human

medical practice, adoption of insurance coverage for pets is still rare

(<1% of pets are covered),14 leading most owners to pay for care

out of pocket. This removes one of the primary incentives for coding

in the medical profession, insurance companies. As a result, veteri-

nary records have billing codes, but they are not standardized be-

tween hospitals unless they are in a shared practice group.

Depending on whether you use the total veterinary positions avail-

able or those specifically identified as a practicing veterinarian, ap-

proximately 65–95% of veterinary data is contained within private

organizations based on estimates of veterinarians in private prac-

tice,15 which represents a data access challenge for non-affiliated

groups.

Additional limitations exist in the lack of formal, organized sup-

port for robust informatics training and methods development from

national veterinary organizations, which limits the ability to set ba-

sic standards for data organization that would allow for its reuse.

The concept of FAIR (Findable, Accessible, Interoperable, and Reus-

able) data16 has not become an integral part of management practice

for veterinary data. This will change only when clinicians see

improvements in patient care facilitated by access to large, orga-

nized veterinary clinical databases with standardized data formats

and ontologies. Increasing the access of veterinary resources to cut-

ting edge informatics research and highlighting use cases that cross

the artificial divide between human medicine and veterinary medi-

cine will bring additional opportunities and incentives for making

the data reusable and accessible.

Thus, the applications mentioned below are focused on those

that represent the opportunity to improve care for the patients we

serve. We highlight a set of diverse use cases, including biosurveil-

lance for zoonotic disease, antibiotic resistance, and disease out-

break prediction, as well as environmental health effects and

insights into the biology of rare diseases. Key resources for these

applications as well as methods are reviewed for analysis of elec-

tronic health records, genetics, medical imaging, and clinical labora-

tory data. We draw parallels with other medical disciplines that

have approached similar problems through informatics and

demonstrate opportunities and possible future directions that could

be explored through veterinary informatics for the benefit of both

humans and animals.

Scope of veterinary small animal practice
While specific data points are sparse, a recent survey by GfK (the So-

ciety for Consumer Research) found that 57% of consumers own

pets of which dogs are the most popular followed by cats. Some of

the highest ownership rates were in Argentina, Mexico, and Brazil

(82%, 81%, and 76%, respectively). The United States ranks fifth in

dog ownership and third in cat ownership.17

Specifics by country are difficult to acquire, but as of 2016 in the

United States, there were approximately 89.7 million owned dogs

and 94.2 million owned cats with an average of 3 veterinary visits

for dogs and 2.4 veterinary visits for cats per a year. This is esti-

mated to have generated about 269 million and 226 million visits

per year, respectively.18–20 Comparatively, in human medicine,

according to CDC statistics, there are approximately 864 million

hospital outpatient visits per year in the United States.21 Even

though there is approximately 50% fewer visits for veterinary

patients, the average human patient visits about 5.4 medical profes-

sionals per year, and the estimated number of veterinarians seen per

year is approximately 2.6 for dogs and 1.6 for cats.22,23 This is 25–

50% of the number of human physicians interactions per patient per

year. This could allow for increased intra- and inter-operator agree-

ment in veterinary medicine for a given patient.24–26

Standardization of veterinary medical records have been isolated

to individual private organizations that require specific techniques

for extraction, but there have been few attempts to integrate struc-

tured terminology in veterinary clinical practice.27 In human medi-

cine, many medical records are encoded either during practice or as

a post-processing technique once the record is complete.28–31 This is

often due to common drivers such as effective insurance billing and

documented medical information retrieval, which veterinary medi-

cine currently lacks. The number of animals covered by pet insur-

ance is increasing, but <1% of animals are currently covered

limiting the impact it has on encoding in veterinary practice.14

For those looking to integrate standard veterinary terminologies,

one such example is the Systematized Nomenclature of Medicine-

Clinical Terms (SNOMED-CT) Veterinary Extension maintained by

the Virginia Tech Veterinary Terminology Services Laboratory

(United States). Any company in a country that contributes to

SNOMED can utilize it, after registration; however, outside of those

countries, it might require a commercial license. There are also pro-

prietary terminologies available, such as VeNOM that is based in

the United Kingdom. However, the use of these terminologies is

challenging and rarely integrated into a regular workflow. One rea-

son is the need for most workflows to be centered on billing as this

is a key concern for private practitioners, who represent approxi-

mately 91% of the clinically practicing veterinarians in the United

States. Even in systems where it is possible to utilize standard terms,

it is challenging to have clinicians use them consistently as veterinar-

ians have similar time pressures to their human counterparts.32–34

We divide this review into 3 components: a description of avail-

able data sources, their characteristics, and research into their devel-

opment and expansion, some examples of current analytical

strategies applied to the veterinary data sources with parallels to hu-

man medicine, and finally, some highlights of current applications

of veterinary informatics to One Health and translations science.
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DATA TYPES AND SOURCES

Electronic medical records
As previously discussed, there are approximately 495 million clinical

records for dogs and cats generated by about 80 000 veterinarians

each year in the United States. The number of records for large ani-

mals, food animals, exotics, and zoological animals is challenging to

quantify. For most dogs and cats, their records, in general, are stored

as free text as most systems are mainly designed for efficient charg-

ing and processing of transactions throughout a patient visit. These

systems, called Practice Information Management Systems (PIMS),

can organize lab results as separate retrievable analytes, but there is

little standardization in naming. It is important to compare the fea-

tures of a PIMS to human electronic medical record systems as they

have different features (Table 1).

Like human medicine, many medical and operational drives in-

creased PIMS adoption within veterinary medicine. As of 2014, a

limited survey reported that 80% of veterinary medicine respond-

ents utilized a PIMS though to a varying degree (63% combined

electronic with paper, while 17% used only electronic records).

Common uses were: billing, estimate generation, legal document re-

tention, lab ordering and receiving (when integrated), and client ac-

count operations.43 Some of these systems have capabilities to add

diagnoses to the medical record, but the reported adoption rate is

difficult to validate.

Deidentification requirements are also very different. In human

medicine, significant data points need to be censored for retrospec-

tive studies30,44,45; however, in veterinary medicine, there is little

regulation governing sharing of records for both practice and re-

search, with the exception of a few states.46 In these states, some

hospitals have adopted a release form like those used in human med-

icine. This introduces additional challenges to acquiring data from

clinical practices.

When looking to acquire data, on a pure numerical basis, more

pets have records in smaller practices (defined as <10 veterinarians)

than in larger practices, even though recent years has seen many

small practices consolidated by a few larger veterinary practice

groups.47 While clinical data pertaining to veterinary patients is not

covered under current HIPAA regulations, owner data is considered

sensitive and can sometimes be included in free text fields within

medical documentation, making anonymization of veterinary medi-

cal records difficult.48

Electronic medical records are currently either being aggregated

into accessible databases or through services that allow analytics.

Though out of scope for this article, we have provided a list of

resources and descriptions within the Supplementary Information to

aid in their use for clinical research.

Imaging
Most imaging studies employ the Digital Imaging and Communica-

tions in Medicine (DICOM) imaging standard for image requests

and communication; however, the way the images are stored can

vary from vendor to vendor. Most radiographs generated by the

practice of veterinary medicine are stored either on-premise or

within a private cloud system. Commercial cloud-based systems are

usually more rigorous in the implementation of the DICOM stan-

dard and can have similar features and capabilities to the Picture Ar-

chiving and Communication System implemented within the human

space. The on-premise systems tend to be quite varied in implemen-

tation ranging from an index folder structure to more sophisticated

storage techniques.

In veterinary medicine, the use of magnetic resonance imaging,

computed tomography, fluoroscopy, and ultrasound is expanding

both in available sites and studies performed per year. This type of

data represents new challenges and new opportunities for study. The

main source of these imaging modalities is within the specialty veter-

inary medicine arena, which is an increasingly popular source of

care. These specialty centers are also where advanced research and

training occurs offering tremendous opportunity for future collabo-

ration.49–53

Laboratory
Diagnostic laboratory testing is an increasingly crowded arena

within veterinary medicine. The two largest private veterinary diag-

nostic lab services are Antech Diagnostics and IDEXX Laboratories,

but there are other smaller vendors. Diagnostic laboratories have

various integration capabilities that change frequently. Until re-

cently, only larger providers were “integrated” into the PIMS, mean-

ing that requests could be submitted, and the results could be

received digitally. Many reference laboratories that are integrated

transmit their results via either an online portal or an interface that

uses a proprietary data structure or digital documents such as a

PDF. Neither the reference laboratories nor receiving PIMS utilize a

standardized nomenclature for tagging data (SNOMED-CT,

LOINC, etc.) during transmission, resulting in challenges during ex-

traction and analysis. Some of them are required to annotate records

for disease surveillance (eg, state diagnostic laboratories).54–58 This

large, rich cohort of information represents a significant resource for

future work.

One area of diagnostics, the in-house clinic, is frequently over-

looked. The retention rate of patients within a veterinary hospital

means that sampling variability should be significantly less. Even

within a single hospital, the opportunity to correlate diagnostics

with textual notes and bill codes (that can be analogous for both dis-

ease state and procedure codes) offers advantages that can be chal-

lenging to replicate within human medicine.

Table 1. Comparison of common features between EMRs and

PIMS

Activity EMR (human medicine) PIMS

Billing and finance 6 X

Reminders X X

Tracking procedures X 6

Free text medical notes X X

Structured medical notes X 6

Decision support systems X –

Integration with LIMS X X

Integration with PACS X 6

Integration with RIS X 6

Computer physician order entry X –

Adverse event detection X –

Note: Human EMR features from following citations.35–38 Comparison of

PIMS capability is from experience combined with availability of features.39–42

–: means no current ability or requires 3rd party tool; 6: partial compati-

bility or function; EMR: electronic medical record; LIMS: Laboratory Infor-

mation Management System; PACS: Picture Archiving and Communication

System; PIMS: Practice Information Management System; RIS: Radiological

Information System; X: native capability.
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Genetics
The National Human Genome Research Institute recognized the

value of the canine genome (sequenced in 2004) in the study of

inherited disorders in man.59–61 Subsequently, an increasing number

of Mendelian traits and traits associated with more complex diseases

have been identified.62–66 One source for genetic information in

dogs, as well as many other animals, is the Online Mendelian Inheri-

tance in Animals.67 As of this publication, there were over 800 Men-

delian traits with likely causal variants listed for many different

species including dogs, cattle, cats, sheep, horse, chickens, and pigs.

Private companies have created genetic panels for varying pur-

poses,68–70 and canine cancer genetics have been particularly well-

researched in terms of translational potential for humans.71 While

these companies could be a potential source of information, to date,

there have been few resources developed for public use. Some compa-

nies have genotyped more than 800,000 dogs, and tens of thousands

of tests have been reported by the newer canine sequencing compa-

nies. Most tests are sold directly to consumers and are used primarily

for breed identity, although a few companies offer disease testing.

The underlying technologies and tested markers vary, but the technol-

ogy is generally based on Illumina microarrays that are proprietary.

Inherited disease screening tests are also now more freely avail-

able to help breeders and owners determine if their animals are car-

riers for disease(s). The University of Pennsylvania maintains a

database of available genetic tests that include commercial as well as

academic laboratories.72 However, available phenotypic data to

pair with genetic data is sparse and is generally based on customer-

provided surveys on specific traits and diseases. This is an area of ac-

tive interest for some genetics companies as many of the inherited

diseases do not show complete dominance even in the presence of

homogeneity.

In addition, there are genetics testing companies and academic

laboratories offering genetic testing for horses and livestock, reporting

on genetic markers for physical traits, desirable genetic characteris-

tics, and potential disease-linked traits. These may consist of simple

parentage analysis, single-gene testing, single-nucleotide polymor-

phism assays, or microarrays. Livestock genetic testing is too exten-

sive to cover here, but there has been a recent review on this topic.73

Animal genetic testing has impacts beyond companion and live-

stock. The National Institutes of Health recently funded the Arizona

Cancer Evolution Center to integrate data, including genomics,

from a broad array of species to understand the evolutionarily con-

served basis for cancer.74 This group is integrating human clinical

data with animal clinical and pathology data from zoological collec-

tions to examine a multitude of traits such as treatment protocols,

pharmaceutical and procedure side-effects, and patient outcomes

that are not captured by pathology reports. They hope to achieve a

better understanding of the natural history of shared diseases across

species and to allow us to better interpret genomic information be-

ing produced from “non-traditional” disease models.

Sensor data
The use of sensors has recently expanded from research applications

to track animal migration patterns and behavior and for disease sur-

veillance into the commercial and medical markets. Data collection

from wearables is expanding rapidly, and market share for pet wear-

ables is estimated to be greater than $3 billion by 2025.75 Wearable

sensors can provide a rich source of potential information including

physio markers, such as heart rate, respiratory rate, and tempera-

ture, as well as gyroscopic measurements reflecting activity levels,

sleep metrics, and estimates of calories burned. In some cases, these

wearable devices can sample the animal’s interstitial glucose. The

non-invasive and continuous method of data collection is relatively

inexpensive, longitudinal, and removes the influence of stress in-

duced during veterinary visits. As more research is done, this infor-

mation can be utilized for more informed health decisions by the

owner and veterinarian.

Sensor data is commonly used for assessment of response to spe-

cific therapies,76 and, in conjunction with robust machine learning

algorithms, it has the powerful potential to allow early identification

of at-risk veterinary and human patients, especially when used in

shared naturally occurring diseases. Larger companies are storing

pet information for additional behavioral and health studies. Data

from wearables, in a manner similar to telematics or driver monitor-

ing devices, may be used by insurance companies as an incentive for

rates adjustment with certain known preventative behaviors such as

activity levels.77

Databases and other resources
There are generally 3 types of databases and resources available

within veterinary medicine: Medical Record Aggregation, Labora-

tory (including Genomic) Information, and Research or Mission

Based data sources. For Medical Record Aggregation, one of the pri-

mary examples would be the Veterinary Medical Database (www.

vmdb.org). They contain annotated medical records from 26 Ameri-

can university veterinary hospitals amounting to over 7 million pa-

tient records. Research and mission-based data sources represent the

largest set of possible resources and include resources like ESCRA

(www.escra.org), an exotic species tumor database, as well as Vet-

COT (www.vetcot.org), a trauma data collection initiative by the

American College of Veterinary Emergency and Critical Care. They

are collecting information about trauma cases and their outcomes

from veterinary trauma centers nationwide and compiling it into a

single resource with more than 27 000 trauma case records to date.

There are many other databases and resources available, and we

have expanded upon their details and included other resources

within the Supplementary Information.

SOME KEY METHODS FOR VETERINARY
INFORMATICS

Expert-based rule text extraction and recording
Initial research used expert-based rules for inclusion and exclusion

of veterinary text for biosurveillance.78,79 In addition to rules-based

identification, experts built data dictionaries with key terms for dis-

eases of interest.80 This approach was often successful for the dis-

ease being studied, but the approach was challenging to scale to

thousands of additional disease diagnoses, such as those in the

SNOMED-CT veterinary extension. Expert-based rules require a

significant number of knowledge bases, which often reflect local

biases, similarly seen in rule-based systems used in human medi-

cine.81,82 This also creates challenges for scalability and reliability

when extending them into other areas.83–85 There have been rule-

based machine learning methods that combine both expert and ma-

chine learning-based rules for text extraction, but there has been lit-

tle application within the veterinary space.86,87

Natural language processing
To gain access to the large amount of clinical data within free text

inside medical records (human and veterinary), researchers and

JAMIA Open, 2020, Vol. 3, No. 2 309

http://www.vmdb.org
http://www.vmdb.org
http://www.escra.org
http://www.vetcot.org
https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooaa005#supplementary-data


companies have focused on utilizing natural language processing

(NLP) to extract the information.88,89 NLP techniques have been

generally developed in the human medical domain, using various

patterns and algorithms like n-grams and long- and short-term mem-

ory networks to increase performance.90–92

There are many examples that use NLP tools within the human

domain such as improving pneumonia screening in the emergency

department, assisting in adenoma detection, and simplifying hospital

processes by identifying billing codes from clinical notes.93,94 Within

veterinary medicine, only a handful of publications and proceedings

describe using NLP. Use cases include identifying the reasons race

horses were retired,95 extracting medication information from veter-

inary message boards,96 and emerging efforts at biosurveillance

across large veterinary clinical repositories.97 More recent efforts

have demonstrated success in leveraging academic, coded clinical

datasets to apply diagnosis labels to private practice data.98

Machine learning and artificial intelligence
More and more pipelines utilizing machine learning and artificial in-

telligence are being applied to human clinical records and healthcare

data, with a variable use of training data or supervision depending

on the datasets used to develop these systems.85,99–107 We have visu-

alized one common workflow in biomedical informatics for using

common veterinary clinical data types for a variety of applications

in Figure 1. One problem with utilizing these approaches with veter-

inary healthcare datasets is the lack of labeled, open-source, or

shareable training data. Most studies focus on single-system or hos-

pital analysis, establishing a gold-standard within a single institu-

tion.27,108,109 Newer, “noisy” labeling techniques may be able to

help provide training data for machine learning algorithms for spe-

cific clinical tasks, and this is an area of possible significant im-

pact.110 Examining the extent to which the few labeled data that

exist can be used to build algorithms to help with prediction task

from other domains (private practice, specialty practice) will be im-

portant to help advance the field without the massive number of

medical coders who work in human healthcare. Research into opti-

mized feature selection and feature engineering for machine learning

techniques is ongoing within human healthcare but lags significantly

for veterinary applications.101,111–114

Use of machine learning in radiology has been ongoing for many

years.115–124 These applications range from generic clinical decision

support to specific mammography-based problems. Recently, there

is also an effort to apply image processing and analysis within the

veterinary sphere.108,125,126 As we see in Figure 2, you can apply

segmentation or edge detection to outline areas of interest in a ca-

nine thoracic radiograph, but there is much more work to be done.

While nascent, many of the same problems in veterinary medicine

represent opportunities for application and development of newer

algorithms.

Since there is a substantial body of veterinary literature that is

not indexed in PubMed, researchers have challenges finding exam-

ples of these types of applications. An application of machine learn-

ing and NLP can aid in bringing the breadth of the published

veterinary knowledge to the forefront from the large, unstructured

corpus of clinical texts.

APPLICATIONS OF VETERINARY INFORMATICS

Biosurveillance
A classic example of informatics application is through a zoonotic

disease surveillance and reporting system.80 Studies have shown the

Figure 1. Roadmap of veterinary data inputs, preprocessing, analysis, and applications. NLP, natural language processing.

Figure 2. An example of anatomical structures highlighted by machine

learning.
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importance of having these systems interconnected and that there

are many barriers to successful implementation.127,128 Research has

shown that although almost 90% of veterinarians report encounter-

ing a zoonotic disease, 70% believe they do not have access to a sur-

veillance system, and <50% have reported a zoonotic disease to

state or federal agencies. With the inability to share much of the

data electronically, integrating into human platforms may overcome

some of these barriers.129 Such efforts would potentially lead to ear-

lier detection of zoonotic or environmental diseases and improved

diagnosis and treatment of human disease as these diseases often oc-

cur in animals prior to human disease detection.130–132 Most

approaches in biosurveillance either create a pipeline to encode med-

ical text using NLP techniques mentioned above or directly utilized

known diagnoses and combine them with a machine learning model

for prediction.133–136

An example of these techniques, the CDC has been tracking

Chronic Wasting Disease (CWD), a prion disease in free-ranging

deer, elk, and moose for years. The CDC combines data from vari-

ous sources and tracks the outbreak of the disease across the United

States by county.137 There is concern of increased risk of transmis-

sion of CWD as it spreads among various countries, with one author

recommending a One Health approach to monitoring, culling, and

tracking to decrease this outbreak.138

Zoonosis for food animal
As stated by Doherr and Audige139 in their 2001 paper, “The health

and safety of the animal and human generations depends on our

continuous ability to detect, monitor and control newly emerging or

re-emerging livestock diseases and zoonoses rapidly.” Need for

monitoring has increased in recent years with major areas of food

animal surveillance including rare and exotic disease outbreaks (e.g.,

foot and mouth disease) and spread of antimicrobial resistance, a

significant public health concern.130,132,140–142

Best practices likely include utilizing both passive and active data

collection for early identification of important rare and newly

emerging diseases. The sources of information are many from gen-

eral passive surveillance to laboratory samples to targeted surveil-

lance and sentinel networks.139 Collecting and integrating the data

in a cost-effective and maximally protective manner presents many

challenges and requires an understanding of behavioral considera-

tions of all players involved in the livestock supply chain.143 Soft-

ware and techniques for using data for livestock production and

livestock disease surveillance have shown proof of concept in several

papers.143–146 These papers utilize various approaches for analysis

within a population or institution, but all wrestle with deidentifica-

tion of point locations so that livestock companies and locations are

willing to share information.147

Antimicrobial resistance in food animal populations
The spread of antimicrobial resistance presents an emerging crisis

across both human and veterinary medicine.148,149 In particular,

there has been significant research into the presence of antimicrobial

resistance in food and how it impacts human health.150–155 This

area of study has a significant opportunity for more collaborative

and expansive work using data from veterinary and human arenas

particularly from a global perspective.156–160

Applications to clinical health
In addition to enhanced and coordinated monitoring of zoonotic,

biosecurity, and production-based disease outbreaks, improvements

in veterinary informatics can provide mechanisms for enhanced clin-

ical disease monitoring.78,109 Current mechanisms rely solely on the

individual, busy practitioner to recognize disease trends. Using ma-

chine learning techniques to allow early and accurate identification

of increased incidence of clinical disease can lead to improved out-

comes through recognition of spatial relationships and by informing

targeted research. As discussed below, inclusion of location data in

the monitoring can help identify possible environmental associations

to animal disease that may precede similar human outcomes.

Extended outbreak detection
Cross-species diseases are increasing as is the need to both detect

them and prevent transmission. These diseases (e.g., Lyme disease,

Leptospirosis) are not necessarily transmitted between 2 species but

can be indicative of the environment that they share.130,161–163

Work is relatively nascent, but sharing environmental data provides

multiple opportunities to inform on animal and human health.142

Research into methicillin-resistant Staphylococcus aureus

(MRSA) in relation to pet ownership provides an example of this

work. Specifically, researchers evaluated pets as possible reservoirs

of MRSA within the patient population.164–166 Other diseases have

also been examined (eg, Toxoplasmosis, Rocky Mountain Spotted

Fever, and Hantavirus),141,167,168 but many require additional re-

search efforts to allow for extended detection and treatment in ani-

mals and humans. Recently, there has been an increased focus on

carbapenem resistance and its transmission both between humans

and humans and animals.169–177 There is much more research that

needs to be done in this area as this represents a challenge in the

practice of both human and veterinary medicine.

Disease outcome prediction
Disease outcome prediction is of increasing interest as reflected by

publication volume alone: more than 20 000 publications since

2018. In human medicine, disease outcome prediction research not

only has to handle the difficulties of the disease but also the chal-

lenge of data access and specificity.101,113,178,179 Many of the techni-

ques can be utilized within veterinary medicine to train the machine

learning algorithms prior to utilization within the human healthcare

sphere. As previously established, the accessibility and specificity is

less of an issue within veterinary medicine and can lead to, in some

cases, transfer learning where veterinary medicine directly informs

on the knowledge base and algorithms used in human medi-

cine.11,180,181

Environmental effects on pets and people
Companion animals share homes and food with humans, which in

addition to providing comfort and companionship, makes them ex-

cellent sentinels for environmental health hazards and bioterror-

ism.132,182 In addition, data show that greater than 60% of

emerging infectious diseases in people start as zoonoses.183 Pets are

exposed to environmental contaminants, infectious agents, and pol-

lutants to which they may be more susceptible than humans. Several

studies have shown the efficacy of using animal data as environmen-

tal indicators outside of the well-known zoonotic risks.162,168 This is

particularly true within the aquatic environment where animals can

be keys to understanding the current environmental status.184,185

Rare diseases
Rare diseases, defined as affecting 1 in 10 (or fewer) Americans, are

being identified at increasing rates and present diagnostic and
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treatment challenges. A recent study discusses combining existing

rare disease knowledge resources and data within the electronic

medical record to assist in identifying rare disease phenotypes.186 In

addition, identification of naturally occurring disease models in

companion animals that are representative of rare human diseases

can result in translation therapies that improve both animal and hu-

man lives. For example, osteosarcoma (OSA) is a type of bone can-

cer that while the most common bone tumor in humans, is very rare

with <1000 new cases diagnosed in the United States each year and

half of those diagnosed are under the age of 25.70 Even with diagno-

sis, they generally require surgery and chemotherapy for disease con-

trol, with the continued risk of metastasis. In dogs, however, OSA is

the most common primary bone tumor with an incidence 27 times

that of humans.70 There is ongoing research to bridge the gap be-

tween OSA in dogs and humans, and this case provides an example

of how veterinary informatics, particularly machine learning and

statistical analysis techniques, to identify cases of rare diseases to

serve as models of human disease has the potential to greatly im-

prove human and veterinary health.

CONCLUSIONS

There are many possibilities for use of the available veterinary data

types through both the creation of new algorithms and application

of current algorithms within veterinary informatics; we have only

been able to touch on a small fraction of initiatives and possibilities

within this space. Expansion of veterinary informatics has signifi-

cant potential benefits for both human and veterinary medicine, and

the potential impact will only increase as more work is done in this

arena.
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