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Abstract: In order to treat Coronavirus Disease 2019 (COVID-19), we predicted and implemented a
drug delivery system (DDS) that can provide stable drug delivery through a computational approach
including a clustering algorithm and the Schrödinger software. Six carrier candidates were derived
by the proposed method that could find molecules meeting the predefined conditions using the
molecular structure and its functional group positional information. Then, just one compound named
glycyrrhizin was selected as a candidate for drug delivery through the Schrödinger software. Using
glycyrrhizin, nafamostat mesilate (NM), which is known for its efficacy, was converted into micelle
nanoparticles (NPs) to improve drug stability and to effectively treat COVID-19. The spherical
particle morphology was confirmed by transmission electron microscopy (TEM), and the particle size
and stability of 300–400 nm were evaluated by measuring DLSand the zeta potential. The loading of
NM was confirmed to be more than 90% efficient using the UV spectrum.

Keywords: COVID-19; in silico; machine learning; clustering; unsupervised learning; drug delivery
system; nafamostat; computer-aided drug discovery; CADD; docking; micelle nanoparticles

1. Introduction

Declared as a global pandemic by the World Health Organization (WHO) in 2020,
the 2019 novel coronavirus has created serious problems in healthcare systems and daily life
worldwide. Nafamostat mesilate (NM) is a serine proteinase inhibitor that has been used
in Japan to treat disseminated intravascular coagulation (DIC) and pancreatitis for over
30 years [1,2] and has been used in the treatment of Coronavirus Disease 2019 (COVID-19).
NM blocks the SARS-CoV-2 S protein-initiated fusion by inhibiting protease in 293FTcells
(derived from human fetal kidney) ectopically expressing angiotensin converting enzyme 2
and transmembrane serine protease 2 (TMPRSS2). When conducting similar experiments
with Calu-3 cells, which are considered a suitable model for human SARS-CoV-infected
cells, NM significantly inhibited membrane fusion at low concentrations in the range of
1–10 nM. This is almost the same as the concentration range of membrane fusion inhibition
by the MERS-CoV S protein [3,4]. Despite this significant efficacy, NMs have very poor
stability in the body, so the molecular structure needs to be regenerated/stabilized to
promote efficient drug delivery and treatment. Therefore, we developed a drug delivery
system (DDS) using micelle NPs that can compensate for these limitations and maximize
the effectiveness of NM. When NM is stabilized with micelle NPs, it has been shown
that it can prevent degeneration, inhibit infection by COVID-19, and treat infected cells
after intracorporeal administration. As a low-molecular weight compound harmless to the
living body, if NM is loaded on micelle NPs, it becomes a nanoparticle-sized formulation,
thereby inhibiting the TMPRSS2 receptor by maintaining its own stability, and hence is
expected to treat or prevent COVID-19. While the existing NM administration method is a
difficult infusion method, it appears to be able to be administered orally. To manufacture
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ideal micelle NPs that can act as DDS, they must have an amphiphilic structure and
have a structure whose hydrophobic length is slightly shorter than that of hydrophilic [5].
Spherical micelles were prepared using hydrophilic and hydrophobic structures of different
lengths. In addition, the possibility of micelle formation was confirmed in a triblock (long
hydrophilic—hydrophobic—short hydrophilic) structure to load a hydrophilic drug [6].
For the purpose of searching for the candidates satisfying this condition, we developed a
novel computational method. This was tested with a drug database provided by DrugBank
5.0 (https://go.drugbank.com/, accessed on 8 March 2021) that has been employed in many
drug screening studies for drug repositioning as it consists of approved small molecule
drugs and biologics, nutraceuticals, and experimental drugs. Drug repositioning (also
called repurposing) means reusing an approved drug for another purpose, so its safety and
production methods have already been confirmed [7].

Repositioning/repurposing a drug would reduce the time and cost associated with
development, as several stages spent in the development for its original indication could
be avoided [8,9]. Drug delivery systems can be a vital tool for repositioning and have been
studied in recent years [10,11]. However, experimental confirmation of DDS is not an easy
task because in vitro experiments are arduous and time-consuming. To overcome these
limitations, several computational approaches, such as deep learning (DL) and machine
learning (ML) methods, have been suggested [12]. For example, YuanYuan et al. [13]
developed a data-driven predictive system based on ML techniques to determine the
effectiveness of drug dosing in drug delivery methods. Mikolaj et al. [14] presented
quantitative structure–property relationship (QSPR) models that predict the stability of the
complexes formed by a popular, poorly soluble antibiotic, cefuroxime axetil, and different
cyclodextrins. The proposed method is relevant in structure-based drug design (SBDD),
which identifies leads suitable for clinical testing through molecular structure, although not
common. As our candidate material uses substances registered in the drug bank, micelle
NPs enclosing the drug not only act as a carrier of the drug using the DDS, but are
themselves a dual mode of drug action that can exert its efficacy.

2. Results
2.1. Results of Carrier Suitability Scoring Method

In Table 1, we list the molecules measured by the CS score. It is clear that the CSS
method is good at finding molecules meeting predefined conditions. There are five sub-
scores that make up the CS score, among which the first four (1, 2, 3, and 4) are structural
scores and one (logP) is a chemical score. The description of each sub-score is given
in Section 3.4. As mentioned before, six molecules were selected as carrier candidates
through the CSS method, and qualitative examination using domain knowledge was
performed. For instance, DB13751 obtained the third highest CS score, but was ranked the
highest after passing the qualitative examination. This molecule also acquired the highest
values of Scores 3 and 4. The first is the asymmetry between the size of the hydrophilic
clusters; the larger the value of this score, the greater the difference in size between the two
hydrophilic group clusters is. The second is whether the furthest atomic pair is included in
the hydrophilic groups, and the value of two means that both atoms are included in the
hydrophilic groups, while a value of zero means that neither are included. As shown in
Figure 1a, the sizes of the two hydrophilic groups are asymmetrical, and the farthest atomic
pairs also belong to hydrophilic groups. The greatest logP score was achieved by DB01834,
the closer the logP is to zero, the greater the logP score. In Figure 1, the closer the color
of the atoms in the molecule to blue or red, the stronger the atoms are considered to be
hydrophilic or hydrophobic. As seen in Figure 1d, most of the areas in DB01834 are not blue
or red, but light blue or yellow. In addition, the hydrophilic and hydrophobic areas within
the molecule were similar in width. Hence, DB01834 had the highest logP score. DB06543
obtained the greatest value of Score 1, representing the distance between the hydrophilic
group clusters. A high score of one indicates that two hydrophilic group clusters are well
separated. It was observed that the hydrophilic group clusters are extremely far away.

https://go.drugbank.com/
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The CSS method offers an intuitive way to inspect atom-wise partition coefficient maps
of molecules, as shown in Figure 1. Of the 10,630 molecules, six molecules were nomi-
nated as carrier candidates after qualitative inspection with the naked eye of the molecules
with the top 1.5% carrier suitability (CS) score. These maps were calculated using RDKit
(http://www.rdkit.org/, accessed on 8 March 2021) [15]. We can see that the larger hy-
drophilic group cluster and the smaller one are separated well, and the triblock form of
molecules is clearly represented. As is clearly visible in Figure 1, the proposed CSS method
has excellent performance in finding the carrier candidates meeting our proposed conditions.

(a) DB13751 (b) DB02675

(c) DB05295 (d) DB01834

(e) DB06543 (f) DB04150

Figure 1. Six final carrier candidates found by the CSS method and qualitative examination. The color
on the similarity maps represents the atom-wise partition coefficient logP: the blue area indicates the
hydrophilic atoms having low logP, and the red indicates the hydrophobic atoms having a high logP.

http://www.rdkit.org/
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Table 1. CS scores of the molecules after qualitative examination. The rows are drugs listed in
the DrugBank 5.0 database. The columns show sub-scores that constitute the CS score. Scores
1–4 mean the distance between Block A and C, within-block distance, size asymmetry between
Block A and Block C, and number of head and tail atoms included in the hydrophilic group, re-
spectively. The logP score is not the value of logP, and the largest value was regularized when
the value of logP was 0. The following sentence indicates the official name of the DB identi-
fier. DB13751:glycyrrhizic acid; DB02675:(4-hydroxymaltosephenyl)glycine; DB05295:eldecalcitol;
DB01834:(9R,10R)-9-(S-glutathionyl)-10-hydroxy-9,10-dihydrophenanthrene; DB06543:astaxanthin;
DB04150:threonine derivative.

Rank DB ID Score 1 Score 2 Score 3 Score 4 logP Score Total Score

...
3 DB13751 0.725 0.651 11 2 0 14.403

...
18 DB02675 0.646 0.703 5.5 2 0 10.118

...
35 DB05295 0.737 0.746 4 2 0 9.332

...
74 DB01834 0.582 0.643 5 1 0.632 8.09

...
82 DB06543 0.997 0.625 1 2 0 8.057

...
124 DB04150 0.6829 0.65 4 1 0 7.524

...

2.2. Results of Single Layer Modeling

As can be seen in Figure 2, a single layer of DB13751 is formed between the water and
nafamostat. It is identified that some DB13751 are aligned with their hydrophilic portions
directed to water and nafamostat. The results of the modeling support the proposition that
DB13751 can be a good candidate for drug delivery carriers. However, the simulation, being
a virtual experiment, should not be regarded as verifying the conclusions of the paper.

Figure 2. Result of single layer modeling of DB13751 between water and nafamostat performed by
using the Schrödinger software. The result shows that a single layer of DB13751 was formed with
some molecules of DB13751 arranged vertically with their hydrophilic heads directed to water (top)
and nafamostat (bottom).
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2.3. Experimental Results (Evaluation Results)
2.3.1. Characterization of NM-Loaded Micelle NPs

Micelles formed with DB13751 were expected to have stable DDS effects while sta-
bly surrounding NM. After dissolving DB13751 in ethanol, oil was added to adjust the
critical micelle concentration to form micelles. After that, nafamostat was loaded into the
micelle through sonication, and the desired NM-loaded micelle NPs were obtained through
lyophilization. The morphologies of NM-loaded micelle NPs when examined by TEM were
spherical, as shown in Figure 3. The particle sizes and distributions of NM-loaded micelle
NPs were determined by dynamic light scattering. The particle size of NM-loaded micelle
NPs was approximately 394.1 ± 11.81 nm. Figure 4 shows that our NM-loaded micelle
NPs showed a constant size. The confirmed zeta potential value was −55.5 ± 0.75 mV
for NM-loaded micelle NPs, as shown in Figure 5. As a result, it can be seen that our
NM-loaded micelle NPs stably formed micelles.

Figure 3. TEM images of NM-loaded micelle NPs.
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Calculation Results
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1 1.00 265.6 nm 74.1 nm 233.5 nm
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Molecular Weight Measurement
Molecular Weight : ---
Parameters for Molecular Weight Calculation : ---

Figure 4. Particle size and distribution of NM-loaded micelle NPs.
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Electrophoretic Mobility Mean : -0.000431 cm2/Vs

Figure 5. Zeta potential of NM-loaded micelle NPs.

2.3.2. Loading Amount of Nafamostat Mesilate

Micelles formed with DB13751 stably surrounded NM and improved the limitations
of NM, and a stable DDS effect was expected. The loaded amounts and efficiencies of NM
per 10 mg of NM-loaded micelle NPs were 759.9 ± 20.55 µg (92.24 ± 2.50%), respectively,
for NM-loaded micelle NPs. It was confirmed that micelle NPs were manufactured with
micelle-shaped NPs and produced with high efficiency as desired when NM was loaded.
The amount of NM to be loaded will be controlled by research conducted later. In the
future, studies performed with HPLC, NMR, MALDI-TOF MS, etc., will be added.

2.3.3. Cell Cytotoxicity

The concentration is based on nafamostat, and the concentration at which nafamostat
is effective in cells is usually about 1 nM to 30 µM. Therefore, it was confirmed that there
was no toxicity at the low concentration that could exert the effect, and the cell viability
was more than 90%, even at the high concentration, so there was almost no toxicity. As a
result, as shown in Figure 6, no cytotoxicity was observed at concentrations below 10 µM.
It was found to be absent, and it was confirmed that there was almost no toxicity even at
concentrations of 50 µM 250 µM. It was confirmed that the cytotoxicity of the nanoparticles
was very low.

Based on the results, NM-loaded micelle NPs were constructed to analyze them.
After fabrication, the nanoparticle size and stability were confirmed through DSLand
the zeta potential, and the morphology of the particles was confirmed by TEM imaging.
In addition, the NM loading efficiency was measured by ELISA, and it was confirmed that
NM was well loaded in NM-loaded micelle NPs. NM-loaded micelle NPs were produced,
and it was confirmed that the expected results were consistent with those of the CSS
method. Cytotoxicity was performed to confirm that the prepared NM-loaded micelle
NPs were non-toxic, and it was confirmed that there was no toxicity even at the desired
concentration and a high concentration. Based on this, we plan to explore and develop
drugs and carriers suitable for each disease using our technology as a platform. NM-loaded
micelle NPs also target the virus causing COVID-19, and we will conduct in vitro and
in vivo experiments for the characterization and efficacy of the substance. Glycyrrhizin
is a substance known to inhibit the replication of RNA viruses [16]. When nafamostat is
loaded onto micelle NPs and stabilized and delivered to cells, it is expected that the two
constituents of the particle will show synergistic inhibitory efficacy against viral infection
through a dual mode of action.
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Figure 6. Cytotoxicity of control and NM-loaded micelle NPs (1, 10, 50, 150, and 250 µM) against
A549 cells at one day (n = 8).

3. Materials and Methods

In silico analysis for deriving the carrier candidates is introduced in this section. This
consists of two parts: the carrier suitability scoring (CSS) method and the Schrödinger
simulation. For this study, DrugBank 5.0 (https://go.drugbank.com/, accessed on 8 March
2021) was used as a resource to obtain 10,630 samples of molecules for analysis. DrugBank
is a web-accessible database consisting of comprehensive molecular information about
drugs and their mechanisms [8].

The CSS method relies on a canonical simplified-molecular-input line-entry system
(SMILES) [17] string to acquire the molobject format from which the molecular conforma-
tion is calculated using RDKit (http://www.rdkit.org/, accessed on 8 March 2021) [15].
Molecular conformation refers to the spatial arrangement of the atoms that can be in-
terconverted by gyration of formally single bonds. Subsequently, the molecular graph
representation, which is composed of two matrices, atoms and bonds, can be derived from
this molecular conformation. Generally, it can be classified as polar or non-polar depending
on the property of the chemical group [18]. The CSS method is based on polarity analysis,
which requires hydrophilic and hydrophobic groups in the identification of molecules. Each
group was detected from the relationship between atoms in molecular graph representation
by defining a conditional statement. Hydrophilic groups were clustered into two groups
because these groups have to be distinguished by the head and tail. K-means, spectral
clustering, and Ward’s hierarchical clustering were used to create a clustering ensemble
model for separating objects into two clusters [19–21]. Consensus functions for clustering
ensemble methods are categorized into two major approaches: object co-occurrence (CO)
and median partition. We employed and modified the adaptive clustering ensemble (ACE)
method, which is a CO approach [22]. We then built a few algorithms to determine how
the molecules meet the pre-defined conditions. Figure 7 provides the total scheme for
the CSS method. Single-layer simulation was performed using Schrödinger, which is a
physics-based computational platform (https://www.schrodinger.com/, accessed on 8
March 2021) [23]. From the modeling, we identified that a single layer of DB13751is formed
between water and nafamostat.

https://go.drugbank.com/
http://www.rdkit.org/
https://www.schrodinger.com/
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The proposed in silico analysis consists of five processes: Section 3.1 describes the
dataset resource and the preprocessing method. Section 3.2 presents a method for finding
functional groups in the molecules. Section 3.3 explains the details of the clustering
ensemble process. Section 3.4 introduces a method for estimating the suitability scores
of molecules. Finally, in Section 3.5, we inspect the validity of our in silico analysis by
modeling a single layer of DB13751 between water and nafamostat.

3.1. Datasets and Preprocessing

DrugBank is a full, freely web-available resource containing detailed drug, drug
action, drug target, and drug–drug interaction information not only about experimental
drugs going through the FDA approval process, but also about FDA-approved drugs.
In addition, the existing data in DrugBank 5.0 have increased enormously [8]. To limit the
molecular search scope, we chose the DrugBank database. Information on 10,630 small
molecules, including their canonical SMILES, which is a single-line text representation of
a unique molecule, was extracted. RDKit (http://www.rdkit.org/, accessed on 8 March
2021) provides a library converting this canonical SMILES string into mol object format
and serves as an indication of the lowest energy molecular conformation and the output
coordinates from such a computation [15]. These sets of Euclidean coordinates are used
for clustering after a hydrophilic group search. The mol objects can be represented in a
molecular graph format, including the adjacency matrix and feature matrix, as shown in
Figure 8. The adjacency matrix describes the relationship between atoms called bonds,
and the feature matrix consists of atomic numbers.

H
O

C

O

CC

H

H

O

H

C

H

H

O
H

N

H
H

adjacency = 

0  1  0  2  ⋯
1  0  1  0  ⋯
0  1  0  0  ⋯

2  0  0  0 ⋯
⋮ ⋮ ⋮ ⋮

feature = 

C    
O 
H
O 
⋮

Figure 8. The example of the process representing molecules in graph format. When a molecule has
N atoms, elements of the adjacency matrix A ∈ RN×N denote the bond type between atomic pairs
and elements of the feature vector f ∈ RN×1, which denotes the atomic numbers. We can see that a
carboxylic group (marked in green) is represented in the adjacency matrix and feature vector.

3.2. Identifying Functional Groups in a Molecule

In this section, we discuss the identification of hydrophilic and hydrophobic groups
in a molecule. In Davies (1957) [24], the hydrophilic-lipophilic group number was pro-
posed and used to obtain the hydrophilic-lipophilic balance (HLB) value. We employed
these groups in [24] as hydrophilic and hydrophobic groups, as shown in Table 2. For ex-
ample, a carboxylic group (–COOH), marked in green in Figure 8, is classified as a hy-
drophilic group.

http://www.rdkit.org/
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Table 2. Hydrophilic-hydrophobic group.

Hydrophilic Groups Hydrophobic Groups

–NR2(tertiary amine) –CH–
–COO(sorbitan ring) –CH2–

–COO –CH3–
–COOH

–OH
–O–

–OH(sorbitan ring)
–CH2CH2O–

In the given adjacency matrices and feature vectors of the molecules, we can separate
hydrophilic and hydrophobic groups. First, the conditions for a particular functional group
are defined. Then, the conditional statement algorithm can be established and applied
based on the rules. For example, the process for a carboxylic group search is as follows:

1. The first generation node is “C”. The statement on the feature vector f is repeatedly
applied to search for the root node (first generation node) “C”. Then, the second
condition statement will be applied only if the root node corresponds to “C”.

2. “O” is the second-generation node connected to the first-generation node through a
single bond. Using the adjacency matrix and feature vectors, we can find the node.
The single-bonded atom of the root node is searched for using the adjacency matrix.
If a single-bonded atom is found, the atom is allocated as Candidate 1. If Candidate 1
is “O”, the next step will be performed.

3. “H” is the third-generation node connected to the second-generation node through a
single bond. Using the adjacency matrix and feature vectors, we can find the node.
The single-bonded atom of the second node is searched for using the adjacency matrix.
If a single-bonded atom is found, the atom is allocated as Candidate 2. If Candidate 2
is “H”, the next step will be performed.

4. “O” is the second-generation node connected to the first-generation node through a
single bond. Using the adjacency matrix and feature vectors, we can find the node.
The double-bonded atom of the root node is searched for using the adjacency matrix.
If a double-bonded atom is found, the atom is allocated as Candidate 3. If Candidate 3
is “O”, we append the indices of the root nodes, Candidate 1, Candidate 2, and
Candidate 3, to the carboxylic group.

When all the conditions above are satisfied, the index of the carboxylic group is
obtained (Algorithm 1). The condition statement is repeated for each atom. Then, all
carboxylic groups within the molecule can be found. In this way, all the hydrophilic and
hydrophobic groups that exist within the molecule can be found, as in Figure 9.

H O

C

O

CC

H

H
O

H

C

H

H

O

H

N

H
H

1 COOH 

2 CH2

2 OH

Figure 9. Subtracted groups of molecule.
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Algorithm 1 Carboxylic group (–COOH) search.

1: procedure DeleteItem(adjacency matrix A, feature vector f )

2: for i in 1→ len(f ) do

3: if f [i] = ’C’ then

4: candidate1← which(A[i, ] == 1)

5: if f [candidate1] == ’O’) then

6: candidate2← which(A[candidate1, ] == 1)

7: if f [candidate2] == ’H’ then

8: candidate3← which(A[i, ] == 2)

9: if f [candidate3] == ’H’ then

10: cooh.append(list(i, candidate1, candidate2, candidate3))

11: Return cooh

3.3. Clustering Algorithm

K-means, spectral clustering, and Ward’s hierarchical clustering method were set
as clustering members and aggregated using the modified adaptive clustering ensemble
(mACE) method. The clustering algorithm consists of five stages: clustering with members,
transformation, elimination processes, generating consensus clusters, and enforcing hard
clustering, of which all stages except for the first stage are of the mACE algorithm.

3.3.1. The Modified Adaptive Clustering Ensemble

Theoretically, there is no single clustering method that has the best performance due to
various disadvantages and a lack of clear guidelines to follow. The sheer variety in protein
structure has not allowed for any one clustering method to be sufficient for a given problem.
Therefore, many studies have been conducted on clustering ensembles, also referred to as
clustering aggregation, which means the process of integrating multiple clustering models
(members) into a single amalgamated partition [22].

We adopted and modified the ACE algorithm, one of the clustering ensemble meth-
ods, to classify the hydrophilic groups into head and tail [22]. The ACE algorithm has
a consensus function based on the object co-occurrence approach. It first calculates the
co-occurrence of objects in different members and then decides their cluster labels to gen-
erate a consensus result. In other words, it counts the event of an object in one cluster,
or that of a pair of objects in the same cluster, and produces the final clustering result
by a voting system among the objects. The following sections present how it works in a
regular sequence.

Definitions of the mACE algorithm:

1. δ: A binary membership value of an object corresponding to a specific cluster,
δ ∈ {0, 1}.

2. θ: The membership matrix, in which the columns are newly formed clusters and the
rows are objects.

3. C: The set of all the newly formed clusters after the merging process has concluded.
4. Sc: The cluster similarity Sc is an indicator of how much overlap there is between two

clusters from different members. Pearson’s correlation values were employed as this
indicator and are as follows:

Sc

(
cq

j , cl
j

)
=

cov
(

cq
j , cl

j

)
σcq

j
σcl

j

, (1)

where q and l are the clustering members including clusters c.
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5. Sx: The membership similarity Sx indicates the similarity between an object xi and
a new newly formed cluster ĉ =

{
ci + cj + · · ·+ cr

}
that is formed by summing the

initial r clusters. It is defined as follows:

Sx
(
xi, ĉg

)
=

θ
(
xi, ĉg

)
max{θ(xi, C)} , (2)

where C denotes the set of newly formed clusters, C =
{

ĉ1, . . . , ĉg
}

.
6. α1: A threshold for merging clusters. Its value is decided based on Sc.
7. α2: A certainty threshold for placing an object into a cluster. Its value is determined

based on Sx.
8. Pc: Cluster certainty, Pc, defined as the mean of the membership similarity of objects

in a newly formed cluster ĉ, i.e.,

Pĉ =
1
|ĉ|

|ĉ|

∑
i=1

Sx(xi, ĉ). (3)

9. Qc: Cluster quality, Qc, determined as the variance of a newly formed cluster ĉ, i.e.,

Qĉ =
1
|ĉ|

|ĉ|

∑
i=1

(Sx(xi, ĉ)− Pĉ)
2. (4)

10. Certain object: For an object xi, if its maximum membership similarity Sx is greater
than or equal to a predefined value a2, it is seen as a certain object.

if max(Sx(xi, C)) ≥ a2, xi is decided to be a certain object. (5)

11. Uncertain object: For an object xi, if its maximum membership similarity Sx is less
than a predefined value a2, it is seen as a uncertain object.

if max(Sx(xi, C)) < a2, xi is decided to be an uncertain object. (6)

Transformation: After setting m members that depict different clustering methods
to make initial clusters, this stage transforms them into a new representation. In other
words, each cluster c is transformed to a binary characteristic vector in which a value of
one denotes that the corresponding objects are affiliated with that cluster, and zero denotes
the opposite. For a particular jth cluster c in clustering member q, its corresponding vector
is expressed as cq

j = [δ(x1), . . . , δ(xn)]
T , where δ(xi) is the binary membership and takes

the following value:

if xi ∈ cj, δ
(
xi, cj

)
= 1,

if xi /∈ cj, δ
(
xi, cj

)
= 0.

(7)

where i denotes the index of objects, j(= 1, . . . , kq) denotes the index of clusters in each of
m members, and q(= 1, . . . , m) represents the index of members in a clustering ensemble.
The figure below shows an example of the transformation process.

Generating consensus clusters: The goal here is to find the two most similar clusters
and merge them iteratively to generate k clusters. For this, the following steps are required:

1. Starting with km clusters, placed in different members, we measure the cluster similar-
ity Sc between the initial clusters. Cluster similarity is defined as Pearson’s correlation,
defined in Equation (1).
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2. Merge two clusters with the greatest similarity iteratively until no pairs of clusters
similar enough remain based on the following criteria:

if Sc

(
cq

j , cl
j

)
≥ a1, cq

j and cl
j are merged (summed). (8)

if Sc

(
cq

j , cl
j

)
< a1, cq

j and cl
j are not merged (summed). (9)

Elimination process: Having generated consensus clusters, if clusters are not merged,
the elimination is processed based on cluster certainty. The certainty of each cluster is
defined in Equation (3), and their certainty values are sorted in descending order. All the
remaining clusters except for the top k clusters are eliminated.

1. If the number of newly formed clusters after the consensus function is greater than k,
a predefined number of clusters in practice, the elimination process is performed.

2. Membership similarity matrix Sx between objects and newly formed clusters, defined
in Equation (2), is calculated. This is used to enforce assigning each object to the
final clusters.

3. Cluster certainty using Equation (3) is computed from membership similarity matrix
Sx. The k clusters with the highest cluster certainty values are selected as final
consensus clusters.

Enforce hard clustering: In this stage, the aim is to assign each object to just one cluster.
Because certain objects have the highest membership similarity value, greater than a2,
as defined in Equation (5), it is identified as the corresponding cluster. On the contrary, if an
object’s highest membership similarity value is less than a2, it is defined as an uncertain
object, as defined in Equation (6). This object can be identified through the minimum effect
rule, which is explained in the following process:

1. Identify certain objects in θ as in Equation (5).
2. Estimate the cluster quality of each candidate cluster in θ. The cluster quality, calcu-

lated using Equation (4), is defined as the variance of the membership similarity of
objects in a cluster.

3. Recalculate the quality of each cluster (candidate) including the membership similarity
of the current object (the object to be allocated).

4. Compare the difference between the original cluster quality (Step 2) and the current
cluster quality (Step 3).

5. Allocate the current object to the candidate cluster, which has a minimum effect on
the original quality.

3.3.2. Implementation of Clustering Algorithms

We employed K-means [19], spectral clustering [20], and Ward’s hierarchical clus-
tering [21] algorithm as members. For the construction phase of clustering members,
Scikit-learn (https://scikit-learn.org/, accessed on 8 March 2021) [25], a popular and pow-
erful machine learning library, was used. K-means has been proven to be an effective way
to yield good results in clustering problems, but a major drawback of this algorithm is
that they would not be used to divide clusters lying on manifolds. Because molecules can
be expressed in graph representation, which is viewed as a manifold space consisting of
nodes (atoms) and edges (bonds), the spectral clustering and Ward’s clustering algorithm
were employed. The number of clusters was set to two, and all parameters were set to
default values (Figure 10).

https://scikit-learn.org/
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objects 𝒎𝟏 𝒎𝟐

𝒙𝟏 1 1

𝒙𝟐 2 2

𝒙𝟑 1 1

𝒙𝟒 1 1

𝒙𝟓 2 1

𝒙𝟔 2 1

𝒙𝟕 2 2

𝒙𝟖 1 2

𝒙𝟗 2 1

𝒙𝟏𝟎 1 2

objects 𝑪𝟏
𝟏 𝑪𝟐

𝟏 𝑪𝟏
𝟐 𝑪𝟐

𝟐

𝒙𝟏 1 0 1 0

𝒙𝟐 0 1 0 1

𝒙𝟑 1 0 1 0

𝒙𝟒 1 0 1 0

𝒙𝟓 0 1 1 0

𝒙𝟔 0 1 1 0

𝒙𝟕 0 1 0 1

𝒙𝟖 1 0 0 1

𝒙𝟗 0 1 1 0

𝒙𝟏𝟎 1 0 0 1

Figure 10. An illustrative example of two clustering members for a dataset with 10 objects.

3.4. Scoring

Through a series of processes, a triblock having two hydrophilic blocks and one
hydrophobic block was obtained, as shown in Figure 11. There are a total of five sub-scores
for obtaining the carrier suitability (CS) score, where four sub-scores are associated with
structural properties and one sub-score is related to the value of logP. The following sections
describe how to calculate each sub-score.

Block A
Block B

Block C

Figure 11. The triblock form of DB13751. The red and green line areas represent the hydrophilic
blocks, and the blue line area represents the hydrophobic group derived from the clustering process.
We call the red line area Block A, the blue line area Block B, and the green line area Block C. These
blocks are used to calculate the sub-scores.

3.4.1. Score 1: Distance between Blocks A and C

For a molecule to be suitable as a carrier, it should be aligned linearly, and the distance
between Blocks A and C should be large. To verify this condition, the distance between
the hydrophilic clusters was measured. Score 1 is an indicator of the distance between
hydrophilic clusters.

In Figure 12, the red dot is the center point of Block A. The green point is the center
point of Block C, and the distance between the points is one. Blue dots represent a head
atom and tail atom, respectively. The head atom and the tail atom are the two most distant
atoms in the molecule, and the distance between them is referred to the “distance from
head to tail”.
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If the distance between Blocks A and C (α) is large compared to the total length of the
molecule (β), the corresponding molecule is regarded to be highly linear. We define Score 1
as Algorithm 2.

(α)

(β)

Figure 12. The distance between the hydrophilic clusters (Score 1). Blue dots represent length of the
molecule. The red dot represents the center point of Block A. The green dot represents the center
point of Block C.

Algorithm 2 Score 1: distance between Blocks A and C.

1: center point h1 = colMeans(Block A coordinate)

2: center point h2 = colMeans(Block C coordinate)

3: distance between Blocks A and C = dist(center point h1, center point h2)

4: Score 1 =
distance between Blocks A and C

distance from head to tail
5: Return Score 1

3.4.2. Score 2: Within-Block Distance

One way to determine if Blocks A, B, and C are clearly separated is to check if each
block is internally well packed. In order to determine how well these blocks were packed,
the distances between the hydrophilic/hydrophobic groups in each of the blocks were
averaged and used as the within-cluster distance. This algorithm is illustrated in Figure 13.

Figure 13. Within-block distance (Score 2). Red arrows represent the distance between groups
belonging to Block A. Blue arrows represent the distance between groups belonging to Block B. In this
case, Block C has only one group. These distances were used to measure Score 2 (Algorithm 3).
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Algorithm 3 Score 2: within-block distance.

1: h1 = mean(each distance(Block A coordinate))

2: h2 = mean(each distance(Block B coordinate))

3: h3 = mean(each distance(Block C coordinate))

4: final within-group distance = mean(h1, h2, h3)

5: Score 2 = 1−
final within-group distance

distance from head to tail
6: Return Score 2

3.4.3. Score 3: Size Asymmetry between Block A and Block C

The larger the size difference between Blocks A and C, that is the more the number
of groups on one side and the smaller the number of groups on the other, the higher the
suitability of the carriers is. This algorithm is illustrated in Figure 14. To calculate this
value, the number of groups of Block A and the number of groups in Block C are used.
The number of smaller parts of the two is used as a denominator, and the number of larger
parts as a numerator in the calculation, which is defined as Score 3. Score 3 is a proportional
representation of the size of Blocks A and C (Algorithm 4).

Figure 14. Size asymmetry between Block A and Block C (Score 3). The number of groups belonging
to Blocks A and Block C can be compared.

Algorithm 4 Score 3: Size asymmetry between Block A and C.

1: h1 length = nrow(Triblock A coordinate)

2: h2 length = nrow(Triblock C coordinate)

3: Score 3 =
max(h1 length, h2 length)

min(h1 length, h2 length)
4: Return Score 3

3.4.4. Score 4: Number of Head and Tail Atoms Included in the Hydrophilic Group

If both the head and tail atoms mentioned in Section 3.4.1 are hydrophilic, it can
be inferred that the molecules are in the form of blocks and have linearity. Therefore,
after finding the head and tail atoms, we identified to which group the molecules belonged.
If both molecules belong to hydrophilic groups as in Figure 15, it means that both ends
of the molecule are hydrophilic. If only one of the two atoms belongs to a hydrophilic
group, only one side of the molecule is a hydrophilic group. If neither atom belongs
to a hydrophilic group, it means that the corresponding molecule is less utilizable as a
hydrophilic carrier. We define Score 4 as Algorithm 5.
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Figure 15. Number of head and tail atoms included in the hydrophilic group (Score 4). The blue
dots represent the head and tail atoms, which means two atoms that have the longest distance
within a molecule. Head and tail atoms can be checked to determine whether they belong to
hydrophilic groups.

Algorithm 5 Score 4: number of head and tail atoms included in the hydrophilic group.

1: outermost atom = which.max(each dist(atom coordinate))

2: Score 4 = sum(outermost atom ⊂ c(Block A, Block C))

3: Return Score 4

3.4.5. LogP Score

To determine the suitability of a material as a hydrophilic material carrier, it is neces-
sary to consider not only the structural features, but also the chemical properties. Even if
hydrophilic groups and hydrophobic groups exist in molecules, if either side is overwhelm-
ingly larger, it is not suitable as a carrier material. Therefore, if the partition coefficient
of a molecule is calculated, it can be determined whether the candidate material is suit-
able. The partition coefficient is an indicator of the hydrophilic/hydrophobic (lipophilic)
strength of a molecule; the smaller the value, the more it becomes hydrophilic, and the
larger the value, the more hydrophobic. If a particular molecule is excessively hydrophilic
or hydrophobic with extreme partition coefficient values, it is deemed unsuitable as a
carrier material. Therefore, as the logP value approaches zero, the logP score with a higher
score is generated as shown in Figure 16:

logP score = max(min(log(
2

|p|+ 0.01
), 1.1), 0). (10)

The logP score has a higher value as the molecule is neutral and a lower value as the
degree of hydrophilicity or hydrophobicity increases. When logP is zero, it has a maximum
value of 1.1, and when logP is lower than −2 or higher than 2, it has a minimum value
of zero.

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log_p

lo
gP

 s
co

re

Figure 16. LogP score. The closer the logP value is to zero, the higher the score. The maximum value
of the score is 1.1, and the minimum value is zero.
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3.5. Single Layer Modeling

The Schrödinger software (Version 2018.3) was used to determine whether a single
layer of DB13751 can be formed between two materials, especially water and nafamostat. A
representative 3D conformation of DB13751 was generated by “LigPrep” of the Schrödinger
software. Single layer generation was simulated by “Build Structured Liquid” of the
Schrödinger software, with DB13751 between water and nafamostat.

3.6. Experimental Methods (Evaluation Methods)
3.6.1. Fabrication of NM-Loaded Micelle NPs

DB13751 (glycyrrhizin, TOKYO CHEMAICAL INDUSTRY, Tokyo, Japan), 20 mg, was
dissolved in EtOH 1 ml. Oil (1 mL) was added to the glycyrrhizin solution after checking
the layer separation. Simultaneously, nafamostat mesilate (EnzyChem Lifesciences, Seoul,
Korea), 4 mg, was dissolved in DW10 mL. The EtOH layer was added to the nafamostat
solution, sonicated using a probe-type sonifier, dialyzed using a dialysis membrane bag
(MW 6000–8000) and lyophilized. The nafamostat mesilate-loaded micelle NPs are referred
to as NM-loaded micelle NPs.

3.6.2. Characterization of NM-Loaded Micelle NPs

The morphology of the glycyrrhizin micelle NPs and NM-loaded micelle NPs was
examined using a transmission electron microscope (TEM, Talos L120C, FEI, Prague, Czech)
at the National Instrumentation Center for Environmental Management(NICEM). Then,
they were individually dispersed in DW (0.1 mg mL−1) to measure their particle size
distributions and zeta potential values using a SZ-100V2 instrument (HORIBA Instruments
Inc., Kyoto, Japan).

3.6.3. Evaluating the Nafamostat Mesilate Loading Efficient

To evaluate the amount of nafamostat mesilate loaded, the NM-loaded micelle NPs
were dissolved in PBS (pH 2), and the loading amount of nafamostat was determined with
a plate Reader EPOCH 2 (BioTek Instruments Inc., Winooski, VT, USA) at 260 nm.

3.6.4. Cell Cytotoxicity

A549 cells (human lung adenocarcinoma cell line) were obtained from Korean Cell
Line Bank (KCLB, Seoul, Korea). A549 cells were cultured in RPMI 1640 medium (GibcoTM,
22400-089, Waltham, MA, USA) containing 10 % fetal bovine serum (GibcoTM, 16000-044,
Waltham, MA, USA) and penicillin–streptomycin solution (GibcoTM, 15140122, Waltham,
MA, USA) in an incubator at 37 ◦C, 5% CO2. A549 cells were inoculated into a 96-well plate
at a concentration of 1 × 104 cells/well, and NM-loaded micelle NPs were administered
at each concentration (1, 10, 50, 150, and 250 µM). The standard of the concentration was
nafamostat. Cells viability analysis after 24 h of incubation was measured with a plate
reader at an absorbance of 450 nm using an EZ-Cytox (DoGen, EZ-3000, Suwon, Korea) kit.

4. Conclusions

In this study, a novel computational method named CSS for identifying drug carrier
candidates using molecular functional groups and their positional information is described.
As a condition of screening, whether the hydrophilic cluster has asymmetry, has an am-
phiphilic structure, or has a linear shape is determined. Six candidates are derived from
this method, and one of them is selected through qualitative examination and tested by
in vitro experiments. In addition, simulation using the Schrödinger software is performed
to examine the formation of a single layer. Consequently, these three tests yield results
consistent with those of the computational method we developed. Nevertheless, the re-
search we did has some limitation. First, simulations using the Schrödinger software are
used in many computer-aided drug discovery studies and are easy to implement, but are
not handled absolutely well. This simulation is just a reference and is not a key validation
procedure within this study. Next, the proposed system would be one of many drug
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screening methods that can include analyses of drug-drug interaction, toxicity prediction,
and the drug release profile. Ligand-based drug discovery research such as drug–target
binding affinity should be also studied for the prediction of the dual mode of action. Fi-
nally, for practical application, the results of in vitro toxicity experiments are presented,
but in vitro and in vivo efficacy evaluation experiments should be followed. We propose a
method for screening candidates for drug delivery system by analyzing the structure of the
molecule. As it is a new approach, there are many limitations, but there would be a great
possibility of expanding the research.
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