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As a type of regulated cell death (RCD), immunogenic cell death (ICD) can

initiate the adaptive immune responses. Numerous reports highlight the

capacity of ICD to alter the tumor immune microenvironment by releasing

Damage-Associated Molecular Patterns (DAMP) or danger signals to boost the

efficacy of immunotherapy. Therefore, identification of the ICD-associated

biomarkers is crucial for the prediction of ICD-induced immune responses.

In this report, the consensus clustering technique was used to identify two

subcategories (subtypes) linked to ICD. In comparison to the ICD-low

subcategory, the ICD-high subcategory showed longer survival and more

immune cell infiltration. Then, a novel ICD-associated prognostic model was

developed and validated for predicting the survival of patients with breast

invasive carcinomas (BRCA) and is linked to the tumor immune

microenvironment. To conclude, a novel ICD-based BRCA classification

scheme was designed. For individuals with BRCA, this categorization will be

crucial for directing the assessment of prognosis and treatment.
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Introduction

As a type of regulated cell death (RCD), immunogenic cell death (ICD) can trigger the

adaptive immune responses (Garg et al., 2015; Galluzzi et al., 2020). Several researches

published in the last few years have introduced the notion of ICD. Tumor cells can induce

ICD by expos to calreticulin (CRT) and releasing high mobility group protein B1

(HMGB1), this promotes the recruitment of antigen presenting cells (APCs) and

tumor infiltration of T cells, which contribute to the activation of antitumor immune

responses (Sun et al., 2020; Jin and Wang, 2021). Cancer immunotherapy refers to the

utilization of the body’s immune system to stimulate antitumor immune responses.
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Numerous trials have explored the antitumor role of ICD via the

activation of immune responses (Ahmed and Tait, 2020). The

ICD is important in combating cancer because of its ability to

elicit antitumor immune responses and thereby enhance the

therapeutic efficacy of chemotherapeutic and radiotherapeutic

agents (Troitskaya et al., 2022). Although ICDs have been

employed in a variety of preclinical models, there have been

insufficient data on their clinical application (Fucikova et al.,

2020). Therefore, further research on ICD-linked studies in

patients could be performed in a clinical setting. It is crucial

to detect biomarkers that can categorize the patients based on

their response to ICD immunotherapy.

The incidence of breast cancer in women will ranking first

among all types of cancers with a global occurrence (SUNG et al.,

2021). Since breast cancer has a lower mutational load and is

immunogenic, it is considered a “cold” tumor. However, recent

research has found that both the Human Epidermal growth

factor Receptor 2 (HER-2)-Positive and the Triple Negative

(TN)-breast cancers have a higher expression level of tumor-

infiltrating lymphocytes (TILs) and programmed death ligand 1

(PD-L1) (Dieci et al., 2021). The immune checkpoint inhibitors

(ICIs) that target the PD-L1 and programmed death-1 (PD-1)

could promote immunogenicity and modify the tumor

microenvironment (TME) to enhance the therapeutic effects.

Efforts to identify precise biomarkers to predict

immunotherapies in BRCA would become more prominent as

a result of the ongoing development of cancer immunotherapies,

improved knowledge of T cell responses to targeted immune

checkpoint medications, and the success of the clinical

investigation of drugs that block these ICI molecules.

For the purpose of predicting the prognosis, immunological

milieu, and response to immunotherapy in BRCA, a novel ICD

risk model was developed in this study with the goal to identify

ICD-associated biomarkers. In the future, hopefully, it will be

useful for clinical decision-making.

Experimental procedures

Datasets used in the study

The Cancer Genome Atlas (TCGA) is a publicly funded

project to catalog and discover major oncogenic genomic

alterations. Clinicopathological factors and the RNA-

sequencing transcriptome data regarding BRCA (993 tumors

and 107 normal) were derived from the NCI-TCGA dataset

(https://portal.gdc.cancer.gov/).

GeneMANIA

GeneMANIA (http://www.genemania.org) (Vlasblom et al.,

2015) is a web site for generating hypotheses about gene function,

analyzing gene lists and prioritizing genes for functional assays,

and was employed for predicting the gene and protein

interactions, pathways, and functions of ICD-associated

mRNAs as well as their related interactors.

Designing a new protein-protein
interaction network

Herein, a new protein-protein interaction (PPI) network was

investigated using the online software of Search Tool for

Retrieval of Interacting Genes (STRING) (https://string-db.

org/) (Szklarczyk et al., 2019). Differential expression of the

ICD-associated mRNAs and their likely interactions were

determined and integrated using the PPI network analysis.

Consensus clustering

In this report, consensus clustering was carried out with a

ConsensusClusterPlus tool in the R software for identifying the

molecular subtypes associated with ICD. Subsequently, for

ensuring the accuracy of the derived results, the optimal

number of clusters was assessed for k = 2–10, and the

complete process was repeated 1000 times. The cluster maps

were created using the Pheatmap tool in R.

MethSurv

The researchers investigated the prognostic significance of

the single CpG methylation status of ICD-associated mRNAs in

the BRCA patients using MethSurv (https://biit.cs.ut.ee/

methsurv/). It is a web platform that helps in survival analysis

based on the CpG methylation pattern.

Identifying the differentially expressed
genes (DEGs)

Here, the t.test function of the R software was used for

assessing the significance of each mRNA across different

groups. The p. adjust function was used to calculate a

significant FDR for each gene to ultimately obtain the

differential information for each gene. The following screening

criteria were followed for determining the differential expression

of the mRNAs: adjusted p-value<0.05 and | fold change|>1.5.

Functional enrichment analysis of the data

Herein, the Kyoto Encyclopedia of Genes and Genomes

(KEGG) and the Gene Ontology (GO) analyses were used for
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comparing the biological effects and differential signal pathways

across the ICD-high and -low cohorts. The KEGG rest API tool

(https://www.kegg.jp/kegg/rest/keggapi.html) was used in this

study. The most recent gene annotation of the KEGG

pathway was taken for enrichment analysis using the

clusterprofiler tool from the R-package (ver. 3.14.3) for

deriving the gene set enrichment analysis (GSEA) results. The

GO annotation of all genes from the R package org. Hs. eg.db

(ver. 3.14.3) was utilized to map the genes into a background set,

with the R package clusterProfiler as the background for the

purpose of deriving the results of the functional enrichment

analysis of the gene sets. A p-value<0.05 and an FDR<0.1 were

regarded to be statistically significant, with the maximal gene set

size of 5000 and minimal gene set size of 5.

Gene set enrichment analysis of the data

The enrichment scores forGene set enrichment analysis (GSEA)

were acquired from the GSEA dataset (http://software.

broadinstitute.org/gsea/index.jsp). The ICD-low and -high cohorts

were combined, websites were retrieved usingGSEA software (ver. 3.

0), and the molecular signature database (http://www.gsea-msigdb.

org/gsea/downloads.jsp) was used. The C2 cp. kegg. v7.4. symbols

were further acquired. Furthermore, the GMT subset was used for

assessing the molecular mechanisms and relevant pathways, based

on phenotypic grouping and gene expression profiles. We set the

maximal gene set size of 5000, 1000 resampling, and aminimal gene

set size of 5. Values with a p < 0.05 and FDR<0.1 denoted a

statistically significant difference.

FIGURE 1
Consensus clustering identification of ICD-related subgroups. (A) Protein-protein interactions among the genes related to ICD using STRING;
(B) Protein-protein interactions among the genes related to ICD using GeneMANIA; (C) Heatmap displaying the expression of 32 ICD genes in the
BRCA and normal tissue samples using the TCGA database; (D–F) The consensus clustering delta area curve shows the relative difference (variations)
in the area under cumulative distribution function (CDF) curve when k = 2 to 10; (G) The consensus clustering solution (k = 2) for 32 genes in
993 BRCA samples is shown on the heatmap; (H) The expression profiles of 32 ICD-related genes are shown on the heatmap. (I) KM curves of the
patient’s OS in the ICD-low and ICD-high subcategories, where red indicated a higher expression and blue indicates a lower expression level.
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Characterization of immune landscape
between 2 ICD subgroups

An immune infiltrating cell score was generated for each

sample based on the expression profiles using the R package

IOBR utilizing Cibersort and Estimate techniques. IOBR is a

computational tool that is generally used for immune-tumor

biology investigations.

Somatic mutation analysis

The TCGA GDC data portal contained information

regarding somatic mutation for BRCA samples in the “MAF”

format. The “Maftools” program in R software was then used to

generate waterfall plots, which allowed for the visualization and

summarization of all mutated genes.

Survival analysis

For comparing the OS values between the high- and low-ICD

risk cohorts, Kaplan-Meier (KM) analysis was carried out with the

survminer and survival package in R software. Univariate Cox

regression analysis was used to generate prospective prognostic

markers, and the multivariate Cox regression analysis was

employed for determining if the risk score could be used as a

risk factor for OS in BRCA in an independent manner.

Designing the ICD-Linked risk signature

In this study, the survival status, survival time, and gene

expression data were integrated with the R package of glmnet. The

Lasso-Cox technique was used for carrying out regression analysis. To

construct the bestmodel, 10-fold cross-validation was also performed.

FIGURE 2
DEGs and associated signaling pathways are identified. (A) The distribution of theDEGs between the ICD-low and ICD-high subcategories in the
TCGA dataset; (B) The expression of DEGs in various subgroups; and (C,D) the GO and KEGG enrichment analyses of signaling pathways; (E,F) The
GSEA identifies the fundamental signal pathways present in both the ICD subcategories.
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Tumor IMmune estimation resource

The researchers used the Tumor IMmune estimation

resource (TIMER) algorithm dataset (https://cistrome.

shinyapps.io/timer/) to investigate the correlation between the

ICD-associated mRNAs expression level in BRCA. The TIMER

dataset includes information regarding 32 different cancer types

and contains 10,897 samples derived from The Cancer Genome

Atlas (TCGA). It also includes data related to the immune cells

like CD8+ T cells, CD4+ T cells, macrophages, neutrophils, B cells,

and dendritic cells.

Connectivity map database

Connectivity map (CMap) (https://clue.io) applies a

systematic approach to reveal interactions among drugs,

compounds, and diseases based on alterations in the genetic

backgrounds of BRCA patients. Drugs potentially related to

BRCA were found by uploading up-regulated genes and

down-regulated genes in ICD-associated genes.

Statistical analyses

To perform statistical analysis, the R language (version 4.0.1)

was used. KM survival analysis was performed along with a log-

rank test to compare survival. p < 0.05 was considered to indicate

a statistically significant difference.

Results

Use of consensus clustering technique for
identifying 2 ICD-Associated subtypes

Abhishek et al. (Garg et al., 2016) presented a cohort of

34 ICD-associated genes. Here, a total of 32 ICD-associated genes

were detected, which were expressed in BRCA, using the TCGA

database. Thereafter, the PPI network was analyzed with the

STRING database for determining the relationships between the

identified ICD-associated genes (Figure 1A). The GeneMANIA

data also showed that the interactors and genes linked to ICD

that were differently expressed were primarily involved in

controlling the production of interleukin-6, etc. (Figure 1B).

ICD gene expression varied substantially between normal and

the BRCA samples (Figure 1C). Then we determined the

predictive value of the DNA methylation status of the ICD-

associated genes exclude PDIA3, IFNB1, CXCR3 in BRCA using

MethSurv (Supplementary Figures S1, S2). DNA methylation

expression levels concluded that cg10858077 of FOXP3,

cg21721489 of HMGB1, cg13263472 of HSP90AA1,

cg11354472 of IL17RA, cg01351089 of MYD88, cg12121075 of

P2RX7, cg26971585 of PRF1 and cg09637172 of TNF had the

highest DNA methylation levels and significant prognostic value

(likelihood ratio (LR) test p-value < 0.05) in BRCA

(Supplementary Table S1).

Then, using consensus clustering, two ICD-linked BRCA

clusters were identified. Two clusters, determined by the TCGA

dataset, were found to have distinctive ICD gene expression

FIGURE 3
Comparing the somatic mutations occurring in the various ICD subgroups.
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profiles after the K-means clustering analysis (Figures 1D–G).

Low expression of ICD-linked genes in cluster C1 denoted an

ICD-low subcategory. Cluster C2, on the other hand, displayed

an overexpression, which indicated the ICD-high subcategory

(Figure 1H). The C1 cluster included the ICD-low category,

whereas the ICD-high subgroup was designated as cluster C2.

Additionally, survival analysis revealed that the clinical outcomes

of these ICD-based subcategories varied. Compared to the ICD-

high subcategory, the ICD-low group was linked with lower

survival (Figure 1I).

Identifying the DEGs and signal pathways
in the various ICD subcategories

In this study, the key DEGs and vital signaling pathways involved

in both the categories were identified for understanding themolecular

mechanisms modulating prognosis in the two ICD subcategories. A

total of 2799 dysregulated genes were detected (Figures 2A,B), and

these genes were enriched in immune system functions such as

cytokine-cytokine receptor interaction, immune responses, adaptive

immune response, chemokine signaling pathway, NK-cell mediated

cytotoxicity, Th1 and Th2 cell differentiation, etc. (Figures 2C,D).

These findings implied that the ICD-linked genes were related to the

immunological microenvironment. The GSEA technique was used

for comparing both the ICD-low and ICD-high subcategories,

thus further determining the crucial signal transduction

processes that were induced in the ICD-high category.

Furthermore, immunological system development, T cell

receptor signaling pathways, immune effector processes,

and B cell receptor signaling pathways all showed

differential enrichment (Figures 2E,F).

Somatic mutations and the tumor
microenvironment in different subtypes

The findings revealed that distinct somatic mutation profiles

between the two subtypes (Figure 3). The most frequently

mutated genes were TP53, PIK3CA, TTN, and CDH1.

FIGURE 4
Immunological profiles of the different ICD subcategories. (A) Relative Proportion of the infiltration of immune cells in the ICD-low and ICD-
high subcategories; (B) Stromal, Immune, and Estimate scores in the ICD-low and ICD-high subcategories; (C) The significant variations in the
infiltration of immune cells in both subcategories; (D,E) The differential expression of numerous immune checkpoint genes (D); and the HLA genes
(E), in the 2 subtypes.
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Besides, the mutation frequency was higher in the ICD-high

subcategory in comparison to the ICD-low subcategory. There

have been amounting evidences that ICD can affect the induction

of specific antitumor immune responses. Here, the differences in

the Tumor Microenvironment (TME) were also determined

between the 2 subtypes. Figure 4A depicted the immune

infiltration state of 993 BRCA patients, from the TCGA in its

entirety. In comparison to the ICD-low subcategory, the ICD-

high subtype showed higher immune, Stromal, and Estimate

scores (Figure 4B). Then, the immunological infiltration levels of

the 22 immune cells between both the subtypes were determined

using the Cibersort strategy as well as the lm22 feature matrix. In

comparison to patients within an ICD-high subcategory, those

with the ICD-low subcategory showed considerably reduced

levels of activated CD4+T cell memory, B-cell plasma, CD8+

T cells, T-cell regulation, resting CD4+ T cell memory,

macrophages M1 and M2, eosinophils, and activated myeloid

dendritic cells (Figure 4C). Additionally, the ICD-high

subcategory showed a higher expression of several Human

Leukocyte Antigen (HLA) genes and immunological

checkpoints than the ICD-low subcategory (Figures 4D,E).

Development and verification of the ICD
risk signature

In this research, a novel prognosis model was developed based on

the ICD-linked genes. The Lasso regression analysis was used for

evaluating 13 ICD-linked genes and selected them as predictive

models (Figures 5A,B). With the lambda value set to 0.009563,

13 genes were identified. The following model formula was used:

Riskscore = 0.1441*ATG5-0.0659*CASP8+0.0399*EIF2AK3+0.0112*

PIK3CA+0.2334*HSP90AA1+0.0725*NT5E+0.0787*IL1R1-0.4761*

MYD88–0.2712*IFNG+0.5758*IL10–0.0241*IL10–0.0241*CD4-

0.0094*CD8A-0.0186*CD8B.

WithAUCvalues set at 0.70 for a 1-year period, 0.79 for a 3-year

period, and 0.67 for a 5-year period, the ROC curves were depicted

(Figure 5C). Then, it was noted that 9 ICD-linked genes (Figure 5D)

FIGURE 5
Designing and validating the ICD risk signature. (A,B) Lasso Cox regression analysis was used to identify 13 genes in the TCGA dataset that were
strongly associated with OS; (C) ROC curves with the AUC values; (D,E) Univariate and multivariate Cox regression analyses were performed for
assessing the prognostic values of the ICD genes, with regards to OS; (F) Risk score distribution, OS status of every patient, and the heatmaps
depicting the prognostic application of the 13-gene signature; and (G) KM curves of the patient’s OS in the high-risk cohort and low-risk cohort
subcategories.
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and 3 ICD-linked genes (Figure 5E) were significantly correlated

with the OS values of the ICD patients using the Cox univariate

regression analysis and multivariate analysis, respectively. In

addition, the correlation between the riskscores and OS status

was also assessed. The results indicated that fewer patients in the

high-risk dataset survived (Figure 5F), with fewer surviving in the

high-risk cohort (Figure 5F). KM analysis was used for determining

the short OS status of the ICD patients in the high-risk cohort

(Figure 5G).

The relationship between the ICD risk
signatures and the TME

The findings demonstrated a negative link between native

B cells, active CD4 memory cells, M1 macrophages, helper

follicular T cells, CD8 cells, and regulatory (Tregs) T cells

among individuals with elevated risk scores (Figures 6A–F).

Additionally, the multivariate Cox regression analysis revealed

that the ICD risk score can be utilized as a potential prognostic

factor for BRCA patients in an independent manner (Figure 6G).

Correlation analysis between ICD-
associated mRNAs expression level and
the infiltrating immune cells

We found 13 ICD-associated mRNAs by Lasso-cox analysis,

and investigated the relationships between these mRNAs

expressions and 6 types of infiltrating immune cells

(neutrophils, macrophages, B cells, dendritic cells,

CD4 T cells, and CD8+ T cells) with the aid of the TIMER

FIGURE 6
The relationship between the TME and ICD risk signature. Scatter plots in (A–F) illustrate the relationship between risk score and the infiltration
status of activated CD4 memory cells, native B cells, CD8 cells, helper follicular T cells, M1 macrophages, and regulatory (Tregs) T cells; (G):
Multivariate Cox regression analysis assess the prognostic value of the ICD risk signature in BRCA patients in an independent manner.
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database. The results are presented in Figure 7. The results

showed that the 13 ICD-associated mRNAs expressions were

positively correlated with the infiltration of 6 types of immune

cells.

Identification of drugs related to ICD-
associated mRNAs

From the most significantly beneficial drugs, we identified

10 positively correlated drugs by CMAP, include pirenperone,

lidocaine, venlafaxine, tocainide, sulfasalazine, corynanthine,

candesartan-cilexetil, fomocaine, phenylbutazone and

lorazepam (Table 1).

Discussion

ICD is a distinct type of controlled cell death. As a form of RCD,

ICD orchestrates complex intercellular communication between

dying cancer cells and immune cells, which then triggers

antitumor innate and adaptive immunity (Krysko et al., 2012;

Riera Romo, 2021; Ye et al., 2021). There are 2 types of ICD-

induced mechanisms (Asadzadeh et al., 2020). The principal

consequences of endoplasmic reticulum (ER) stress cause type I

ICD to elicit ICD-associated danger signals. ICD-related

immunogenicity is caused by type II ICD, ER, and cell death

signals. Anticancer drug-induced ICD is a Type I form of ICD

that functions by inducing autophagy via the unfolded protein

response (UPR)-ER stress pathway. One aspect of cancer therapy is

FIGURE 7
Relationship between the ICD-associated mRNAs expression levels and the immune cell infiltration level using TIMER. (A–M) IL10, MYD88,
ATG5, HSP90AA1, IFNG, NT5E, CD4, CD8A, CD8B, IL1R1, CASP8, EIF2AK3, PIK3CA expression levels and the immune cell infiltration level.
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ICD-based induction, which involves killing the cancer cells so that

it can generate a long-lasting antitumor immunity similar to the

body’s natural antitumor-based immune response. It is now unclear

if ICD induced by anticancer medications can enhance the

prognosis of patients with BRCA by supplying long-term

antitumor immune memory. Preclinical investigations have

demonstrated that the ICD triggers tumor-related immune

responses via CTLs, which act as long-term immunological

memory and prevent distant relapse. However, there is

inadequate clinical evidence to confirm and validate this hypothesis.

In this context, it is important to identify the immunological

components needed to achieve long-lasting antitumor immunity. A

combination therapy incorporating anticancer drugs and vaccines or

ICIS, in addition to different anticancer drugs in development, could

improve antitumor immunity by regulating immunity.

Identification of biomarkers linked to ICD would therefore be

advantageous for BRCA, assuming that they could benefit from

immunotherapy. Herein, the findings revealed that the TME and

prognosis of BRCA were highly correlated with the expression of

genes linked to ICD. By using the consensus clustering technique

based on ICD-linked gene expression, two ICD subtypes were

identified. A positive clinical result and higher immune cell

infiltration were linked to the ICD-high subcategory. In addition,

using 13 chosen ICD-related genes, a prognostic risk signature was

designed and validated, thus classifying the BRCA patients into the

low-risk and high-risk cohorts. Additionally, this risk profile has a

good prognostic value for OS status and might be used

independently in predicting the outcomes of BRCA patients.

Abhishek et al. (Garg et al., 2016) presented a cohort of the ICD-

associated genes, whichwere used in this study. Three of the 32 ICD-

linked genes identified in this study had a significant impact on the

prognosis of BRCA patients. The TME, composed of stromal cells

(myoepithelial cells, fibroblasts, vascular endothelial cells), immune

cells (including T cells, B cells, macrophages and natural killer cells)

and the extracellular matrix, is a major regulator of carcinogenesis,

tumour progression and response to therapy. The TME in BRCA is

highly heterogeneous (Wilson et al., 2022). The TME is modified by

cancer therapy-induced ICD (Zhou et al., 2019; Tu et al., 2020; Yang

etal., 2020).Byreleasingantigensandadjuvant factors, ICDexpresses

its immunoregulatory capacity and modulates the tumor

microenvironment (TME) through “cold-warm-hot” immune

status, thereby improving T-cell priming and ultimately facilitating

T-cell-mediated attackof residual killer cancer cells (CCS) (Day et al.,

2021;Wangetal.,2021).ICDoccurssimultaneouslywiththeexposure

and production of a variety of DAMPs, which promotes their

interaction with the cognate PRRS exhibited by the innate

immune cells like DCs, macrophages, and monocytes. As a result,

these cells get activated andmatured and travel to thedraining lymph

nodes that are filled with the cancer-based antigen-related payloads.

WhenTcells are exposed to cancer antigens, the infiltrationdegreeof

immune cells into theTME is elevated (Serrano-DelValle et al., 2019;

Sansone et al., 2021). Based on this scenario, this study has identified

2 ICD subtypes using consensus clustering. To validate the

relationship between ICD-associated genes and TME, we used the

timerdatabaseandfoundthat theexpressionof ICD-associatedgenes

exhibited a positive correlation with infiltrating immune cells.

Currently, many studies have shown that tumor

immunogenicity can be increased by triggering specific cell

death forms in cancer cells. For example, chemotherapy

(Casares et al., 2005), radiotherapy (Krombach et al., 2018)

and photodynamic therapy (PDT) (Morais et al., 2021;

Rodrigues et al., 2022a), can induce immunogenic cell death

(ICD), which can make cancers more effective in triggering or

enhancing tumor antigen-specific immune responses. Current

studies recommend ICD induction in combination with other

immunotherapeutic strategies, such as immune checkpoint

blockade, to be explored for the treatment of cancer.

However, barriers such as the lack of standardization of ICD

testing in clinical patients and the need for more personalized

protocols based on detailed characterization of tumor cells must

be overcome before experimental protocols can be translated to

the clinic (Rodrigues et al., 2022b). Finally, we searched for

potential drugs using CMAP database to provide prospective

guidance for future clinical treatment.

TABLE 1 Summary of predicted CMap drugs.

Drug name Pharmacologic action Average mean score

pirenperone Serotonin receptor antagonist 0.34

lidocaine Histamine receptor agonist 0.27

venlafaxine Serotonin receptor antagonist|Adrenergic receptor antagonist|Norepinephrine reuptake inhibitor 0.44

tocainide Sodium channel inhibitor 0.45

sulfasalazine Antirheumatic drug|NFKB inhibitor 0.35

corynanthine Adrenergic receptor antagonist 0.30

candesartan-cilexetil Angiotensin receptor antagonist 0.32

fomocaine Voltage-gated sodium channel blocker 0.32

phenylbutazone Cyclooxygenase inhibitor|Prostanoid receptor antagonist 0.31

lorazepam Benzodiazepine receptor agonist 0.34
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In conclusion, this research reveals that ICD subtypes are

related to variations in the BRCA immunological TME. These

findings could help BRCA patients who are undergoing

immunotherapy-based treatments. Furthermore, an ICD-

linked prognostic signature model was developed and verified,

which could be vitally useful in predicting OS of the BRCA

patients. These results would definitely guide future clinical

interventions to a certain extent. Undeniably, we still have

limitations, as exemplified by the adoptionof publicly available

databases, and further experiments are needed to validate the

conclusions of this study.
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