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ABSTRACT

Understanding the role of a given transcription fac-
tor (TF) in regulating gene expression requires pre-
cise mapping of its binding sites in the genome.
Chromatin immunoprecipitation-exo, an emerging
technique using N exonuclease to digest TF un-
bound DNA after ChlIP, is designed to reveal tran-
scription factor binding site (TFBS) boundaries with
near-single nucleotide resolution. Although ChiP-
exo promises deeper insights into transcription reg-
ulation, no dedicated bioinformatics tool exists to
leverage its advantages. Most ChlP-seq and ChiP-
chip analytic methods are not tailored for ChlP-
exo, and thus cannot take full advantage of high-
resolution ChlP-exo data. Here we describe a novel
analysis framework, termed MACE (model-based
analysis of ChIP-exo) dedicated to ChIP-exo data
analysis. The MACE workflow consists of four steps:
(i) sequencing data normalization and bias correc-
tion; (ii) signal consolidation and noise reduction;
(iii) single-nucleotide resolution border peak detec-
tion using the Chebyshev Inequality and (iv) border
matching using the Gale-Shapley stable matching al-
gorithm. When applied to published human CTCF,
yeast Rebl and our own mouse ONECUT1/HNF6
ChIP-exo data, MACE is able to define TFBSs with
high sensitivity, specificity and spatial resolution,
as evidenced by multiple criteria including motif en-
richment, sequence conservation, direct sequence

pileup, nucleosome positioning and open chromatin
states. In addition, we show that the fundamental ad-
vance of MACE is the identification of two boundaries
of a TFBS with high resolution, whereas other meth-
ods only report a single location of the same event.
The two boundaries help elucidate the in vivo bind-
ing structure of a given TF, e.g. whether the TF may
bind as dimers or in a complex with other co-factors.

INTRODUCTION

Precise and comprehensive mapping of transcription factor
(TF) binding sites (TFBSs) is important for understand-
ing the mechanisms that regulate gene regulation. Chro-
matin immunoprecipitation (ChIP) is the most widely used
approach to study in vivo protein-DNA interactions (1).
In a cross-linked ChIP assay, proteins are cross-linked to
their target DNA and then immunopurified from sheared
chromatin. After reversing the cross-links, protein bound
DNA fragments are subjected to microarray hybridization
(ChIP-chip) or deep sequencing (ChIP-seq). Owing to the
rapid technological developments in high-throughput se-
quencing, ChIP-chip is less commonly used because of its
lower resolution, smaller dynamic range, limited sensitivity
and increased cost when applied to the entire mammalian
genome (2-4).

ChIP-seq is the most popular technique for TFBS map-
ping and provides higher resolution than ChIP-chip. How-
ever, its resolution is still highly limited by chromatin shear-
ing via sonication that breaks ChIPed DNA into a fixed
fragment size (e.g. 200 bases), which is much bigger than the
actual TFBS (e.g. 6-20 bases). To overcome this limit, Rhee
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Figure 1. MACE’s working procedure. (1) Sequencing depth normaliza-
tion and nucleotide composition bias correction. (2) Replicate consolida-
tion and noise reduction. Coverage signals were represented in BigWig for-
mat to facilitate visualization and downstream processing. Reads mapped
to forward and reverse strands were processed separately, and only the 5
ends of reads were used. Shown here were forward (blue) and reverse (red)
coverage signals calculated from three biologic replicates. (3) Border peak
detection. Significance of border peaks was determined using the Cheby-
shev inequality. (4) Border matching using the Gale—Shapley stable match-
ing algorithm.

et al. developed ChIP-exo, a technique that uses A phage
exonuclease to digest the 5’ end of TF-unbound DNA af-
ter ChIP (4). In ChIP-exo, \ exonuclease digestion leaves
homogenous 5" ends of DNA fragments at the actual two
boundaries of TFBS, and after sequencing and mapping
reads to the reference genome, two borders of TFBS could
be defined. The \ exonuclease treatment also helps eliminate
contaminating DNA and increases the signal-to-noise ratio
(SNR), which enables the identification of true albeit weak
bindings. Overall, ChIP-exo provides a direct, unbiased and
near-single base pair (bp) resolution mapping of protein—
DNA interactions in vivo, and promises new insights into
TFBS mapping and gene regulation.

Numerous tools have been developed to analyze ChIP-
chip and ChIP-seq data (5-14). However, most of them can-
not fully leverage the advantages of ChIP-exo. First, ChIP-
exo data is different from that of ChIP-seq because of the
\ exonuclease treatment, which trims unbound DNA to al-
most the same positions (i.e. the borders of TFBSs). As a
result, multiple reads aligning to the identical genomic po-
sition (a.k.a. clonal reads) should be handled differently. In
ChlIP-seq, clonal reads are likely to be originated from poly-
merase chain reaction (PCR) over amplification and should
be properly depleted, whereas in ChIP-exo, clonal reads are
expected because of the selection of A exonuclease digestion.
Second, TFBS detection is conceptually different in the two
methods. In ChIP-seq, a region is reported as a candidate
TFBS if its coverage signal is significantly higher than back-
ground, whereas ChIP-exo can define two boundaries of
the same TFBS, by virtue of the directional digestion of A
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Figure 2. Compare noise reduction effect using different methods. A,
Shannon entropy based noise reduction effect illustrated by coverage pro-
file around predicted CTCF motif. Forward and reverse coverage signals
(y-axis) were normalized and displayed using blue and red curves, respec-
tively. Dashed curves indicated raw signals before noise reduction (each
curve represented 1 replicate), and solid curves indicated consolidated sig-
nals after noise reduction. B, C and D, Comparing entropy based noise
reduction scheme to AM, GM and SNR. In panels B, C and D, signals
processed with entropy were indicated using solid curve, and signals pro-
cessed with AM, GM, SNR were indicated using dashed curves.

exonuclease. While several computational tools have been
successfully applied to predict TFBSs using ChIP-exo data,
these methods were originally designed for ChIP-seq, and
thus did not exploit the unique advantages of ChIP-exo
(15,106).

Here we introduce model-based analysis of ChIP-exo
(MACE), a novel computational tool taking advantage of
the unique characteristics of ChIP-exo data. MACE in-
cludes the following four major steps: (i) sequencing data
normalization and bias correction; (ii) signal consolida-
tion and noise reduction; (iii) single-nucleotide resolution
border peak detection using the Chebyshev Inequality and
(iv) border matching using the Gale—Shapley stable match-
ing algorithm (see ‘Materials and Methods’). We applied
MACE to both published and our own ChIP-exo datasets
and evaluated its performance using the cognate DNA mo-
tif, sequence conservation, nucleosome position (MNase-
seq), DNA accessibility (FAIRE-seq and DNase-seq) and
ENCODE ChIP-seq data. Our results indicate that MACE
can identify real TFBSs with high sensitivity, specificity and
spatial resolution.
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Figure 3. Evaluation of identified Rebl border pairs using DNA motif,
conservation and nucleosome position. (A) Rebl motif (TTACCC[G/T])
density profile (y-axis) over all 27mer border pairs. (B) Conservation profile
(y-axis) over all 27mer border pairs. Sequence conservation was measured
by phastCon score calculated by UCSC from multiple alignments of seven
yeast genomes. (C) Direct pileup of DNA sequences of all 27mer, and nu-
cleotides were illustrated with different colors: A (green), C (blue), G (or-
ange) and T (red). Sequences were sorted by Rebl motif position to facili-
tate visualization. (D) Nucleosome occupancy profile (y-axis) showing os-
cillatory pattern around the midpoint of border pairs. All detected border
pairs first were aligned by midpoints (x-axis) and extended 1.5 kb upstream
and downstream; M Nase-seq tag density then was calculated for the 3-kb
windows. (E) Heatmap showing nucleosome positions around border pair
midpoints. Yellow and blue indicate higher and lower nucleosome occu-
pancy levels, respectively.

MATERIALS AND METHODS
Public data resources

We downloaded human CCCTC-binding factor (CTCF)
and yeast Rebl ChIP-exo data from the NCBI Short Read
Archive (http://www.ncbi.nlm.nih.gov/sra; accession num-
ber SRA044886) (4). We downloaded human nucleosome
data from the NCBI Gene Expression Omnibus (http://
www.ncbi.nlm.nih.gov/geo; accession number GSE26501)
(17). Yeast nucleosome data were generated by Xi ef al. and
downloaded from Gene Expression Omnibus (accession
number GSE26412) (18). Human DNase-seq, FAIRE-seq
and CTCF ChIP-seq data were generated by the ENCODE
consortium and downloaded from the UCSC genome
browser (http://genome.ucsc.edu/) (19). We aligned human
CTCF ChIP-exo raw reads to GRCh37/hgl9 and yeast
Rebl ChIP-exo raw reads to SacCer3 using Bowtie (20).
Mouse HNF6 ChIP-exo raw reads were aligned to mouse
reference genome (mm10/GRCm38). Only the unique
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alignments were used for downstream analysis. PhastCon
conservation scores between 46 vertebrate genomes and be-
tween seven yeast species were downloaded from the UCSC
table browser. In silico predictions of CTCF and Reb1 bind-
ing sites were performed by Find Individual Motif Oc-
currences (FIMO), using a P-value cutoff of 1E-6 (21).
Position-weighted matrices of CTCF and Rebl motifs were
retrieved from the Jaspar database (http://jaspar.genereg.
net/) (22).

Mouse ONECUT1 ChIP-exo data

For each of three biological ChIP-exo replicates, post
mortem livers from three male C57BL/6J mice, ~4 months
old, were used. These mice were maintained in specific
pathogen-free conditions at the Hospital for Sick Children
Laboratory Animal Services according to an approved an-
imal use protocol and were kindly provided by Dr Jayne
Danska. Approximately one-third of each liver was uti-
lized per ChIP-exo experiment. Seven microgram of an an-
tibody against the liver-enriched TF ONECUTI1 (HNFG6;
Santa Cruz Biotechnology antibody sc13050) was used for
each biological replicate. Livers were cross-linked in 1%
formaldehyde and ChIP was performed as previously de-
scribed (up until and including the RTPA buffer washes; step
38 from Schmidt ez al. 2009) (23). The ChIP-exo portion of
the protocol was performed as previously described (Rhee
and Pugh 2011) with modifications making the assay com-
patible with the Illumina sequencing platform. Briefly, while
still on the magnetic beads (Invitrogen, Dynabeads), the
immunoprecipitated DNA was end-repaired (NebNext®
End Repair Module, New England Biolabs (NEB)). The P7
adapter (150 pmol) was designed based on the adapter se-
quence provided by NEB: 5-Phos-TGACTGGAGTTCA
GACGTGTGCTCTTCCGATCT-OH-3' and 5-OH-AG
ATCGGAAGAGCACACGTCTGAACTCC-OH-3'. Af-
ter ligation, the DNA was nick-repaired with phi29 poly-
merase, and digested by lambda (\) and RecJf exonucle-
ases (NEB). DNA samples were eluted from the beads
by performing reverse cross-linking overnight at 65°C, fol-
lowed by RNaseA (Ambion) and ProteinaseK (Invitrogen)
treatments. DNA was extracted using a phenol-chloroform-
isoamyl protocol and ethanol precipitation. DNA was de-
natured at 95°C, and 3’ ends were primer-extended with
a P7 fill-in primer (5 pmol; 5-OH-TGACTGGAGTTCA
GACGTGTGCTCTTCCGATCT-OH-3') and phi29 poly-
merase. A second adaptor ligation to only A exonuclease-
digested ends of double stranded DNA was performed
using 15 pmol of P5 adapter (sequence provided by
NEB: YOH-AGATCGGAAGAGCGTCGTGTAGGGA
AAGAGTG-OH-3" and 5-OH-TCTACACTCTTTCCC
TACACGACGCTCTTCCGATCT-OH-3'). The resulting
DNA samples were PCR-amplified using multiplexing in-
dex primers (NEBNext® DNA Library Prep Master Mix
Set for Illumina®). Libraries of 180-300 bp were elec-
trophoretically size selected with a 2% Pippin Prep gel (Sage
Science), quantified with 2100 Bioanalyzer (Agilent) and 50
bp reads were sequenced with the HiSeq2500 (Illumina) by
the Donnelly Sequencing Centre, Toronto. All raw data is
publicly available in ArrayExpress under E-MTAB-2060.


http://www.ncbi.nlm.nih.gov/sra
http://www.ncbi.nlm.nih.gov/geo
http://genome.ucsc.edu/
http://jaspar.genereg.net/
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Sequencing data normalization and bias correction

To define two borders of a TFBS with single-nucleotide res-
olution, we processed reads mapped to forward and reverse
DNA strands separately, and only the coverage signals con-
tributed by the 5" end of reads were used for downstream
analysis. Because sequencing depth may vary significantly
between samples, we used a size factor (F}) to normalize
sequencing depth to a common scale (e.g. 10 million total
reads):

. 1.0 x 107
J

where 7j is the total number of reads mapped to unique lo-
cations to the reference genome in sample ;.

Bias in nucleotide composition (i.e. dependence of nu-
cleotide frequency on position of the read) has been re-
ported in both RNA-seq and DNA-seq (24). We observed
similar bias from multiple independent ChIP-exo datasets
from different groups using different sequencing platforms
(Illumina® and SOLiD®), suggesting that the prevalence of
this bias in all ChIP-exo sequencing (Supplementary Figure
S1A-C). Such bias not only impacts the coverage unifor-
mity, but more importantly, it affects TFBS border peak de-
tection. We first estimated the background nucleotide com-
position bias from ‘singleton reads’ (i.e. reads that can be
uniquely mapped to the genome but have no overlap with
any other reads). The purpose of using singleton reads is
to preclude confounding factors such as PCR, IP or exonu-
clease selection. Assuming the frequency of the first k-mer
of reads was independent and identically distributed, bias
occurred if a k-mer frequency was much larger or smaller
than 1/(4%). Hansen et al. proposed a weighting function
to correct such bias by assigning each read a weight based
on its first heptamer (24). Although first proposed in RNA-
seq data, the weighting scheme can be adapted to correct
any sequencing bias occurring at the beginning of reads. The
weight for a particular oligomer (/) is calculated as:

| L
Wh) = —2=L
Fy(h)
where / represents oligomer (default hexamer or 6-mer), L
is length of read; Py(h) is the proportion of reads with /-
mer at the beginning (5 end); and 2,(/) is the proportion
of reads with A-mer starting at nth position (n =1, 2,..., L
— h). For reads without positional bias Py(h) is close to the
mean of B,(h), and therefore W(h) ~ 1.

Signal consolidation and noise reduction

Real ChIP-exo signals are usually confounded by factors
such as inexact cross-linking, exonuclease digestion, dy-
namic conformations of protein and PCR amplification.
Signals generated from such undesirable factors are nonspe-
cific and can be greatly reduced if we consolidate multiple
replicates. We used Shannon’s (relative) entropy (H) to con-
solidate replicates signal because: (i) it automatically con-
siders biological variance between replicates; large variance
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indicates poor reproducibility and therefore has lower en-
tropy score; (ii) perfect reproducibility will maximize Shan-
non’s entropy; (iii) its logarithmic scale will help reduce hy-
per dispersion incurred in ChIP-exo data; (iv) a larger num-
ber of replicates will have higher entropy. This is useful when
a particular replicate has no coverage (i.e. zero read count)
at a particular position in the genome. For instance, Shan-
non’s entropy is 1.386 in the case of perfect reproducibility
among four replicates; however, if one replicate has no cov-
erage at this position, entropy decreases to 1.099. This de-
crease is appropriate because confidence decreases when no
signal was detected at certain sequencing depth. Finally, (v)
it is straightforward to scale entropy (from 0 to 1) because
the maximum entropy is fixed for a given number of repli-
cates. The consolidated signal S; of all replicates (indexed by
j) at each nucleotide position (indexed by 7) was calculated
as follows:

.y QmXMM
S’(Entropy) = Z Z Ciij W x ]_,

n
=1 >
1

S =

x log

S =

where Cj; is the raw coverage derived from the 5" end of reads
at a position i in replicate j; n is the number of replicates (;
= 1,...,n); F; is the size factor used to normalize sequenc-
ing depth defined in previous section; W is the weight to
correct nucleotide composition bias defined in previous sec-
tion; and p; is the proportion of reads belonging to replicate
J at a particular position. P; is calculated independent of i
(a particular genome position). In other words, we will cal-
culate relative entropy for each nucleotide position of a par-
ticular locus. Basically, S; is the raw coverage (Cj;), normal-
ized by library size (F}) to correct sequencing depth, then
weighted by starting k-mer frequency (Wi) to correct nu-
cleotide composition bias, and then weighted by relative en-
tropy to consolidate and measure reproducibility between
replicates.

We compared this entropy-based noise reduction scheme
to other methods including arithmetic mean (AM), geomet-
ric mean (GM) and SNR. These methods are defined as fol-
lows:

1
n
n n
Siamy = £ 3 G Fi W Siamy = (H G F; W) ;
Jj=1 j=1

Mean(C;; F; W;)

4 T
SisNR) = 5 = Stdev(C,; F; W)

Border peak detection

It is expected that coverage signals at TFBS boundaries are
significantly higher than flanking regions. Therefore, bor-
der peak detection is essentially to identify ‘outlier’ sites
with unusually high coverage. Numerous sophisticated ap-
proaches for outlier detection are available, but many are
limited in that they assume a distribution or require prede-
fined upper and lower boundaries. We chose a nonparamet-
ric method based on the Chebyshev’s inequality because (i)
it makes no assumptions about the distribution of the cov-
erage signals; (ii) it assumes that a relatively small percent-
age of outliers are included in the data (in ChIP-exo experi-
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ments, we also expect that only a few positions are real bor-
ders in a TFBS); and (iii) this method is computationally
efficient and statistically robust. The Chebyshev Inequality
states that for a random variable X with finite mean u and
nonzero variance o and for any real number k > 1 (the in-
equality becomes vacuous when k < 1):

1
Pr(|X = pu| = ko) < 5

Applying this into border peak detection and using m and
s as estimators of  and 0. m and s are the average and stan-
dard deviation of ChIP-exo signal within a user specified,
local genomic interval (or background region), we have:

1
Pr(X—mzks)fﬁ

For example, if the coverage at a particular position (i) in
a particular genome interval was 4.5 SDs (standard devia-
tions) larger than the mean (), then the associated pseudo
P-value for this candidate border is 1/(4.5%*2) ~ 0.05. In
other words, within this genomic interval, the chance to ob-
serve a value that is the same or larger than that of position
i 1s 0.05. Similar to the ‘local lambda’ in MACS that cap-
tured the influence of local biases, 1 and s reflected the lo-
cal average signal and variability (7). As a non-parametric
method, Chebyshev Inequality is robust but very conser-
vative. However, in most cases, we expect only two border
peaks out of a protein-binding site, and therefore we need
the border peak detection method as conservative as pos-
sible. Too many border peaks will make the downstream
‘border matching’ step very difficult, and produce a large
number of false positive border pairs. Although this theo-
rem provides upper bounds rather than real P-values, the
Chebyshev Inequality remains one of the optimal solutions
for outlier detection (25).

Border matching

After border peak detection, the next step is to identify
border pairs that can demarcate TFBSs. According to the
ChIP-exo protocol, one forward border need to pair with
one downstream reverse border and such pairings should
be done in an exclusive manner (i.e. one border can only
be included in one pair). Because a given TFBS may have
multiple forward and reverse candidate borders derived ei-
ther from multiple cross-linking positions or spurious noise,
exhaustive matching (trying all possible pairings between
forward and reverse borders) could produce excessive false-
positives. Approaches such as matching a forward border to
its nearest reverse border or matching the two borders with
the highest signal may work for TFBSs with higher sequenc-
ing depth and fewer or no spurious borders. We rendered
border matching as a stable matching problem that could be
solved by using classic algorithms such as the Gale-Shapley
algorithm (26). The stability of matching is always guaran-
teed with this algorithm.

By assuming that the sizes of TFBS is relatively stable
throughout the genome, we can first estimate the optimal
size and then use the optimal size as the standard to weight
all candidate border pairs within a location. The quality of
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Figure 4. (A) Size distribution of border pairs called by MACE (purple)
and by Rhee etal. (2011) (green). MACE border pair had a single mode
(centered at 49), whereas border pairs identified by Rhee ezal. had bimodal
distribution (centered at 13 and 49). (B) CTCF ChIP-exo raw sequencing
tags density profile around predicted CTCF motifs. The blue and red curve
indicates the tag density profile calculated from reads mapped to the for-
ward and reverse strand, respectively. Bimodal patterns were observed for
forward and reverse signals.

the border pair is determined primarily by two factors: cov-
erage score S (i.e. coverage intensity) and border-pair size
d(d ~ N(ut, or)); an optimal border pair would maximize
S, and would be close to the biological expectation. There-
fore, before applying the Gale-Shapley algorithm to per-
form border matching, we need to weight coverage score
(S) with distance (d) and penalize the border-pairs with dis-
tances that are unusually larger or smaller than expectation.
We used the following weighting function:

d _ 2
S)veighled = Sobs X W = Sops X eXp <_%)
where Sops 1s the observed coverage score and Syeighicd 1S the
coverage score weighted by d; pt is the mathematic expecta-
tion of d and can be empirically estimated from a small sub-
set of high-confidence border pairs (i.e. borders that can be
unambiguously matched to each other). We used Gaussian
mixture models to estimate ut, because the distribution of
border pair size usually exhibits more than one mode (see
Figure 4 in Results). We assigned arbitrary initial values to
wut and then used an expectation maximization algorithm
to iteratively refine this value until it converged. K is ker-
nel width indicating weighting magnitude; a larger K value
indicates a smaller impact of d on Syeighted-

We incorporated the Gale-Shapley algorithm into the
border-pairing optimization procedure. Briefly, in a partic-
ular binding site, each border on the forward strand (f;, i =
1,2, 3...) will search for its candidate partners from the re-
verse stand (7, j = 1, 2, 3...) based on its own preference
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order, and vice versa. The Gale-Shapley algorithm gener-
ates optimized, stable border pair(s). All matches are stable
when there does not exist any alternative pairings in which
both f; and r; are better off than they would be with the el-
ement they are currently matched. Because \ exonuclease
digestions on two borders are independent events, we then
determined the significance level of border pairs using the
Fisher method to combine P-values (Pporder-1 and Pyorder-2)
of two borders into a single border-pair P-value (Pporderpair):

B borderpair

= PByorder—1 X Poorder—2 X (1 — 1og(Poorder—1 X Poorder—2))

RESULTS
Flowchart of the MACE algorithm

MACE processes ChIP-exo data in four steps: (i) sequenc-
ing data normalization and bias correction; (ii) signal con-
solidation and noise reduction; (iii) single-nucleotide reso-
lution border peak detection using the Chebyshev Inequal-
ity; and (iv) border matching using the Gale—Shapley stable
matching algorithm (Figure 1). We evaluated the computa-
tion performance of MACE using a single Intel Xeon CPU
(2.67 GHz). It consumed <1 Gb RAM and required about
10 h to process human CTCF ChIP-exo data that had three
replicates with a total of 82 million aligned reads.

Nucleotide composition bias correction

We first estimated the distribution of nucleotide composi-
tion bias from singleton reads, then corrected the bias by
reweighting each read according to its first K-mer. Using
CTCF ChIP-exo data as an example, we demonstrated that
this sequencing bias was effectively eliminated at the se-
quence level (Supplementary Figure S1C and D). To eval-
uate the impact of bias correction on border definition, we
selected 5000 in silico predicted, high-confidence CTCF mo-
tifs and calculated the coverage profile around them. Al-
though there was no obvious improvement on the definition
of four major borders (F1, F2, R1, R2, see below), spurious
signals within motif regions (between two vertical dashed
lines) were indeed reduced after correction (Supplementary
Figure S2).

We next investigated whether this nucleotide composi-
tion bias correction improved the overall performance of
MACE. We ran MACE without the bias correction step
and compared results to those obtained from a complete
MACE run. We found that nucleotide composition bias cor-
rection seemed to have little effect on the final number of
border pairs detected; we identified 41 407 unique border
pairs (52 616 with redundancy) with 90.12% (compared to
90.09% obtained from complete MACE run) of them could
be verified by ChIP-seq results from ENCODE (Supple-
mentary Figure S3A), and 42.78% (compared to 43.72% ob-
tained from complete MACE run) of them contain canon-
ical CTCF motif (Supplementary Figure S3B). However,
the distance between border pair and motif is indeed in-
creased (i.e. the spatial resolution becomes worse) without
bias correction (Supplementary Figure S3C). Overall there
is limited improvement by performing nucleotide composi-
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tion bias correction, therefore, this step (nucleotide bias cor-
rection) is optional and can be turned off in MACE analysis
procedure.

Noise reduction

To assess the effects of noise reduction, we selected 5000
in silico predicted CTCF motifs as we did previously and
calculated the coverage profile around them. Raw signals
(dashed curves) far from the CTCF motif were dramatically
reduced to a lower level after entropy-based noise reduc-
tion (solid curves) (Figure 2A). As an example, we chose a
binding site located in the promoter region of Myc, a well-
known target gene of CTCF. As expected, spurious signals
were significantly reduced and two boundaries of the bind-
ing site could be clearly detected. The binding site delimited
by the identified border pair was much smaller than the re-
gion covered by the raw signal. More importantly, the bind-
ing site was highly conserved and centered on the predicted
CTCF motif, suggesting the authenticity of this border pair
(Supplementary Figure S4A).

Despite the advantages of Shannon’s entropy in combin-
ing biological replicates and reducing spurious signals (see
‘Materials and Methods’), we have not shown whether it is
better than other commonly used simple methods. To an-
swer this question, we compared entropy-weighted average
with AM, GM and SNR using the same 5000 motifs as
above. Because scores (S) calculated from these methods
were in different scale, we normalized all scores between 0
and | using " = (S — Siin)/(Smax — Smin). Our results in-
dicated that the entropy-weighted average outperformed all
other methods in measuring reproducibility and reducing
noisy signals (Figure 2B-D).

We further investigated the performance of the entropy-
based noise reduction method on binding sites with rel-
atively weak signals. We ranked predicted CTCF motifs
in descending order according to the ChIP-exo tag inten-
sity and then divided them equally into four groups: the
first quantile (0-25%, strongest binding), the second quan-
tile (25-50%, modestly strong binding), the third quantile
(50-75%, modestly weak binding) and the fourth quan-
tile (75-100%, weakest binding). By comparing the sig-
nal profile before and after noise reduction, we found that
the entropy-based noise reduction strategy was most use-
ful when the ChIP-exo signal became weaker (Supplemen-
tary Figure S5). This is because weaker bindings have rel-
atively higher level of noise (i.e. lower SNR), and therefore
the room for improvement is larger. This further highlighted
the effectiveness and robustness of entropy-based noise re-
duction method.

To explore how entropy-based noise reduction scheme
impacts the final border pair detection, we ran MACE with-
out the noise reduction step. Compared to the complete
MACE run, we detected 12% fewer border pairs (36 355 ver-
sus 41 222). More importantly only 82.42% of them could
be verified by ENCODE ChIP-seq results, compared to
90.08% obtained from the complete MACE run (Supple-
mentary Figure S3A). This underlined the indispensability
of noise reduction during ChIP-exo analysis.



PAGE 7 OF 12

Identification of Reb1 binding sites in yeast genome

To demonstrate the performance of MACE, we applied
MACE to yeast Rebl ChIP-exo data published by Rhee
et al., we identified 1192 bp; the most frequent border-pair
lengths are 26 (21.8%) and 27 bp (22.3%) (Supplementary
Figure S6A, Supplementary Table S1) (4). When searching
for the canonical Rebl motif (TTACCCK) in a 61-bp win-
dow (e.g. extending 30 bp upstream and downstream to the
middle point of the border pair), we found 1118 border pairs
(94%) encompassing the Rebl motif, and the majority of
border pairs were localized in promoter regions that were
158 bp upstream of the transcription start site (Supplemen-
tary Figure S7). To evaluate the accuracy of detected bind-
ing sites, we picked 26mer and 27mer border pairs (because
they were most frequent) and performed motif searching.
As demonstrated by the motif density profiles, Reb1 motifs
were highly concentrated in the center of border pairs (Fig-
ure 3A, C and Supplementary Figure S6B and D).

We questioned whether cis-regulatory elements such as
Rebl binding sites were highly conserved across species. To
test this, we calculated the average phastCon conservation
score derived from seven yeast species for the 26mer and
27-mer border pairs mentioned above. In concordance with
the motif density profile, the border pair center has the high-
est phastCon score (Figure 3B and Supplementary Figure
S6C). Probably the most apparent evidence is to overlay
DNA sequences of border pairs directly, as shown by mul-
tiple studies (4,27,28). Note that border-pair pileup is dif-
ferent from motif-centered alignment performed by Rhee
et al., in that motifs are guaranteed to align together using
the latter approach. As shown in Figure 3C and Supplemen-
tary Figure S6D, Rebl motifs were still visually recognized
and located exactly in the middle when piling up MACE-
determined border pairs.

Because Rebl has an essential role in organizing chro-
matin and phasing flanking nucleosomes, we explored the
relationship between the identified Rebl border pairs and
nucleosome occupancy (29,30). We lined up all Rebl bor-
der pairs by their midpoints and extended by 1.5 kb up-
stream and downstream, and calculated nucleosome oc-
cupancy measured by tag density from MNase-seq (18).
We found that Rebl border pairs were located exactly in
nucleosome-free regions (NFRs) and the surrounding ~20
nucleosomes were well positioned (Figure 3D and E). This
further demonstrated the authenticity and accuracy of Rebl
border pairs as detected by MACE. Altogether, we exempli-
fied the accuracy of MACE in identification of TFBSs from
ChIP-exo data in the yeast genome.

Identification of CTCF binding sites in the human genome

We next applied our method to human CTCF ChIP-exo
data published by Rhee ef al., (Supplementary Table S2)
(4). The distribution of raw tags surrounding CTCF mo-
tifs showed four peaks (denoted as F1, F2, R1 and R2),
which marked the four exonuclease-derived borders. Rhee
et al. proposed that the outer borders (F1, R1) and inner
borders (F2, R2) reflected two different ‘stops’ of exonucle-
ase. [t may also have resulted from different zinc finger usage
by CTCF (31). We observed a similar pattern in yeast Rebl

Nucleic Acids Research, 2014, Vol. 42, No. 20 el56

ChIP-exo data, suggesting that this may be a common pat-
tern for ChIP-exo data (Supplementary Figure S8). These
four peaks could define four possible borders pairs (F1-
R1,F1-R2, F2-R1 and F2-R2). Considering the possibility
that spurious signals and protein cofactors would generate
more additional ‘confounding borders’, the real situation
would be more complicated.

We applied the Gale-Shapley stable matching algorithm
to find the optimal matches between forward and reverse
borders (see ‘Materials and Methods’). Strikingly, most
border pairs identified by MACE were 49 bp—exactly the
same size of F1-R1 as estimated from the unbiased, raw se-
quencing tag profile (Figure 4A and B), demonstrating the
power of our border-matching algorithm. In contrast, bind-
ing sites identified by Rhee ef al. (Supplementary Figure S6
in Rhee et al.) exhibited a bimodal distribution with a major
mode centered on 13 bp and a minor mode on 49 bp, the 49-
bp mode corresponded to F1-R 1 matches mentioned above,
and the 13-bp mode probably represented F1-R2 or F2-R1
matches that were paired using ‘closest principle’ (Figure
4B).

We next evaluated identified CTCF border pairs. We se-
lected 13mer and 49mer border pairs and checked the mo-
tif distribution, sequence conservation and direct border-
pair DNA sequence pileups. As expected from Figure 4, we
found that for 49mer border pairs, both motif density and
conservation score profile showed a single peak centered
on the border pairs, indicating that real CTCF bindings
were encompassed perfectly (Figure 5B, E and H). How-
ever, the bimodal distributions of motif density and conser-
vation that we observed for 13mer border pairs suggested
that these border pairs were located on either side of the
motif, rather than centered on it. (Figure SA, D and G, Sup-
plementary Figure S4B).

One key function of CTCF is to regulate chromatin struc-
ture, and its binding sites have been used to position nu-
cleosomes (32). We first aligned peak pairs by the mid-
point, then extended by 2 kb upstream and downstream,
and measured the nucleosome occupancy level using pub-
lished MNase-seq data (17). We found that CTCF bor-
der pairs were located in NFRs and could position 20 or
more nucleosomes around them (Figure 5C). The authen-
ticity of these identified binding sites were further verified
by both DNase-seq and FAIRE-seq data generated by the
ENCODE consortium from the same cell type (Figure 5F
and I).

Using the same MNase-seq dataset, we performed sim-
ilar analyses for peaks identified from ENCODE CTCF
ChIP-seq and peaks identified from CTCF ChIP-exo by
Rhee et al. In general, we found much weaker nucleosome
oscillation patterns and fewer well-positioned flanking nu-
cleosomes (Supplementary Figure S9A). Then we asked if
MACE identified border pairs without CTCF motifs could
be used as anchor points to position a nucleosome. Since
whether a motif can be aligned to DNA sequences depends
on the number of mismatches allowed, we divided all bor-
der pairs into six groups according to the edit distance be-
tween DNA sequence and the CTCF motif (i.e. 0-mismathc,
1-mismatch, 2-mismatch, 3-mismatch, 4-mismatch, 5-or-
more mismatches). We defined border pairs having ‘5-or-
more mismatches’ with canonical CTCF motif as those
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by PhastCon score calculated from multiple alignments of 46 vertebrate
genomes. Nucleotides are illustrated with different colors: A (green), C
(blue), G (orange) and T (red). We extended 50 nt upstream and down-
stream of border pairs.

‘without CTCF motif” because 66% of sequences randomly
selected from the genome would have CTCF motif if ‘5-
or-more mismatches’ were allowed (Supplementary Figure
S10). As shown in Supplementary Figure S9B, MACE bor-
der pairs without CTCF motif were still able to position
20+ nucleosomes precisely, and the authenticity of these
border pairs were confirmed by DNasel and FAIRE-seq
signals (Supplementary Figure S9C and D). This demon-
strated both the enhanced accuracy of ChIP-exo and the
power of MACE.

Identification of HNF6 binding sites in the mouse genome

We applied MACE to our own mouse ONECUT1 ChIP-
exo data (Supplementary Table S3). Out of the identified
border pairs, 25mer is the most abundant one, suggesting
the in vivo binding size of HNF6 was 25 bp. (Figure 6A).
We then extracted genome sequences of those 25mer border
pairs and piled them up directly. The motif (TATTGATT)
was visually recognizable and located right in the middle
of the border (Figure 6B). This motif corresponds to the
recently reported human liver ONECUT1 ChIP-seq (33).
In addition, the downstream polyT tract within 25mer bor-
der pair was also identifiable by inspection, even though the
signal was weaker. It was recently reported that traditional
motif representation methods relying upon residue frequen-
cies couldn’t effectively visualize weak signals (34). Using
an algorithm implemented in plogo, we found the down-
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stream polyT was significantly enriched, which accords with
the ONECUT motif recently obtained using HT-Selex that
was predicted to narrow the minor groove of DNA (Sup-
plementary Figure S11) (35). If we focused on those border
pairs with high confidence (i.e. both borders were well de-
fined and the border pair size is 25 bp), we found 93.4%
of them contained canonical ONECUT1 (Figure 6C). We
identified an ONECUT]1 motif variant (TATYGANC) by
directly piling up the remaining 6.6% border pairs (Figure
6D).

In summary, we found MACE could demarcate HNF6
binding boundaries in mouse genomes with high accuracy,
and precisely defined border pairs were useful to improve
motif detection, especially weak residues. We also demon-
strated that ChIP-exo data is useful to identify low abun-
dance motif variant, which might be overlooked by tradi-
tional motif detection methods because of the dominance
of the canonical motif.

Direct comparison reveals the superior performance of
MACE

Using a pseudo P-value cutoff of 0.05, we identified 41 222
unique CTCF border pairs (52 084 with redundancy), of
which 18 023 (43.72%) had canonical CTCF motif (RSY-
DMCMYCTRSTGK) (Supplementary Table S2). To esti-
mate the enrichment of CTCF motifs, we randomly shuf-
fled genome coordinates of these border pairs, and found
only 977 (2.37%) had the CTCF motif. In other words, the
CTCF motif was enriched 18.45-fold in MACE identified
border pairs, compared to background. As a comparison,
we performed the same calculation for binding sites identi-
fied by Rhee ez al.: 10970 of 35017 regions (31.33%) encom-
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passed the CTCF motif. MACE identified 6205 putative re-
gions not reported in the original paper, suggesting greater
sensitivity. More importantly, a higher proportion of bor-
der pairs detected by MACE had a supporting CTCF mo-
tif (43.72 versus 31.33% in the original paper), suggesting
higher specificity (Figure 7A). Additionally, we combined
binding regions identified from MACE and Rhee et al. to-
gether and divided them into three groups: Common (27
677), MACE-unique (13 545) and Rhee 201 1-unique (7340).
The CTCF motif was encompassed by 52.6% (14 553) of
common binding regions, 25.6% (3470) of MACE-unique
regions and 12.9% (946) of Rhee 201 1-unique regions (Fig-
ure 7A).

We also used ENCODE CTCF ChIP-seq data gener-
ated from the same HeLa cell line as an independent evi-
dence to compare MACE with the Rhee 2011 peak calling
method. Overall 89.4% (36 867) of putative regions iden-
tified by MACE and 89.6% (31 374) identified by Rhee
2011 method were concordant with ChIP-seq results (Fig-
ure 7B). We divided all putative regions into three groups as
above and found that that 99.3% (27 495) of common bind-
ing sites, 77.5% (10 503) of MACE-unique sites and 69.1%
(5070) of Rhee 2011-unique binding sites were verified with
ENCODE ChlIP-seq results. Consistent with the MACE-
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unique group having more genuine binding sites than that of
the Rhee 2011-unique group, we also found that the binding
regions in the MACE-unique group were more evolutionary
conserved (Figure 7C). Finally, when measuring the spatial
resolution by the distance between the center of CTCF mo-
tif and the center of putative binding regions, we observed
that MACE had better resolution than the method used by
Rhee et al. (Figure 7D).

Two computational tools Genome Positioning System
(GPS) (15) and genome-wide event finding and motif dis-
covery (GEM) (16) were developed and successfully applied
to TFBS prediction using ChIP-exo data. For technical rea-
sons, we were unable to perform a fair comparison between
MACE and GEM (see ‘Discussion’ section). Based on cross
strand correlation analysis, we estimated the size of DNA
fragment is 50 bp. Therefore, we extended the GPS reported
binding centers in both directions by 25 bp as the GPS de-
tected binding events. We then searched canonical CTCF
motif in these two lists of TFBSs, 43.7% (42.5%) of MACE
(GPS) detected TFBSs encompassing a CTCF motif (Sup-
plementary Figure S12A). When evaluated using ENCODE
ChIP-seq results, 89.4% (88.7%) of MACE (GPS) identified
TFBSs could be verified (Supplementary Figure S12B). We
measured the spatial resolution by distance between TFBS
center and CTCF motif center; the median resolutions for
MACE and GPS were 4.5 and 7 nt, respectively (Supple-
mentary Figure S12C and D). Overall, these results indi-
cated that MACE has better motif coverage, higher spatial
resolution (P-value < 2.2e-16, Wilcoxon rank sum test) and
higher validate rate than GPS.

Many tools have developed to analyze ChIP-seq data.
Here we compared MACE to MACS (v2.0.10) and
CisGenome (v1-1.2) using the same CTCF ChIP-exo data
(7,10). All three software were running with their default
configurations. 43, 52 and 40% of MACE, MACS and
CisGenome detected peaks contained canonical CTCF mo-
tif with MACS had the highest motif enrichment (Figure
8A). However, motif enrichment was also affected by the
peak (or border pair) size. As shown in Figure 8B, the peak
sizes of MACS (median = 131 bp) and CisGenome (median
= 232 bp) were much larger than that of MACE (median =
47 bp). We then measured the resolution using the distance
between motif and the center of peaks (or border pairs).
MACE (median = 4.5 bp) achieved the best resolution com-
pared to MACS (median = 15.5) and CisGenome (median
= 22.5 bp) (Figure 8C). And 90% of motifs in MACE bor-
der pairs were located within 20 bp around the midpoint,
while only 60 and 47% of motifs in MACS and CisGenome
detected peaks were located within 20 bp around the mid-
points (Figure 8D). We also prepared another version of
MACS peaks [referred as MACS (summit + 25 bp) in Fig-
ure 8] by extending 25 bp to peak summit to both up- and
downstream. Therefore, this list of peaks has constant size
of 51 bp, and always centers on the summit. As shown in
Figure 8A, only 36% of MACS (summit + 25 bp) peaks
contained CTCF motif because of their relative smaller size
compared to original MACS peaks. We found MACE bor-
der pairs still have better spatial resolution than MACS
(summit £+ 25 bp) and MACS (original) peaks with the
median distance for MACE, MACS (original) and MACS
(summit £ 25 bp) are 4.5, 15.5 and 9 bp, respectively. These
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results suggested that although ChIP-seq peak-calling algo-
rithms can be applied to ChIP-exo data, these tools might
not take full advantages (i.e. high resolution) of ChIP-exo
data.

SUMMARY AND DISCUSSION

ChIP-exo is technically different from ChIP-seq, and there-
fore data generated from these two platforms should be
processed differently. First, although biological replicates
are generally required in ChIP-seq experiments, it has been
reported that more than two replicates did not signifi-
cantly improve site discovery (14,36). This is because ChIP
sequencing can be easily saturated and additional repli-
cates in ChIP-seq are mainly used as a validation set.
However, replicates in ChIP-exo are used to reduce spu-
rious ‘noisy borders’ and enhance spatial resolution. Us-
ing CTCF ChIP-exo data, we showed that spurious sig-
nals could be reduced much greater using three replicates
than using two replicates (Supplementary Figure S13), sug-
gesting multiple replicates and noise reduction are criti-
cal for precise border definition. We exemplified in this
study that relative entropy combined ‘replicate consolida-
tion’ and ‘noise reduction’ in a single step and outperformed
other methods. This approach is also potentially useful
for other high-throughput sequencing-based data (such as
RNA-seq) analysis. Second, based on the design philoso-
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phy of ChIP-exo, MACE expects over-represented signals
at genomic positions where \ exonuclease stopped during
DNA digesting, and these positions are potential protein-
binding boundaries in vivo. This distinguishes MACE from
most peak calling algorithms designed for ChIP-seq (in
ChIP-seq, such overrepresented signals are generally con-
sidered as PCR over-amplification bias and should be re-
calibrated properly). Computational tools such as GPS and
GEM have been developed and were successfully used to
predict TFBS using ChIP-exo data, but both tools were
not designed to take advantage of this unique feature (i.e.
overrepresented signals signify binding borders) to improve
resolution (15,16). Because of the assumption that over-
represented signals were expected at certain genomics po-
sitions for a particular TFBS, MACE cannot be applied to
traditional ChIP-seq data.

TFs play key roles in establishing nucleosome position-
ing and many studies have reported an association between
TFBS and nucleosome positions (4,30,32,37). However, the
exact relationship between TFBS and nucleosome position-
ing is not yet fully understood due to the lack of large-
scale, high-resolution experimental data. Our results indi-
cated that Rebl binding in the yeast genome could posi-
tion 20 nucleosomes within 3 kb regions (Figure 3D and
E) and that CTCF binding in the human genome could po-
sition 20 or more nucleosomes within a 4-kb region (Figure
5C). Note that no motif information was used to increase
spatial resolution during binding-site detection; which high-
lights higher resolution of ChIP-exo and the advantages of
MACE.

When evaluating Rebl border pairs, we found that 94%
of border pairs (1118 of 1194) identified by MACE en-
compassed the Rebl motif, demonstrating high specificity.
When comparing MACE with the method used by Rhee et
al. (4), we reported that 50% or fewer of the putative bor-
der pairs encompassed the CTCF motif (Figure 7A); this
was because we used only the canonical CTCF motif re-
trieved from the JASPAR database. Considering that the
CTCEF protein has up to six degenerate motifs, we expected
that the percentage of CTCF border pairs having a CTCF
motif would be considerably higher. We searched the 15mer
canonical CTCF motif in candidate border pairs with mis-
matches up to five. When allowing four mismatches, 72%
of detected border-pairs encompassed CTCF motifs (Sup-
plementary Figure S10). The border pairs containing mo-
tifs with a four-nucleotide difference from the canonical
one were still likely to be the real binding, because of the
enriched CTCF motif (Supplementary Figure S10), simi-
lar tag intensity profile (Supplementary Figure S14E) and
higher sequence conservation compared to genome back-
ground (Supplementary Figure S14F).

During the development of MACE, GEM was devel-
oped and applied to ChIP-exo data analyses (15,16). GEM
achieves its high spatial resolution by reciprocally improv-
ing motif detection, using binding event locations and bind-
ing event predictions made with discovered motifs. It is diffi-
cult to compare MACE and GEM because the DNA motif
is the only independent evidence that can be used to evalu-
ate spatial resolution, and the motifis already used by GEM
to improve resolution, although some TFBSs are reported
without the DNA motif. In addition, the focus of GEM and
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MACE are different in that GEM reports single-nucleotide
positions, whereas MACE reports regions (border pairs).
For example, with MACE, we can estimate that the bor-
der pair size of Rebl, HNF6 and CTCF is 27, 25 and 49 bp
respectively.
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