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Acute optic neuritis
Unmet clinical needs and model for new therapies

ABSTRACT

Idiopathic demyelinating optic neuritis (ON) most commonly presents as acute unilateral vision
loss and eye pain and is frequently associated with multiple sclerosis. Although emphasis is often
placed on the good recovery of high-contrast visual acuity, persistent deficits are frequently
observed in other aspects of vision, including contrast sensitivity, visual field testing, color vision,
motion perception, and vision-related quality of life. Persistent and profound structural and func-
tional changes are often revealed by imaging and electrophysiologic techniques, including optical
coherence tomography, visual-evoked potentials, and nonconventional MRI. These abnormalities
can impair patients’ abilities to perform daily activities (e.g., driving, working) so they have impor-
tant implications for patients’ quality of life. In this article, we review the sequelae from ON,
including clinical, structural, and functional changes and their interrelationships. The unmet needs
in each of these areas are considered and the progress made toward meeting those needs is
examined. Finally, we provide an overview of past and present investigational approaches for
disease modification in ON. Neurol Neuroimmunol Neuroinflamm 2015;2:e135; doi: 10.1212/

NXI.0000000000000135

GLOSSARY
AD 5 axial diffusivity; DTI 5 diffusion tensor imaging; FA 5 fractional anisotropy; GCL 5 ganglion cell layer; IPL 5 inner
plexiform layer; mfVEP 5 multifocal VEP; MS 5 multiple sclerosis; MSFC 5 Multiple Sclerosis Functional Composite; MT 5
magnetization transfer; NEI-VFQ-25 5 25-item National Eye Institute Visual Functioning Questionnaire; OCT 5 optical
coherence tomography; ON 5 optic neuritis; ONTT 5 Optic Neuritis Treatment Trial; QOL 5 quality of life; RD 5 radial
diffusivity; RGC 5 retinal ganglion cell; RGCL 5 retinal ganglion cell layer; RNFL 5 retinal nerve fiber layer; SD-OCT 5
spectral-domain OCT; SLCLA 5 Sloan low-contrast letter acuity; TD-OCT 5 time-domain OCT; VEP 5 visual-evoked
potential.

Although idiopathic demyelinating optic neuritis (ON) broadly describes the vision loss associ-
ated with any inflammation of the CNS white matter tract referred to as the optic nerve, the
term is most commonly associated with the unilateral visual loss that occurs in multiple sclerosis
(MS). Atypical ON may be associated with neuromyelitis optica, infections, or systemic etiol-
ogies, but this article will focus predominantly on the typical demyelinating ON syndrome asso-
ciated with MS. Typical ON is characterized by a loss of vision that develops over days and is
associated with dyschromatopsia, visual field loss, and pain that is often exacerbated by eye
movements.1 Usually there are no retinal exudates or severe disc swelling and vision is better
than no light perception.

Significant knowledge about the clinical course of ON derives from the Optic Neuritis Treat-
ment Trial (ONTT). First published in 1992, the ONTT established that high-dose IV corti-
costeroid treatment slightly accelerated the rate of recovery but had no effect on long-term visual
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outcomes.2 Visual fields and contrast sensitiv-
ity were the primary measures of efficacy and
showed a slight advantage of high-dose IV
corticosteroids over placebo at 6 months. Nev-
ertheless, vision for most patients in all treat-
ment groups at 6 months was characterized as
“normal” based on high-contrast visual acuity,
a secondary outcome measured using Snellen
charts, which was 20/50 or better for .90%
of patients regardless of treatment assignment.
This created the impression that most patients
make an excellent recovery following acute
ON. However, a follow-up study 5–8 years
later found abnormalities in affected eyes vs
fellow eyes for the primary endpoints of con-
trast sensitivity (58% vs 17%) and visual field
(33% vs 12%), as well as the secondary end-
points of high-contrast visual acuity (39% vs
16%) and color vision (37% vs 18%).3

Furthermore, as described in the sections that
follow, advances in imaging and electrophysi-
ologic techniques over the past 2 decades have
revealed that persistent structural and func-
tional damage is detectable following episodes
of acute ON and that the associated visual
deficits may have considerable impact on qual-
ity of life (QOL) measures. Given the devel-
opment of therapies with the potential to
prevent neuroaxonal loss and facilitate remye-
lination following acute ON, it is time to re-
assess the extent of spontaneous recovery in
ON and the approaches to determining out-
comes so that unmet needs may be identified
and addressed.

In this article, we review the evidence for
persistent functional and structural abnormali-
ties in ON and their impact on visual function
and vision-related QOL. We also provide an
overview of investigational approaches to treat
the underlying pathology in ON.

CLINICAL COURSE AND ASSESSMENT OF
VISUAL FUNCTION Typical ON develops over a
7- to 10-day period and begins to resolve within
2–3 weeks.4,5 Initial rapid improvement in visual
function within the first month begins to slow in
an asymptotic fashion over succeeding months,4 and
improvements have been observed up to 2 years
later.6 Numerous studies have found evidence of
persistent retinal thinning, optic nerve atrophy, and
reduced amplitude and increased latency of visual-
evoked potentials (VEPs), consistent with chronic

demyelination and neuroaxonal loss as sequelae of
acute ON (see next sections). The extent of latency
recovery appears to be more complete in younger
patients vs older patients, females vs males, and
patients with less severe attacks vs more severe
attacks.7 Moreover, recovery of different aspects of
visual function may proceed at different rates, with
different sensitivities among tests, and to a different
extent (figure 1). Recovery of different aspects of
visual function may also involve distinct mechanisms,
as patients who achieve partial recovery of static visual
functions (e.g., high- and low-contrast visual acuity)
after 1 month may recover those functions
completely, whereas dynamic visual function (motion
perception) appears to recover at a slower constant rate
irrespective of the severity of the initial deficit.8

Although patients with ON frequently regain
visual acuity to a large extent as measured by full-
contrast letter charts (e.g., Snellen charts), low-
contrast acuity/sensitivity reveals permanent deficits
and is a better predictor of impairment for daily
activities that require vision, such as reading, facial
recognition, and driving.9 Persistent deficits in
low-contrast letter acuity characteristic of ON are
better measured using Sloan charts (Sloan low-
contrast letter acuity [SLCLA]) that include versions
with 2.5% and 1.25% contrast levels to better stratify
deficits. The pattern of visual field defects may help
distinguish ON from other neuropathies. In ON, a
central scotoma is common and Humphrey central
visual field perimetry frequently shows diffuse loss,
whereas peripheral, altitudinal, or other defects may
occasionally be evident on formal perimetry. Color
vision is commonly affected in ON, but there is no
consistent pattern of dyschromatopsia.10 More com-
plex visual functions, such as motion perception, are
also frequently affected by ON.11 Binocular summa-
tion (improved vision with binocular viewing) has
also been shown to be reduced, and in some instances
patients demonstrate binocular inhibition (worse
vision with binocular viewing), perhaps reflecting
concomitant disease activity in postgeniculate path-
ways in some patients.12 Thus, evaluation of visual
function after ON requires multiple tests to ensure
comprehensive assessment of the potential deficits.

APPROACHES TO ASSESSMENT OF ON Optical

coherence tomography. Assessment of structural
changes in the course of ON has been revolutionized
over the past 2 decades by advances in optical coher-
ence tomography (OCT), a technique that uses inter-
ferometry of reflected light to obtain images of the
retinal layers13 (figure 2). Most OCT studies of
patients with ON have used time-domain OCT
(TD-OCT), which provides cross-sectional images
from different tissue levels. Since the peripapillary
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retinal nerve fiber layer (RNFL) is composed of
unmyelinated optic nerve axons, RNFL thinning
detected by OCT is directly interpretable as
neuroaxonal degeneration. More modern systems
using spectral-domain OCT (SD-OCT) provide
considerably improved resolution and speed and can
be used to generate 3-dimensional images for
measurements of thickness of neuronal layers.

Acute ON often results in inflammatory swelling
of the RNFL of the affected eye. The inflammatory
swelling generally resolves within 3 months14 and is
accompanied by a period of RNFL thinning that
continues for up to 7–12 months but is most prom-
inent in the first 6 months after acute ON onset.5,15

The initial period of swelling prevents examination of
the timing of axonal loss in the RNFL with
TD-OCT. In contrast, the thickness of the retinal
ganglion cell layer (RGCL) appears to be less affected
by edema,16,17 so the more detailed resolution with
SD-OCT may allow for a better assessment of the
timing of thinning in reference to acute ON. Recent
studies suggest that thinning of the RGCL starts
within several weeks after an episode of ON and
may precede RNFL thinning.16,17 Ultimately, RNFL
thinning in affected eyes correlates with visual acuity,
low-contrast letter acuity, visual field, color vision, and
VEPs (see also below),18,19 thereby supporting its
functional relevance, and RNFL thickness ,75 mm
has been shown to predict reduced visual field func-
tion.5,20 Although it is not yet clear whether prevent-
ing RNFL thickness from crossing that threshold can
reduce the extent of associated visual deficits, it is
worth noting that it is also near the lower limit of
RNFL thickness, when virtually all retinal ganglion
cell (RGC) axons have been lost (20–40 mm).21

Thinning of the RNFL following an episode of
ON is thought to result from axonal loss subsequent
to axonal injury during the inflammatory demyelinat-
ing lesion of the affected optic nerve. However, it is
noteworthy that detectable RNFL thinning and asso-
ciated visual deficits are also observed in unaffected
eyes of patients with MS in the absence of history
of ON.15 One possibility is that some “mild” attacks
are not reported or do not result in deficits that are

Figure 1 Evolution of visual function after acute optic neuritis

Figure shows the measurement of high-contrast visual acuity (VA) using the Early Treatment
Diabetic Retinopathy Study (ETDRS) charts (A), the 2.5% and 1.25% low-contrast VA using

Sloan charts (B, C), and color vision using the Hardy-Rand-
Rittler (HRR) pseudoisochromatic plates (D) in a cohort of
37 patients with acute optic neuritis (AON) and visual assess-
ment at baseline (presentation) and months 2, 4, and 6 after
onset (data fromGabilondo, I et al. 201516). Each colored line
is data from an individual patient, the solid black line repre-
sents the mean from all patients, and the dashed black line
shows the normal values for healthy individuals for binocular
testing (ETDRS 5 70; 2.5% low-contrast VA 5 43; 1.25%
low-contrast VA5 34; HRR5 36). Reprinted with permission
from Elena H. Martinez-Lapiscina.
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immediately evident to patients. Thus, in nonacute
ON eyes there is a component of RNFL thinning that
may be attributable to other causes, such as subclin-
ical optic nerve inflammation, neurodegeneration
within normal-appearing white matter, or transsyn-
aptic degeneration associated with lesions elsewhere
in the visual pathway.22–24

The increased resolution of SD-OCT and the use
of segmentation algorithms have allowed a more
detailed analysis of the effects of ON and MS on ret-
inal structure25 (figure 2). These studies found that
RNFL thinning associated with MS with or without
ON is not confined to the peripapillary region but
also affects the macula. In addition, a similar pattern

Figure 2 Optical coherence tomography of the human retina

A) Detailed retinal segmentation sample on spectral-domain optical coherence tomography (OCT) image. Six intraretinal
layer borders can be automatically segmented. (B) Correlation of anatomy with OCT for the human retina. On the left is a
hematoxylin & eosin stain of the human retina, in the center is a schematic representation of the cell composition of the
human retina, and on the right is a magnification of the image obtained with spectral-domain OCT (bottom), with indications
of the retina layers identified. Figure 2B reprinted with permission from Santiago Ortiz-Perez. BM5 Bruch membrane; CC5

choriocapillaris layer; GCL 5 ganglion cell layer; ILM 5 inner limiting membrane; INL 5 inner nuclear layer; IPL 5 inner
plexiform layer; OLM 5 outer limiting membrane; ONL 5 outer nuclear layer; OPL 5 outer plexiform layer; PL 5 photore-
ceptor layer; RNFL 5 retinal nerve fiber layer; RPE 5 retinal pigment epithelium.
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of thinning is observed for the ganglion cell layer/
inner plexiform layers (GCL 1 IPL) in the peripap-
illary region and macula. A recent study in patients
with ON found that decreases of$4.5 mm in GCL1

IPL thickness after 1 month predicted low-contrast
visual acuity dysfunction at 6 months, whereas de-
creases of $7 mm predicted visual field and color
vision deficits.16 In another study in patients with
MS with or without a history of ON, thinning of

GCL 1 IPL was most closely associated with visual
function and vision-specific QOL.26 Results of these
studies suggest that degeneration associated with ON
and MS is widespread in the RGCL.

Together, these studies provide compelling evi-
dence for structural damage from acute ON, and they
also provide a powerful demonstration of the poten-
tial for SD-OCT as a tool to assess neurodegenerative
changes in acute ON. However, both TD-OCT and

Figure 3 Multifocal visual-evoked potentials in optic neuritis

Figure shows the visual-evoked potentials (VEPs) in 52 sectors of the retina. (A, B) A case of acute optic neuritis with diffuse impairment of the VEPs in the
affected eye (A) compared with the unaffected eye (B), with significant impairment of the latencies and amplitudes. (B, C) After recovery from the acute optic
neuritis, the VEPs show a significant decrease of amplitude and latencies in most of the sectors of the affected eye (C) compared with the unaffected eye (D).
Reprinted with permission from Ana Tercero.
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SD-OCT appear to be less sensitive than VEPs for as-
sessing the clinical and subclinical effects of ON,27,28

so interpretation of OCT may require complemen-
tary assessments using functional techniques. Fur-
thermore, improvements are needed to standardize
and reduce test-retest variability in SD-OCT sys-
tems.29 Given the rapid evolution of the technology,
the technical expertise required, and differences
between commercially available instruments,30 it is
also important that criteria be established to ensure
quality control for OCT as a validated outcome mea-
sure, a process that is under way.31

VEPs. Standard VEPs elicited by visual stimuli and
measured in the occipital cortex can be used to detect
functional changes in the visual pathway, including
the optic nerve.32 In multifocal VEPs (mfVEPs),
visual stimuli are provided independently to localized
regions of a wider visual field (48°) and responses to
the stimuli are measured individually,33 allowing for a
more detailed analysis of visual function covering a
much larger area of the visual pathway than standard
VEPs (figure 3).

The severity of an attack of ON and the extent of
inflammation are correlated with an acute reduction
in the amplitude of VEPs.34 Reduction in VEP ampli-
tude is thought to reflect functional impairment of
axonal conduction either transiently (e.g., due to
acute inflammation or demyelination) or persistently
(due to axonal loss). Within 3–4 months after the
acute episode, the amplitude generally shows some
recovery, reflecting resolution of edema, and the
waveform of the VEP is well-preserved, but the
latency is significantly increased. This residual latency
delay is thought to result from demyelination of sur-
viving axons, which interferes with saltatory conduc-
tion of the action potential along the optic nerve
lesion. Some investigators have reported subsequent
improvement in latency for up to 2 years,6 whereas
others have reported no further recovery after 4
months.8 Prolongation of latency is most evident in
the central visual field, perhaps indicating that the
central (macular) region of the optic nerve is more
susceptible to demyelination or resistant to remyeli-
nation.32 The central region of the optic nerve con-
tains the greatest density of parvocellular fibers that
convey static information (e.g., form and color), but
VEP latency in patients with ON correlates more
strongly with dynamic functions (e.g., motion detec-
tion) than with static functions. This may suggest
more specific effects on magnocellular fibers or
greater vulnerability of fibers required for accurate
signal timing.8

Effects of ON on VEPs have also been shown to
reflect structural changes in the RNFL. In a study
of 21 patients following a first episode of unilateral

ON, VEP latency prolongations and amplitude re-
ductions of affected eyes at baseline and 3 months
after onset were associated with RNFL thinning,19

suggesting a relationship between the initial structural
loss and residual functional impairment. In a separate
study of 25 patients with ON with incomplete recov-
ery after 1 year, similar relationships between VEP
latency/amplitude and RNFL thinning were still evi-
dent,18 further supporting the clinical relevance of
this technique.

mfVEPs have been used in a growing number of
small studies to examine the pathology of ON in
greater detail.35–38 mfVEPs detect functional changes
associated with onset and evolution of acute ON38

and may be particularly useful to assess treatment
outcomes in clinical trials as it appears to be more
reproducible than standard VEPs.39 One study of 25
patients with ON between 6 and 12 months after
onset found an apparent discrepancy between struc-
tural and functional measures in these patients.35 As
RNFL thinning progressed in the affected eyes over
this time period, the mfVEP amplitude partially
recovered, suggesting that functional recovery may
be due in part to remyelination and/or neuronal
plasticity.

Functional data provided by VEPs and mfVEPs
make an ideal counterpart to structural retinal assess-
ments using OCT. However, as with OCT, criteria
need to be established to ensure reproducibility and
validity of VEP results. Furthermore, larger-scale
studies are needed to confirm the results of current
smaller studies.

MRI. Nonconventional MRI techniques offer novel
tools to examine the structure of CNS tissues in
detail. For example, magnetization transfer (MT)
imaging exploits the difference in resonance in free
protons and protons associated with macromolecules
(e.g., myelin), the ratio of which may provide a mea-
sure of myelin content.40 Diffusion tensor imaging
(DTI) can be used to measure asymmetric radial dif-
fusivity (RD), axial diffusivity (AD), or fractional
anisotropy (FA) of water as a gauge of tissue in major
nerve tracts (e.g., optic nerve and optic radiations).41

A small number of studies have provided support
for use of these techniques to assess pathologic
changes in ON. For example, in an MT study in
11 patients with ON, MT ratios of affected optic
nerves closely followed the course of the disease: they
were significantly higher at baseline (within 8 days of
onset) but were reduced at months 3 and 6.42 In a
separate study in 37 patients with ON, MT ratios of
affected optic nerves were not found to be different
from those of unaffected nerves until 3 months after
onset.43 In that study, ON-associated alterations in
MT ratios at 3 months correlated with high- and
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low-contrast visual deficits and with VEP latency at 6
months as well as with RNFL thinning at 12 months.

In a study of DTI performed within 30 days of
onset and after 1 year in 12 patients with ON, FA
of affected optic nerves (which is also considered a
potential measure of myelination) was the only
parameter correlated with vision at onset but did
not correlate with the extent of recovery of visual acu-
ity or contrast sensitivity at 1 or 3 months.44 The AD
(considered a measure of axonal integrity) was the
only parameter that was correlated with worse con-
trast sensitivity at 1 and 3 months. This was con-
firmed in a follow-up study in 25 patients, in which
a lower baseline AD was also found to be correlated
with the extent of RNFL thinning and with VEP
amplitude and latency.45 These were small studies
and should be interpreted with caution as eye motion
makes imaging of the optic nerve by MT ratio and
DTI challenging, but they do not seem to support a
model in which the extent of neurodegeneration is
determined solely by chronic demyelination. Rather,
they suggest that the initial neuroaxonal effects of the
acute inflammatory injury may be more important.

Although these “nonconventional” MRI techni-
ques hold promise as a tool to investigate underlying
processes and assess recovery in ON, there are substan-
tial challenges to widespread use. For example, the
acquisition times are frequently longer than is practical

for routine human studies, and imaging is complicated
by motion artifacts caused by moving the eye or
head.46 In addition, there is no consensus on sequences
and protocols for their application in ON. These fac-
tors have limited widespread adoption of these ap-
proaches and have likely contributed to the
inconsistencies in findings. Thus, further technological
improvements and standardization of techniques for
imaging of ON lesions will be required before they
can be considered as reliable measures of outcomes
in clinical trials.

QOL Visual deficits in patients with ON are likely to
have a marked impact on daily activities and QOL.
Patients frequently rate vision among the most
important physical functions affected by MS.47 How-
ever, vision is poorly or insufficiently represented on
standard objective measures of physical function,
such as the Expanded Disability Status Scale, and
functional assessment instruments, such as the Mul-
tiple Sclerosis Functional Composite (MSFC). Addi-
tion of SLCLA charts to the MSFC has been reported
to better capture MS-related disability.48 One patient-
reported outcome instrument, the 25-item National
Eye Institute Visual Functioning Questionnaire
(NEI-VFQ-25), has become a commonly used
measurement of vision-specific health-related QOL.
When administered to patients from the ONTT 5–8
years after the episode of acute ON, scores on the NEI-
VFQ-25 were lower than for an older disease-free
cohort.3 In patients with MS, correlations with NEI-
VFQ-25 scores have been demonstrated for low-
contrast visual acuity,49 binocular summation,12

motion perception,50 and loss of RGCs25 (figure 4).
Moreover, a 10-item supplement has been developed
to better capture aspects more relevant to neuro-
ophthalmology, such as double vision and difficulties
with viewing motion.51 A follow-up study has also
reported its ability to distinguish patients with MS
with a history of ON.52

TREATMENTS An important unmet need with
respect to ON is the availability of effective treatments
to prevent or reverse long-term visual dysfunction.
Given the narrow window of time during which
most recovery occurs, it seems reasonable to suggest
that an effective treatment be initiated as soon as
possible after ON onset, with the aim of promoting
RGC survival and either extending the window for
remyelination or accelerating the rate and extent to
which it occurs. Data emerging from OCT studies
suggest that RGC loss may begin within weeks of
the event, thereby narrowing the time to initiate
neuroprotective therapy.

Despite the lack of long-term benefits of high-dose
corticosteroids, patients with acute ON are frequently

Figure 4 Relationship of thickness of retinal layers to quality of life and low-
contrast visual acuity

Scatter plot and fitted linear regression line showing relationships of ganglion cell layer plus
inner plexiform layer (GCL 1 IPL) thickness to 25-item National Eye Institute Visual Func-
tioning Questionnaire (NEI-VFQ-25) composite scores and low-contrast visual acuity at
2.5% level. The regression lines represent fitted values for mean GCL 1 IPL thickness for
each value of NEI-VFQ-25 or low-contrast visual acuity; the gray shaded areas show the
95% confidence intervals from the SEs of the predictions for the fitted lines. Linear corre-
lations were significant. QOL5 quality of life. Reprinted from Ophthalmology 119(6), Walter
SD et al., Ganglion cell loss in relation to visual disability in multiple sclerosis, 1250–1257,
2012, with permission from Elsevier.26
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provided these drugs as symptomatic treatment to
speed resolution of acute inflammation. Patients are
often assessed by MRI to determine their risk for
MS, but it is not clear that disease-modifying thera-
pies for relapsing forms of MS are effective to prevent
neurodegeneration when ON occurs while receiving
these treatments. For example, interferon b was not

found to prevent RFNL thinning in patients with
ON.53 Natalizumab has been shown to reduce loss
of vision54 and improve VEPs55 in patients with
relapsing-remitting MS, but there are no data to
indicate treatment benefits specifically in patients
with ON. A phase II study of fingolimod in acute
demyelinating ON is complete, although it is not

Table Phase II and III studies in typical optic neuritis

Start/end datesa Treatment

Time from event
to study
initiation Primary endpoint Statusa

Primary efficacy
results Study numbera

July 1988b (end date
not provided)

Oral prednisone 1 mg/kg for 14 d vs
methylprednisolone 1,000 mg IV for
3 d, then oral prednisone 1 mg/kg
for 11 d vs placebo

#8 d Visual field and contrast
sensitivity over 6 mo

Completedc No significant
effect2

NCT00000146

August 1995–December
1997

Immunoglobulin 0.4 g/kg IV QD for
3 d, then 3 infusions/mo for 3 mo vs
placebo

$6 mo High-contrast visual
acuity (100% ETDRS
charts)

Completed No significant
effect56

NCT00000117

August 2006–July 2011 Erythropoietin 33,000 units IV for
3 d vs placebo

#10 d RNFL thickness at 4, 8,
and 16 wks

Completed Significantly less
RNFL thinning at 16
wk57

NCT00355095

September 2006–May
2011

Simvastatin 80 mg QD PO vs
placebo

,4 wk Contrast sensitivity at
3 mo

Completedc No significant
effect58

NCT00261326

March 2008–January
2011

Atacicept 150 mg SC weekly vs
placebo

Not specified RNFL thickness up to
48 wks

Terminated None available NCT00624468

February 2009–February
2011

Glatiramer acetate 20 mg SC QD vs
placebo

Not specified RNFL thickness at 6 mo Completed None available NCT00856635

February 2010–January
2013

Minocycline 100 mg BID vs no
treatment

#30 d RNFL thickness every
3 mo for 9 mo

Terminated None available NCT01073813

May 2010–March 2013 Visual reconstitution therapy vs
saccadic eye movement training

60–80 d or ,12
mo

Visual field at 6 mo Completed None available NCT01274702

May 2011–December
2013

Dalfampridine 10mg BID vs placebo $12 mo Contrast sensitivity
(5% ETDRS charts)

Completed None available NCT01337986

July 2011–December
2012

Vitamin D 50,000 units/wk vs
vitamin withheld

Not applicable
(prevention
study)

RNFL thickness at
10–32 d after optic
neuritis

Unknown None available NCT01465893

November 2011–August
2014

Phenytoin 15 mg/kg/d for 3 d, then
4 mg/kg/d for 13 wks vs placebo

#14 d RNFL thickness at
6 mo

Completedd Significantly less
RNFL thinning at
6 mod

NCT01451593

March 2012–September
2014

Oral prednisone 1,250 mg vs
methylprednisolone 1,000 mg IV for
3 d each

#14 d VEP latency Unknown None available NCT01524250

December 2012–October
2014

BIIB033 (anti-LINGO-1) 100 mg/kg
IV every 4 wks vs placebo

#28 d VEP latency Completed None available NCT01721161

February 2013–February
2015

Amiloride 10 mg QD vs placebo for
5 mo

#28 d RNFL thickness at 6 mo,
12 mo

Recruiting None available NCT01802489

July 2013–June 2016 Fingolimod 0.5 mg QD vs interferon
b-1b

#30 d VEP latency Recruiting None available NCT01647880

August 2013–May 2014 Fingolimod 0.5 mg QD vs placebo Not specified RNFL thickness at
18 wks

Completed None available NCT01757691

October 2013–January
2016

MD1003 100 mg TID vs placebo Not specified High-contrast visual
acuity (100% ETDRS
charts)

Recruiting None available NCT02220244

March 2014–April 2016 Amiloride hydrochlorothiazide
100 mg/d vs placebo

#10 d RNFL thickness at
24 wks

Recruiting None available NCT01879527

November 2014–
December 2018

Erythropoietin 33,000 units IV for
3 d vs placebo

#10 d RNFL thickness at 6 mo Recruiting None available NCT01962571

Abbreviations: ETDRS5 Early Treatment Diabetic Retinopathy Study; RNFL5 retinal nerve fiber layer; SC5 subcutaneous; VEP5 visual-evoked potential.
a From ClinicalTrials.gov, except where indicated otherwise.
b The Optic Neuritis Treatment Trial, included a 15-year follow-up period.
c Based on published result.
d Reported at American Academy of Neurology 2015 Annual Meeting, April 18–25, Washington, DC.
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clear that enrollment goals were met. Another phase
II/III study is under way but study results are not yet
available (table).

Based on promising results from animal studies
and small clinical studies, IV immunoglobulin was
investigated in patients with one or more episodes
of typical ON and irreversible loss of visual acuity
but was terminated early due to negative results56

(table). Since that time, various investigational ther-
apies have shown promise in early preclinical and
clinical studies, and a number of phase II and III
studies have been completed or are under way. For
example, in a placebo-controlled study of IV eryth-
ropoietin for 3 days as an add-on to methylpredni-
sone in patients with a first episode of ON within
the previous 10 days, those treated with erythropoi-
etin demonstrated reduced RNFL thinning, less
decrease in optic nerve diameter, and shorter VEP
latency.57 Although the mechanism by which eryth-
ropoietin may exert these effects is poorly under-
stood, it may involve the neuroprotective effects
of this hormone during acute inflammation. In
another placebo-controlled study in patients with
symptom duration of ,4 weeks and reduced con-
trast sensitivity, simvastatin (a hypercholesterolemia
medication) narrowly missed significance on the
primary efficacy outcome (contrast sensitivity),
but improvements were noted for VEP latency
and amplitude.58 However, imbalances in random-
ization and technical issues may have contributed to
the observed effects.59 A study in ON testing possible
neuroprotective effects of phenytoin, an anticonvul-
sant, has recently completed, and another study testing
effects of amiloride hydrochlorothiazide, a diuretic, is
currently underway. Nevertheless, it is an open ques-
tion whether a neuroprotective agent can domore than
delay degeneration of axons if they remain chronically
demyelinated. Finally, BIIB033, a fully-human anti-
body to LINGO-1, an inhibitor of myelination and
neuroaxonal growth, has shown promise in preclinical
and early clinical testing,60 and a phase II study in ON
was recently completed.

CONCLUSIONS It is now clear that recovery from
ON is frequently incomplete, which adversely affects
the QOL of patients. In addition, there remain con-
siderable gaps with respect to understanding, assess-
ing, and treating this disease to prevent long-term
deficits. Nevertheless, ongoing work holds promise
for all of these areas. The application of newer
technologies continues to provide new insight into
the underlying disease processes and increased
appreciation of the injury that occurs following
ON. The development of these new tools may
increase the ability to detect meaningful changes in
vision with therapeutic intervention and study

results suggest that timing is critical. Development
of guidelines to ensure consistency in their
application should also improve interpretation of
findings and thereby improve the quality of
assessments. Finally, several therapies have shown
promise in preclinical and early clinical testing.
Therefore, there is reason to be optimistic that
strategies may soon be identified to improve the
prognosis for patients with ON. Given the
relationship between ON and MS, it seems likely
that any such developments for ON may have
substantial implications for understanding, assessing,
and treating MS as well.
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