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Topological phase transitions into skyrmion and half-skyrmion (meron) phases are
widely observed in condensed matter, such as chiral magnets and liquid crystals. They
are utilized to design magnetoelectric, optical, and mechanoresponsive materials by
controlling such topological phases. However, the role of the elastic field in nonuniform
topological phases is elusive, though the essential role of crystal elasticity in uniform
ordered crystal phase has been recognized. To elucidate this problem, we construct
a model describing chiral molecules and colloids in quasi-two-dimensional molecular
crystals, which incorporates intermolecular chiral twisting and spheroidal steric inter-
actions. We reveal that emergence of the elastic fields from the competition between
steric anisotropy and intermolecular twisting is a key to control uniform, helical, and
half-skyrmion structures. By utilizing the coupling between the spheroidal orientations
and the elastic fields, these topological phases are switched by temperature, external
electromagnetic fields, and anisotropic stresses, where a re-entrant phase transition
between the helical and the half-skyrmion phases is discovered. Our results imply that
controlling the emergent elastic fields is crucial for obtaining a fundamental physical
principle for controlling topological phases using chiral molecular and colloidal crystals.
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Understanding and controlling phase transitions into spatially modulated structures are of
importance in technological applications, such as spatial light modulation by cholesteric
liquid crystals with helical structures (1). Their microscopic controllability can be utilized
to control materials properties, including mechanical rigidity (2). From the viewpoint of
fundamental physics, on the other hand, the nature of formation processes of spatially
modulated phases remains elusive compared with phase transitions between uniform
states, though there have been extensive studies on the role of critical fluctuations
(3–5). Skyrmions and half-skyrmions (merons) are representative objects of the modulated
structures. They are of interest in magnetic systems (6–8), Bose–Einstein condensates (9,
10), quantum Hall systems (11), dielectrics (12, 13), liquid crystals (14, 15), and active
matter (16, 17). These objects are manipulated in designing magnetoelectric, optical, and
mechanoresponsive materials (18–20). In liquid crystals, in particular, molecular chirality
plays an essential role in the formation of helical and half-skyrmion phases (1, 19, 21, 22).

In theoretical description of chiral liquid crystals, a spontaneous twisting term reflecting
chirality is incorporated to examine the formation of mesoscale cooperative structures (1,
14, 21, 23). This term resembles Dzyaloshinskii–Moriya interaction in chiral magnets (6,
7), incorporating liquid crystalline symmetry of the order parameter. Thus, the appearance
of helical and half-skyrmion phases in cholesteric liquid crystals is explained (14).
Recently, furthermore, the half-skyrmion phase in metal–organic frameworks (MOFs)
was theoretically proposed using a similar lattice model (24). Therefore, it is reasonable
to expect the existence of similar phase transitions in other chiral molecular systems, such
as organic crystals (25, 26), colloidal crystals (27, 28), and biological systems (29), by
utilizing the same theoretical framework, though the existence of half-skyrmion structures
in these substances has not yet been investigated.

However, there is a crucial difference between liquid crystals and molecular crystals. In
molecular crystals and MOFs, the change of molecular configurations associated with
phase transitions induces lattice distortion, resulting in the emergence of the elastic
field, though the role of the elastic field remains elusive. We call this elastic field an
“emergent elastic field,” which is absent in cholesteric liquid crystals due to its liquid
nature in molecular translation. The emergent elastic field is an analog of the emergent
electromagnetic field in condensed matter, which is known to play an essential role in
manipulating skyrmions (30, 31). Therefore, it is of crucial importance to understand how
the emergent elastic field is linked to topological phase transitions in molecular crystals.

Here, we reveal an essential role of the emergent elastic field associated with topological
phase transitions into helical and half-skyrmion phases in a crystal. We develop a molecular
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Table 1. Characteristic features of our system
Chiral magnets Chiral liquid crystals Monolayer chiral crystals

(cholesterics) (our system)
Interaction Dyzaloshinskii–Moriya (6, 7) Liquid crystal elasticity (1) Intermolecular twisting, steric

repulsion
Characteristic phases Skyrmion crystal, etc. (7). Blue phases, half-skyrmions,

etc. (14, 15, 19, 21) *
Half-skyrmions

Size of (half-)skyrmions 5 to 100 nm (7, 18) 100 nm to μm (15) Several times particle
diameter †

Emergent field EM fields (7, 30, 31) Nematic director fields (14, 15,
19)

Elastic fields ‡

Phase controllability EM fields, heat, strain (7, 32) EM fields, heat, bending, fluid
flow (1)

EM fields, heat, anisotropic
stress

Melting of (half-)skyrmions KTHNY (33, 34) Not available KTHNY

Here, EM field denotes the electromagnetic field.
*Full-skyrmions and quarter-skyrmions have also been observed (19).
†∼ 10 nm for molecular crystals and ∼ μm for colloidal crystals.
‡Produced by topological defects and phase ordering.

dynamics model incorporating intermolecular chiral and
spheroidal steric interactions. These interactions model pair
interaction between anisotropic colloidal molecules with chirality.
In spheroidal molecules, molecular rotation induces lattice
distortion. By controlling the steric anisotropy and chiral twisting
interaction between adjacent molecules, phase transitions into
helical and half-skyrmion phases in a crystal are controlled. The
long-range nature of elastic correlation is essential to control phase
behavior and domain formations. As a consequence of this elastic
coupling, these phases can be switched by varying temperatures
and by applying external electromagnetic fields and anisotropic
stresses. The comparison between magnetic solids, liquid crystals,
and our systems is summarized in Table 1. Our work reveals a link
between topological phase transitions and the elastic fields, which
provides a control system for designing molecular and colloidal
crystals with tunable electro- and magneto-mechanical properties.

Results

Phase Diagram with Respect to Twist Parameters. We
construct a molecular dynamics model by incorporating twisting
interactions between adjacent molecules, which is schematically
described in Fig. 1A. The alignment of neighboring molecules
is stable when they exhibit a certain twist angle determined by
q0, and the rigidity of this twist is given by K2 (see Materials
and Methods for the definitions of these parameters). These
molecules are confined to realize a monolayer geometry, as
shown in Fig. 1B, forming two-dimensional hexagonal crystals
(see SI Appendix, Fig. S1 for larger thickness geometries). There
are two-step phase transitions between liquids, orientationally
disordered crystals, and orientationally ordered crystals shown in
Fig. 1. The melting temperature is much higher than that of the
orientational phase transition. In the present study, we focus on
low-temperature range, wherein the two-dimensional hexagonal
crystal is stable (see Materials and Methods for details). Using
this model system, we demonstrate phase controllability via the
manipulation of q0 and K2 at low temperatures, as displayed in
Fig. 1C. For small K2 and q0 values, almost all the molecules
are oriented normal to the layer to form a uniform phase, as
displayed in Fig. 1E. In this state, the structure factor (see Materials
and Methods for this definition) exhibits only the Bragg peaks
representing the nearest-neighbor particles, and no mesoscopic
structure forms. As the twist rigidity K2 is increased, the number
of molecules that orient tangential to the monolayer increases.
For large q0 values, long-range orders of helical and half-skyrmion

states are formed, as displayed in Fig. 1 F and G, respectively. Con-
versely, for small q0 values (∼ 0.1), particle orientation does not
vary continuously in space, and orientational defects are dispersed
heterogeneously, exhibiting a halo structure at low wavenumbers,
as shown in Fig. 1H. As K2 is increased, the number of defects
increases and eventually results in the division of ordered particles
into compartments (Fig. 1I ). The transitions between these
structures are gradual, except for the sharp transition between
the helical and the half-skyrmion phases (SI Appendix, Fig. S2).
Therefore, we successfully control the topological structure of this
system by controlling the twisting interactions. Here, it should
be noted that the mother phase (high-temperature orientationally
disordered crystal phase) always forms a hexagonal lattice. The
relationship between underlying crystal structures and topological
structures is beyond the scope of this work.

Emergence of Elastic Fields in Topological Phases. The char-
acteristic feature of our system is the emergence of strain and
stress fields. In this study, a two-dimensional crystalline state is
realized at a high temperature because the average density of
this system is high, and orientational phase ordering proceeds
without particle migration. Because each molecule exhibits steric
anisotropy, the tangential orientation generates strain and stress
around the molecule, which is similar to the generation of an
elastic field with a long-range spatial correlation around an in-
clusion, a precipitate, and a defect (35–38). As mentioned in
the introduction, we call this elastic field an emergent elastic
field. The concept of the emergent elastic field can explain the
domain formation shown in Fig. 1F, wherein the helical state is
divided into domains with different wave vectors, whose angles
are approximately ±30◦. From the real space structure depicted
in Fig. 2A, we calculate the emergent strain fields and stress fields
in Fig. 2 B–D and E–G, respectively (see Materials and Methods
for the definition). As shown in Fig. 2 C and D, a large anisotropic
strain is induced inhomogeneously because molecular orientations
in different helical domains produce different strain components.
If a uniform helical structure is formed, it produces a large
uniform strain that generates large anisotropic pressure and thus
becomes mechanically unstable. By forming domain structures,
the anisotropic stress is macroscopically reduced and localized,
as shown in Fig. 2 F and G. Such domain formation does not
occur for the half-skyrmion state shown in Fig. 1G because half-
skyrmions form an isotropic hexagonal solid at low temperatures
(see SI Appendix, Figs. S3 and S4 for the elastic fields of uniform
and half-skyrmion phases, respectively). The emergent elastic field
is not relevant in cholesteric liquid crystals due to its liquid nature
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Fig. 1. Phase behavior in a monolayer geometry. (A) Molecular twisting in our model. The favored twist angle is given by q0, and the rigidity of the twist is
determined by K2 (see Materials and Methods for this definition). (B) Monolayer geometry of this study (see Materials and Methods for details). (C) Phase diagram
with respect to q0 and K2 at low temperatures. The phase boundaries are shown for reference. The star symbol denotes the phase point examined in Fig. 3.
(D) Color notation for the snapshots in E–I and the following figures. (E–I) Diagonal view of the real spatial structure and corresponding structure factor (see
Materials and Methods for this definition) at each phase. The temperature is T = 0.05 in this figure.

in molecular translation, but it can be crucial in chiral smectics
(1) and elastomers (39) because molecular rotations induce layer
compression and network deformation, respectively. The investi-

gation of (half-)skyrmion structures in these substances, molecular
crystals, and colloidal crystals should be conducted to reveal the
impact of the emergent elastic fields.

A

isotropic stress uniaxial stress shear stress

B C D

volumetric strain (%) uniaxial strain (%) shear strain (%)
E F G

Fig. 2. Emergent elastic field of a helical state. (A) Particle configuration corresponding to Fig. 1F, wherein the system is divided into two major domains with
different particle orientations (indicated in blue and green). (B–D) Strain field of this configuration (see Materials and Methods for this definition). The volumetric
strain represents the volume dilation and compression and is small. The emergence of a large macroscopic uniaxial strain in C and a large shear strain in D results
from the formation of a helical state, wherein tangentially aligned particles produce large strains along their orientations. (E–G) Stress field of this configuration
(see Materials and Methods for this definition). (E) Isotropic stress corresponding to the volumetric strain via the bulk modulus (volume compressibility). (F and
G) Uniaxial stress (F) and shear stress (G), which exhibit the same spatial pattern as the particle configuration, unlike the strain correspondence. (Scale bars:
10σ.)
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Fig. 3. Thermal stability of the half-skyrmion phase. (A) Hexatic correlation function divided by the radial distribution function (see Materials and Methods
for this definition) of the half-skyrmion cores. The hexatic correlation increases as the temperature decreases via the characteristic power-law decay. (B) Pair
correlation function of the half-skyrmion cores. It exhibits a power-law decay in the solid phase, whereas it decays exponentially in the hexatic and liquid phases.
(C–E) Real spatial structures at T = 0.42 (C; half-skyrmion crystal), T = 0.44 (D; half-skyrmion hexatic), and T = 0.46 (E; half-skyrmion liquid). We only display
particles with nz < 1/

√
2. (F–H) Corresponding Delaunay triangulation. The red (yellow) circles denote seven (eight)-member coordinated vortices, whereas the

blue (green) crosses denote five (four)-member coordinated vortices. K2 = 50 and q0 = 0.3 in this figure, which are indicated by the star symbol in Fig. 1C. (Scale
bars [C–H]: 10σ.)

In this study, we consider monolayer systems without defor-
mation toward the third dimension (z-direction). To examine the
stability of the planar monolayer without bending, we calculate
the displacement and the force field along the z-direction in
SI Appendix, Fig. S5. Both the displacement and force fields do
not exhibit long-wavelength fluctuation, while their heteroge-
neous distribution is confirmed in short wavelength. This result
implies that a macroscopic deformation of the substances would
not occur.

Thermal Phase Transitions of the Helical and the Half-Skyrmion
Phases. The phase diagram shown in Fig. 1 indicates the stable
structure at a low temperature. Previous studies often exam-
ined the phase transitions between topological phases by varying
the temperature and external perturbations, such as the mag-
netic field. In this section, we investigate the thermal stability of
the helical and the half-skyrmion phases. For the former phase,
we demonstrate the thermal hysteresis of the helical phase in
SI Appendix, Fig. S6. As the temperature increases, the helical
state transforms into the half-skyrmion state, which is indicated
by the abrupt change in the system’s potential energy. This phase
transition is reversible and exhibits a hysteresis loop, implying
its first-order nature. For the latter phase, the vortex structure in
the half-skyrmion phase is stable over a wide temperature range.

However, another phase transition with respect to the long-range
ordering of half-skyrmions emerges. The transitions between the
liquid, hexatic, and crystalline half-skyrmions occur, as shown
in Fig. 3. The positional and bond-orientational order of the
half-skyrmions exhibits a characteristic two-dimensional melt-
ing behavior based on the Kosterlitz–Thouless–Halperin–Nelson–
Young (KTHNY) scenario (33, 34, 40–43). This is confirmed
by the correlation functions on the center of mass positions of
the half-skyrmions, as displayed in Fig. 3 A and B. The hexatic
correlation function in Fig. 3A (see Materials and Methods for this
definition) decays exponentially for T ≥ 0.46 (characteristic of
the liquid phase), algebraically for T � 0.45 with an exponent
close to –1/4 (characteristic of the hexatic phase), and approaches
a constant value for T ≤ 0.42 (characteristic of the solid phase).
The hexatic and solid phases are distinguished by the decay of the
pair correlation function along with the direction of the bond-
orientation angle (see Materials and Methods for further details),
which is displayed in Fig. 3B. The pair correlation function decays
exponentially at T = 0.44 (hexatic phase), whereas it exhibits a
power-law decay at T = 0.42 with the exponent close to –1/3,
which is characteristic of the stability limit of the solid phase in
the two-dimensional melting theory. The real-space topological
structures are presented in Fig. 3 C–H, wherein the filtered
particle configurations and corresponding Delaunay triangulation

4 of 9 https://doi.org/10.1073/pnas.2118492119 pnas.org

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2118492119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2118492119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2118492119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2118492119/-/DCSupplemental
https://doi.org/10.1073/pnas.2118492119


results are displayed in the upper (Fig. 3 C–E) and lower (Fig.
3 F–H ) rows, respectively. In KTHNY two-dimensional melting
theory (40–42), only dislocation pairs with a zero Burgers vector
are excited in the solid phase. They separate into single dislocations
(disclination pairs) in the hexatic phase, and the liquid phase is
characterized by the disclination-unbound phase, in which iso-
lated point defects disperse. This characteristic feature is captured
in the Delaunay triangulation. Our results based on the KTHNY
scenario are consistent with those found recently in magnetic
skyrmion systems (33, 34).

Phase Switching and Re-Entrant Phase Transition by an External
Field. Another method for controlling topological structures is to
apply an external magnetic/electric field to substances, as is often
examined in magnetic skyrmion systems (7) and liquid crystals
(1). In this paper, we examine magnetic field effects for our con-
venience, but the same conclusion holds for electric field effects
because static field effects without impurities are considered. In
rod-like uniaxial molecular systems, the magnetic susceptibility
↔
χ exhibits both χ‖ > χ⊥ (positive anisotropy) and χ‖ < χ⊥
(negative anisotropy), where χ‖ (χ⊥) is the susceptibility of
a molecule parallel (perpendicular) to the molecular long axis,
respectively (1). For positive (negative) anisotropy, the orientation
of the molecular long axis becomes parallel (perpendicular) to
the external field. This feature is reminiscent of the perpen-
dicular magnetic anisotropy systems in transition-metal oxides
(44), in which the magnetic easy axis is tangential to the thin
films. In this study, we neglect the dipole–dipole interaction be-
tween the molecules. Then, the molecular response to the external
field becomes second-order, often assumed in liquid crystals (see
Materials and Methods for further details) (1). We present the field
response of a half-skyrmion phase in Fig. 4, where H denotes
the magnitude of the field applied normal to the monolayer (see
SI Appendix, Figs. S7 and S8 for other phases). In this work, we
decrease temperature at a fixed magnetic field to examine equi-
librium structures without hysteresis, though cyclic field effect,
including hysteresis loop, is often studied experimentally. Starting
from the half-skyrmion state shown in Fig. 4A, molecules with
positive (negative) anisotropy begin to align parallel (perpendic-
ular) to the external field (see Materials and Methods, Eq. 8, and
the following sentences). For the positive anisotropy case shown
in Fig. 4B, molecules at the edges of the half-skyrmions change
their orientation to align parallel to the external field, resulting
in the coalescence of half-skyrmions to form helical structures
(H = 2). By further increasing this field, an increasing amount of
particles align parallel to the external field, and a uniformly aligned
state is eventually realized at H = 10. The transition from the
helical state to the uniform state is similar to the field responses of
cholesteric liquid crystals, wherein uniformly aligned domains are
separated by sharply twisting walls during the intermediate stage
(ref. 1; see their figure 6.13). Therefore, the transition pathway
for positive anisotropy demonstrated by our system is reasonable,
while it sharply contrasts with magnetic skyrmion systems, in
which the helical state transforms into the skyrmion state under
the application of an external magnetic field.

For negative anisotropy systems, conversely, a curious phase
transformation emerges, as displayed in Fig. 4C. First, the initial
half-skyrmion state transforms into a helical-like striped structure
with a small pitch under a weak external field (H = 2). Sub-
sequently, another half-skyrmion state appears at H = 4, which
finally transforms into a two-dimensional zig-zag structure atH =
6 (the morphology of the two-dimensional structure depends
on the twist rigidity K2, as shown in SI Appendix, Figs. S7–S9).
Although the real-space structures of the half-skyrmion states in

Fig. 4 A and C look different, their topological structures exhibit
similar symmetries. This is confirmed by the structure factor
displayed in Fig. 4D. Both states have sixfold symmetrical peaks, as
highlighted by the blue hexagons, which represent the spatial cor-
relation of the vortices. The difference between these peaks is rep-
resented by the size of the hexagons, indicating that the vortex size
is reduced under the external field. This re-entrant phase transition
is a unique feature of negative anisotropy systems, implying that
interactions between the steric and magnetic/dielectric anisotropy
result in rich phase behavior in molecular solids. As described in
Fig. 2, an elastic field emerges via phase transformations, which
implies that our system exhibits electro- and magneto-striction as
a cross-coupling effect, which demonstrates the great potential of
this system for the design of functional materials.

Phase Switching by Local Anisotropic Stress. Finally, we present
a crucial role of the emergent elastic fields on phase controllability.
As revealed in Fig. 2, the helical domain and the emergent strain
field exhibit the same spatial patterns. This suggests that domain
orientation can be controlled by external anisotropic strain and
stress. To see this, we display the mechanical response of a he-
lical state in Fig. 5. To realize uniaxial stretching in a limited
region, we applyFx =−F0x andFy = F0y for the particles with√
x 2 + y2 < 10, where x and y are relative displacement from the

center of the system, and F0 specifies the magnitude of external
force. We choose F0 = 2 in this figure. When external mechanical
stress is applied locally (the circled region in Fig. 5A), both the
helical pattern inside and outside the stressed region transform
considerably, as displayed in Fig. 5B (the white broken circle
denotes the stressed region). For the former, the helical pitch be-
comes parallel to the compression direction, which indicates that
molecules inside the stressed region orient to the elongation di-
rection, reducing the uniaxial stress inside the circular region. For
the latter, helices change their pitch direction parallel to the dipole
field. This is because both the strain and the stress field are induced
outside the stressed region due to the long-range quadrupolar
nature of elastic correlation, as displayed in Fig. 5 E and H. Both
the strain field and the stress field exhibit angle-dependent long-
range correlation under the external stress, where they become
positive along 0◦ and 90◦ and negative along ±45◦. After the
external stress is removed, the helical state inside the circular re-
gion transforms into a half-skyrmion structure, whereas the helical
domains outside the stressed region remain almost unchanged, as
displayed in Fig. 5C. The remnant strain in relaxed states also
exhibits the same spatial heterogeneity as molecular orientation
(Fig. 5F ), whereas the stress is localized (Fig. 5I ). Thus, we suc-
cessfully control topological phases by applying mechanical stress.

Discussion and Summary

In this study, we succeeded in controlling the topological phase
transition between the helical and the half-skyrmion phases. This
transition is reversible without plastic deformation. This reversibil-
ity is attributed to the fact that the effective aspect ratio of our
molecule is close to unity: Lattice distortion induced by molecular
rotation is not large, so that crystal defects do not form. When
particles with a large aspect ratio, such as fd-viruses (45) and
cellulose nanocrystals (46), are utilized in a solid phase, particle
rotation induces plastic deformation, which results in irreversible
phase transformation. Therefore, a particle should have a shape
deformed from the isotropic spherical shape only slightly, and
indeed it can be synthesized experimentally (47–53). A densely
packed solid thin film of these particles will be a candidate to
exhibit phase transition between the helical and the half-skyrmion
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Fig. 4. Response to external fields under the field-cooling condition. (A–C) The external field effects on the half-skyrmion phase (A) with positive (B) and negative
(C) magnetic anisotropy are shown, where the magnetic anisotropy is defined by χa = χ‖ − χ⊥, and H denotes the magnitude of the external magnetic field
applied normal to the monolayer (Scale bars [A-C]: 10σ.). (D) The structure factors obtained at H = 0 and H = 4 with negative anisotropy imply that the topology
of these structures is the same. The red circles and blue hexagons represent the Bragg spots corresponding to the nearest molecules and half-skyrmions,
respectively, indicating that the distance between the half-skyrmion cores becomes smaller. K2 = 50, q0 = 0.3, and T = 0.05 in this figure.

phase. Furthermore, it is possible to measure elastic heterogene-
ity by atomic force microscopy for molecular and nanoparticle
crystals (54) and by confocal microscopy for crystals composed
of micrometer-scale colloidal particles (55). These measurements
can examine the relationship between the formation of topological
phases and the emergent elastic field.

In summary, we presented a physical principle for topo-
logical phase control using material parameters and external

electromagnetic fields in a model molecular solid. The most
important aspect of our model is the emergent elastic field
produced by the interactions between the molecular steric
anisotropy and twisting interactions. We also presented a method
for controlling the phases of this system using external fields,
which is achieved due to the competition between the emergent
elastic field and the paramagnetic/paraelectric response. We
identified a topologically re-entrant phase transition induced
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Fig. 5. Response to local anisotropic stress. (A) The helical state for initial unstressed condition. The circle at the center and the arrows represent the area and
the orientation of applied anisotropic stress in B. (B) Molecular configuration under the stress, where the molecular configuration is perturbed globally. (C) The
molecular configuration after stress removal. The half-skyrmion structure is maintained at the central area after the stress is relaxed. (D–F) Uniaxial component
of the emergent strain field for initial state (D), stressed state (E), and relaxed state (F). (G–I) Uniaxial component of the emergent stress field for initial state (G),
stressed state (H), and relaxed state (I). K2 = 40, q0 = 0.3, and T = 0.2 in this figure (Scale bars: 10σ.).

by an external field in negative anisotropy systems. These
results are summarized in Table 1. In this paper, we focus our
attention on a quasi-two-dimensional monolayer for simplicity.
Thickness dependence of the stability of the helical and half-
skyrmion structures should be studied in the future (see also
SI Appendix, Fig. S1). We also considered the electromagnetic
effects in a simple manner by neglecting the electromagnetic
interactions between the induced dipoles. The inclusion of dipole–
dipole interaction results in controllable polar orders with large
mechanical responses (56). This cross-coupling may also be a key
to control emergent elastic fields associated with topological phase
transitions induced by anisotropic mechanical stresses (32, 57).

Materials and Methods

Molecular Dynamics Model. We construct a simple molecular model ex-
hibiting phase transitions into helical and half-skyrmion phases by applying
conventional knowledge in liquid crystals (1). The potential energy of our system
is given by

U =
∑
i<j

4ε(1 + Aij + Bij)

(
σ

rij

)12

+ Uex + Uwall, [1]

Aij = η[(n i · r̂ ij)
2 + (n j · r̂ ij)

2], [2]

Bij =
K2

2
[(n i · n j)(n i × n j) · r̂ ij − q0]

2, [3]

where ε and σ denote the characteristic energy and length in our model; rij =
|r ij| and r̂ ij = r ij/rij are the absolute value and unit vector of the intermolecu-
lar displacement, respectively; and n i denotes the molecular orientation of the
uniaxial molecules. Aij represents the symmetric steric repulsion used to mimic
spheroidal molecules in a condensed phase (58, 59), in which η represents the
magnitude of the anisotropy. For small η values, a particle can be regarded to
have an ellipsoid-like shape, with the aspect ratio being p = (1 + 2η)1/12. We
chooseη = 2 in this work so that p � 1.14. Bij represents twisting interactions
arising from molecular chirality that adjacent molecules favor to align with a
twist, where the favored twist angle and twist rigidity are given by q0 and
K2, respectively (60, 61). This is the discretized form of the twist Frank energy
(K2/2)(n · curln + q0)

2 in liquid crystal theory (1), wherein the bilinear
term is the same as the Dzyaloshinskii–Moriya interaction in magnetic systems
(Dn · curln with D = K2q0) (7). In this paper, we assume that the inter-
molecular interaction has only the short-range repulsive steric term in order to
examine the role of the twist interaction and the steric anisotropy in the simplest
manner. We note that inclusion of van der Waals attractive interaction does not
change the qualitative features of the formation of the half-skyrmion and helical
phases.

Uex represents the external field effects of the molecular orientation, which is
defined as

Uex =−
∑

i

χa

2
(n i ·H )2, [4]

where H is the external field, and χa = χ‖ − χ⊥ denotes the anisotropic
susceptibility. Here, χ‖ (χ⊥) is the susceptibility of a molecule that is parallel
(perpendicular) to the molecular long axis. A molecule is oriented parallel (per-
pendicular) to the external field for positive (negative) χa values. This form is
often adopted for liquid crystals (1). A small number of molecules are known
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to exhibit negative magnetic anisotropy (62), whereas various liquid crystalline
molecules that exhibit negative dielectric anisotropy are found (1). In numerical
simulations, we normalize χa =±1 by redefining H as

√
|χa|H .

Uwall arises from the confinement due to the walls of the system. In this study,
we assume a monolayer of spheroid-like molecules without surface anchoring to
examine the impact of molecular twisting on the molecular configuration of the
system in a simple manner. We therefore assume

Uwall =
∑

i

ε[(σ/zi)
12 + (σ/(Lz − zi))

12], [5]

where zi is the z-coordinate of the i-th molecule, and Lz is the distance between
the two walls. By utilizing Lz = 2σ, it can be easily confirmed that the molecules
form a monolayer without undulation along the z axis (see SI Appendix, Fig. S1
for larger Lz values). r̂ ij ⊥ z in this monolayer geometry, and hence Aij = 0
when two adjacent molecules align perpendicular to the intermolecular displace-
ment n ⊥ r̂ ij, while Bij = 0 when two molecules exhibit the twisting angle
θ = (1/2) sin−1 2q0.

The equations of motion with respect to the molecular position and orienta-
tion are given by

mr̈ i = − ∂U
∂r i

, [6]

I(
↔
1 −n in i) · n̈ i = − (

↔
1 −n in i) ·

∂U
∂n i

, [7]

where m is the molecular mass, I is the moment of inertia with respect to the

molecular long axis, and
↔
1 is the unit tensor. By using (1/2)d2|n i|2/dt2 =

|ṅ i|2 + n i · n̈ i = 0, Eq. 7 may be rewritten as

In̈ i =−In i|ṅ i|2 − (
↔
1 −n in i) ·

∂U
∂n i

. [8]

The molecular torque is given by −∂U/∂n i. From Eq. 8, the ground state

of molecular orientation is given by
∑

j(
↔
1 −n in i) · (∂Uij/∂n i) = χa(n i ·

H )(H − (n i ·H )n i), where Uij is the first term in Eq. 1, representing inter-
molecular interaction. This equation indicates the balance between the molecular
field (the left-hand side) and the torque arising from the external field (the right-
hand side), where the stable root of the latter is n ‖H (n ⊥H ) for χa > 0
(χa < 0), consistent with the continuum description in liquid crystals (1). Thus, in
Fig. 4 B and C, molecular orientation aligns parallel and perpendicular to strong
external fields, respectively.

Eqs. 6 and 8 are integrated during the time evolution under the canonical
ensemble using the Nosé–Hoover thermostat (63). In this study, we assume
densely packed systems. The volume fraction ρ= πNpσ3/6V is set to 0.3,
where N is the number of the particles, and V is the system volume. Temperature
T is noted in the unit of ε/kB, where kB is the Boltzmann constant. The melting
temperature is much higher than the orientational transition temperature in
this condition. First, we prepare the liquid state at T = 4 and anneal slowly
(dT/dt = 10−4) to realize two-dimensional hexagonal crystals at T = 2 (the
melting temperature is Tm ∼ 3). At this temperature, the lattice constant be-
comes 1.12σ and is common for all the simulation parameters examined in
Fig. 1. Then, we lower the temperature to T = 0.01 with the cooling rate
of dT/dt = 2 × 10−5 to examine the ground-state structure in Fig. 1. The
stress tensor in Figs. 2 and 5 is noted in the unit of ε/σ3. We adopt a periodic
boundary condition in the x and y directions. For most numerical simulations, we
choose N = 4, 000, except for Fig. 3 (N = 64, 000 to examine long-range
correlations) and SI Appendix, Fig. S1 (N = 16, 000) and SI Appendix, Fig. S6
(N = 64, 000).

Structure Factor. As displayed in Figs. 1, 3, 4, and 5 in the main text, the topol-
ogy of a structure is characterized by using the arrangement of the molecules that
are aligned perpendicular to the z axis. Therefore, we define a filtered density dis-
tribution ρ<(r) =

∑
j θ(nzj)δ(r − r j) to determine the topological struc-

ture, where θ(x) = 1 for x < 1/
√

2 and θ(x) = 0 otherwise. Accordingly,
we calculate the corresponding structure factor S(q) = 〈ρ̃<(q)ρ̃<(−q)〉/N,
where ρ̃<(q) =

∑
j θ(nzj) exp[iq · r j], and i is the imaginary unit.

Emergent Elastic Fields. In Figs. 2 and 5 and SI Appendix, Figs. S3 and S4, we
present in-plane local strain and stress fields. The strain tensor for each particle is
defined by

↔
ε i=

2
r2

MNbi

∑
j

r ijr ij, [9]

where Nbi is the coordination number of the i-th particle, in which the cutoff
length is the first minimum of the radial distribution function. This sum is
obtained over the coordinated particles, and rM is the first maximum of the radial

distribution function required to normalize the strain tensor such that
↔
ε=

↔
1

at the ground state. The volumetric, uniaxial, and shear strains are defined as
det[

↔
ε ]− 1,εxx − εyy, and εxy, respectively. The strain field displayed in Figs.

2 B–D, 5 D–F, and SI Appendix, Figs. S3 B–D and S4 B–D is obtained by coarse-
graining the strain tensor as

↔
ε (r) =

∫
d2r ′w(r − r ′)

∑
i

↔
ε i δ(r

′ − r), [10]

where w(r) = (1/2πσ2)e−r2/2σ2
is the weight function.

The local stress field is calculated using the Irving–Kirkwood formula as (64)
↔
σ (r) =−

∑
i

miv iv iδ(r − r i)

−
∑
i<j

f ijr ij

∫ 1

0
ds δ(sr i + (1 − s)r j − r), [11]

where the first and second terms denote the kinetic and interaction (configura-
tion) terms, respectively. v i is the translational velocity of the particle, and f ij

represents interparticle forces arising from the pair interaction term (the first term
in Eq. 1). In Figs. 2 E–G, 5 G–I, and SI Appendix, Figs. S3 E–G and S4 E–G, we also
apply coarse-graining to the stress field using the weight function w(r).

Identification of Half-Skyrmions. In order to carry out the structural analysis
among the half-skyrmions, we identify the centers of the half-skyrmions. We
consider a molecule as a member of a half-skyrmion when nz > 0.91. Among
such molecules, two molecules are defined to belong to the same cluster if
their distance is smaller than 1.5 (nearest-neighbor particles). Then, the position
of a half-skyrmion is defined by r v = (1/Nv)

∑
j∈cluster r j, where Nv is the

number of particles in the same cluster.

Correlation Functions and Delaunay Triangulation on Half-Skyrmions.
The hexatic correlation function Gv6(r) (the angular average is used in this study)
on half-skyrmions are calculated from r v, which is defined as

Gv6(r) = 〈ψ(0)ψ∗(r)〉, [12]

where the bracket denotes the angular, space, and sample averaging processes;
andψ(r) =

∑
j δ(r − r vj)

∑
k∈bond exp[6iθjk], i is the imaginary unit, and

θjk is the bond-orientational angle between the displacement vector r vk − r vj

and x axis. Using the radial distribution function Gv(r) on half-skyrmions, the
scaled hexatic correlation function Gv6(r)/Gv(r) is displayed in Fig. 3A. In
Fig. 3B, we show the pair correlation function Gv(r)− 1 along with the direc-
tion of the bond-orientational angle. We then perform Delaunay triangulation to
obtain Fig. 3 F–H.

Data Availability. Input files to generate all of the figures are openly available
at GitHub (https://github.com/ktakae/TakaeKawasaki emergent) (65). All other
data are included in the article and supporting information.
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