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Peripheral arterial disease treatment planning using

noninvasive and invasive imaging methods
Judit Csore, MD, Madeline Drake, MD, and Trisha L. Roy, BASc, MD, PhD, FRCSC, FACS, Houston, TX
ABSTRACT
With the growing prevalence and mortality of peripheral arterial disease, preoperative assessment, risk stratification, and
determining the correct indication for endovascular and open surgical procedures are essential for therapeutic decision-
making. The effectiveness of interventional procedures is significantly influenced by the plaque composition and calci-
fication pattern. Therefore, the identification of patients for whom endovascular treatment is the most appropriate
therapeutic solution often remains a challenge. Themost commonly used imaging techniques have their own limitations
and do not provide findings detailed enough for specific, personalized treatment planning. Using state-of-the-art
noninvasive and invasive imaging modalities, it is now possible to obtain a view, not only of the complex vascular
anatomy and plaque burden of the lower extremity arterial system, but also of complex plaque structures and various
pathologic calcium distribution patterns. In the future, as these latest advancements in diagnostic methods become
more widespread, we will be able to obtain more accurate views of the plaque structure and anatomic complexity to
guide optimal treatment planning and device selection. We reviewed the implications of the most recent invasive and
noninvasive lower extremity imaging techniques and future directions. (J Vasc Surg Cases Innov Tech 2023;9:101263.)

Keywords: Diagnostic imaging; Endovascular procedures; Future perspectives; Peripheral arterial disease; Treatment
planning
Chronic peripheral arterial disease (PAD) affects >230
million people worldwide and continues to increase in
prevalence.1 Although in recent decades endovascular
devices and techniques have undergone remarkable
advancements,2 conflicting reports from cohort studies
on the outcomes after endovascular revascularization
for PAD have resulted in a limited evidence-based
approach to PAD management.3,4 The TransAntlantic
Inter-Society Consensus for the Management of Periph-
eral Arterial Disease and its supplement, published in
2015, both promoted an endovascular-first approach.5,6

Global vascular guidelines on the management of
chronic limb-threatening ischemia (CLTI) introduced
new aspects to the appropriate therapeutic approach.1

These guidelines showed that bypass surgery using the
great saphenous vein has similar mortality and amputa-
tion outcomes but better expected patency compared
with endovascular procedures, although with
low-quality evidence.1 The results of the BEST-CLI (best
endovascular vs best surgical therapy in patients with
CLTI) randomized controlled study also challenges the
“endovascular-first” treatment paradigm. The BEST-CLI
trial showed that the incidence of a major adverse event
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or death for patients with CLTI was significantly lower after
surgical treatment than after endovascular therapy, when
a single segment greater saphenous vein was available.7

Despite the advancements in endovascular techniques,
the BEST-CLI results echo the only randomized control
trial previously conducted, reported >15 years ago.8 The
BASIL (bypass vs angioplasty in severe ischaemia of the
leg) studies showed that percutaneous vascular interven-
tions (PVIs) had a significantly higher early failure rate
compared with bypass surgery.8,9 Also, the clinical out-
comes after primary bypass surgery were markedly better
than those for patients undergoing secondary bypass sur-
gery after PVI.8,9 The immediate endovascular failure rates
have similarly remained stagnant at w15% to 20% in both
trials, primarily owing to the inability to successfully cross
chronic total occlusions (CTOs), rather than directly
related to the intervention itself. The preoperative assess-
ment, risk stratification, and determining the correct
indication for endovascular and open surgical procedures
are essential for therapeutic decision-making. However,
no consensus has yet been reached on how to select
the patients who would benefit from PVIs. With the latest
advances in imaging techniques and a review of the
implications of the diverse pathologic patterns of calcium
distribution on the diagnostic modalities, we can obtain a
more comprehensive and accurate view of the plaque
structure and anatomic complexity to guide optimal
treatment planning, which could help to improve patient
selection and the long-term outcomes of PVIs.10-12 The
goal of the present study was to review the most recent
noninvasive and invasive lower extremity imaging
modalities.

NONINVASIVE IMAGING METHODS
Color duplex ultrasound. Ultrasound with use of the

Doppler mode is a well-established, noninvasive
1
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Fig 1. Comparison of 7T magnetic resonance imaging (MRI) and color duplex ultrasound examination of a
middle popliteal artery segment plaque. A,B, Color duplex ultrasound images showing an echogenic, solid,
nodular, calcified plaque (yellow arrow) with shadowing artifact (red star). Doppler ultrasound (A) showing
significant hemodynamic stenosis (peak systolic velocity, 440 m/s). On color duplex ultrasound, detailed plaque
morphology can be determined only to a very limited extent. In contrast, 7T T2 and ultrashort echo time (UTE)
images of the same plaque show explicit plaque structure with speckled calcium as a signal void in an iso-
intense dense collagen matrix. MID, Middle segment; POP, popliteal artery; RT, right.
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diagnostic method to assess PAD. It can be used to
determine the exact location and extent of vascular
stenosis, in addition to arterial hemodynamics (Fig 1). The
technique is well suited for assessing focal lesions,
following up after vascular interventions, and aiding in
the selection of the access approach.13 However, diag-
nostic accuracy can be limited by the experience of the
examining technician, patient anatomy, atypical hemo-
dynamic patterns, and severe artifacts caused by exten-
sive calcification. Although assessment of the carotid
plaque volume, histopathologic plaque composition,
and morphology has more extensive literature,14,15 lower
extremity plaque characteristics cannot be generally
determined, especially in smaller below-the-knee ar-
teries. Obtaining a comprehensive view of the whole
lower extremity is time-consuming and often chal-
lenging to perform.
To achieve good long-term results after bypass surgery,

in addition to good inflow and outflow arteries, the
bypass graft material has an important role. The best
patency and limb salvage rates are achieved with an
autologous vein.16 Duplex ultrasound, with or without
color flow, is the modality of choice to assess veins for
autogenous bypass grafts.17 Thus, preoperative knowl-
edge of variant anatomy, small venous caliber, increased
wall thickness, and location of the major veins and their
branches can help in planning bypass surgery proced-
ures and might reduce the readmission and postopera-
tive surgical site infection rates.18

Future directions: ultrasound-guided lower extremity
interventions and ultrasound elastography. The use of
ultrasound during PVIs is a well-established practice;
however, its applications during PVIs have expanded. In
addition to ultrasound-guided access of femoral or
tibiopedal vessels, the use of this technique can aid in
crossing CTOs, evaluating balloon and stent apposition,
and provide ultrasound-guided closure with access
closure devices.19

Another emerging method, ultrasound elastography,
displays tissue stiffness by measuring the tissue deforma-
tion response to compression. This technique has mainly



Fig 2. Conventional angiography using iodinated contrast
material (A-D) compared with noncontrast quiescent-
interval single-shot magnetic resonance angiography (E).
The latter promising technique allows the entire lower
extremity arterial system to be mapped without the use of
contrast material.
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been applied in the treatment of carotid artery dis-
ease.20,21 Arterial stiffness increases in diseased arteries
with thromboembolism, soft plaque, calcified plaque,
and inflammatory disease. Because the rate of this pro-
gression varies between different vascular pathologies,
elastography could be useful for further evaluation. Addi-
tionally, the arterial stiffness value also depends on the
plaque composition, allowing elastography to potentially
differentiate between lesion types in PAD.22,23 These
expanded uses of ultrasound are growing with
increasing familiarity by interventional physicians. Color
duplex ultrasound, as a user-dependent technique, re-
quires expertise to use effectively, and training programs
have been adapted to address this gap in interventional
imaging.

Computed tomography angiography. Computed
tomography (CT) angiography (CTA) is an easily acces-
sible imaging technique that can evaluate lower extrem-
ity arteries from the abdominal region to the feet in a
single scan, assisting in the evaluation of disease distribu-
tion and vascular morphology.24 Most research on CTA
has focused on the characteristics of atherosclerotic
plaques of coronary arteries.25,26 It has been used in
different studies to determine the plaque composition,
dividing the plaque area into soft, intermediate/fibrous,
and calcified components.27 On lower extremity arteries,
Patel et al28 showed that the burden of calcified plaque,
but not soft or fibrocalcific plaque, is related to restenosis,
reintervention, and amputation-free survival. Itoga et al29

found that although longer lengths of occlusion on
preoperative CTA is associated with technical failure, on
multivariable analysis, 100% calcification remained the
only significant predictor of technical failure of endo-
vascular revascularization of occlusions in the superficial
femoral arteryepopliteal artery region. He et al,30 study-
ing femoropopliteal segments on preoperative CTA i-
mages, showed that a high calcified plaque burden and
excessive stent oversizing were associated with unfavor-
able outcomes after stent angioplasty. A detailed char-
acterization of plaques can bemade difficult by so-called
blooming artifacts caused by beam hardening artifacts
of extensive calcification. CTA also requires the use of
ionizing radiation and iodinated contrast material, which
can be an additional limiting factor. However, CTA
remains one of the most widely used imaging methods
for endovascular treatment planning owing to its easy
availability and short examination times.

Future directions: dual-energy CTA and photon
counting CT. Although CTA can be of great help in
choosing an appropriate therapeutic solution, small
vessel diameters, high-grade wall calcifications, and
poor contrast attenuationdespecially in the infrapopli-
teal regiondstill represent diagnostic challenges. Dual-
energy CTA, also known as spectral CT, uses two
separate energy spectra of X-rays, offers much more
detailed tissue imaging, and possesses high sensitivity for
detecting significant stenoses.31,32 However, the method
still requires ionizing radiation and is less common than
single-energy CTA.33 Photon counting CT (PCCT) is a new
CT technology that uses a direct conversion X-ray de-
tector, where incident X-ray photon energies are directly
recorded as electrical signals. Compared with energy-
integrating detector CT, PCCT provides data at high
spatial resolution, without electronic noise, with an
improved contrast/noise ratio, at a lower radiation dose,
and with intrinsic spectral information.34 To date, the
data are available mainly for coronary atherosclerosis



Fig 3. 7T magnetic resonance imaging histology (MRI-Histo) of anterior tibial artery. Bony landmarks of the tibia
and fibula can be used for image registration, as illustrated. Concentric calcium (green outline) is detectable on
both 7T MRI-Histo and intravascular ultrasound (IVUS) images showing similar area and diameter measure-
ments of the reference vessel. The area is not measurable on angiographic images, and assessment of the vessel
wall is particularly limited. The diameters shown illustrate how each modality can be used to determine the
optimal stent and balloon size for endovascular interventions.
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and plaques using this technique.35,36 However, the
reduced blooming artifacts might allow for improved
visualization of fibrotic and lipid-rich plaque compo-
nents and in-stent stenoses with the ultra-high-
resolution mode of PCCT.37 In the future, it could also
help in planning lower extremity revascularization.38,39

Magnetic resonance imaging. Contrast-enhanced
magnetic resonance angiography (MRA) has been shown
to be a highly reliable technique to depict the presence
and extent of arterial narrowing in patients with intermit-
tent claudication and CLTI.40-42 However, concerns have
been raised regarding gadolinium-based contrast agents
as a potential cause of nephrogenic systemic fibrosis in
patients with renal dysfunction (especially if the glomer-
ular filtration rate is <30 mL/min),43,44 although an
argument has been presented that gadolinium can be
used safely in this patient population.45 In the past
decades, significant improvements have been made in
nonenhanced MRA of the peripheral arteries. Modern
magnetic resonance imaging (MRI) sequences, such as
quiescent-interval single-shot MRA, have shown prom-
ising results and provide nearly flow-independent
imaging to evaluate occlusive below-the-knee arteries
without the need for contrast materials46 (Fig 2). Although
some MRI techniques might allow for limited assessment
of calcifications, with the use of techniques such as “black-
blood” spin-echo sequences, lower extremity plaque
morphology and even detailed morphology of calcified
lesions can be visualized.47,48 These sequences attenuate
the signal of blood and can provide high-quality cross-
sectional images of plaques and vessel walls; thus, lesions
that would be more difficult to cross during PVI can be
identified using a preprocedural MRI approach. Recent
studies have shown that the MRI characteristics of PAD
lesions can identify patients with lesions more difficult to
cross with a guidewire and at a higher risk of endovascular
failure.49 These MRI features correlate with the guidewire
puncture forces for CTOs, an important aspect of deter-
mining the ability to cross such lesions, classifying plaques
as “soft” (ie, loose fibrous tissue, microchannels, fat,
thrombus), “hard” (ie, dense collagen, speckled calcium),
or calcified (nodular calcium).50 Current data show that
using ultrashort echo time sequences, lesions composed
of dense collagen and calcium can be easily identified
(Fig 1).51

INVASIVE IMAGING METHODS
Digital subtraction angiography
Despite the inherent invasive nature and significant

limitations, digital subtraction angiography (DSA)
remains the gold standard for imaging of PAD. In addi-
tion to the ability to assess lumen patency, the presence
of collateralization, and the quality of flow, the dual
diagnostic and therapeutic role of DSA imaging is
unique. The major limitations of DSA include the limited
two-dimensional perspective, the need for radiation, the
requirement for nephrotoxic contrast, an inability to



Fig 4. Decision-making algorithm for diagnostic imaging modalities in peripheral arterial disease (PAD). ABI,
Ankle brachial index; CDS, color duplex ultrasound; CEMRA, contrast-enhanced magnetic resonance angiog-
raphy; CLTI, chronic limb-threatening ischemia; CO2, carbon dioxide; CTA, computed tomography angiography;
DE-CTA, dual-energy computed tomography angiography; DSA, digital subtraction angiography; DVA, digital
variance angiography; EVUS, extravascular ultrasound; IVUS, intravascular ultrasound; MRI, magnetic resonance
imaging; NEMRA, nonenhanced magnetic resonance angiography; OCT, optical coherence tomography; PCCT,
photon-counting computed tomography; TBI, toe brachial index; US, ultrasound.
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evaluate total occlusions or vessel wall characteristics for
accurate sizing, and a susceptibility to motion artifact.
However, new technologies as adjuncts to DSA and
catheter-based therapies to enhance the utility of DSA
have been developed. As an alternative to standard
iodinated contrast media, carbon dioxide and different
magnetic resonance contrast agents (eg, gadolinium)
can be used; however, the image quality is most often
inferior to that of conventional DSA.52,53

Future directions
Kinetic imaging and robotic technology. A new tech-

nique based on kinetic radiographic imaging called dig-
ital variance angiography consists of several, generally
underexposed, images instead of using a single, fully
exposed, image and provides better image quality and
lower radiation exposure than traditional DSA.54,55 In
the past two decades, the feasibility of robotic peripheral
vascular interventions and diagnostic angiography with
active guide catheter control were also reported with
promising achievements.56,57 With less contrast agent
and ionizing radiation exposure and increased proce-
dural speed, these techniques might open new horizons
in the diagnosis and treatment of PAD in the future.
Intravascular ultrasound. Intravascular ultrasound

(IVUS) uses a transducer at the tip of a catheter to trans-
mit soundwaves, which, when reflected back to the trans-
ducer, provide a luminal-based image on the acoustic
properties of the tissue. IVUS is perhaps the most wide-
spread of the emerging intravascular imaging techniques
and has been used in percutaneous interventions of the
coronary arteries for decades. The technique has been
increasingly adopted as an adjunct to catheter-based
techniques in the peripheral arteries owing to its ability
to produce detailed diagnostic information regarding the
lumen size, plaque morphology, degree of stenosis, and
residual lumen area58,59 (Fig 3). Although IVUS was origi-
nally used most frequently for intervention planning,
including stent and balloon sizing, postintervention as-
sessments, and identification of intimal dissection, IVUS
has also shown promising results in predicting the histo-
pathologic characteristics of plaques. Virtual histology
IVUS, first described in the coronary arteries, has been
evaluated in the carotid arteries via the CAPITAL (carotid
artery plaque virtual histology evaluation) study.60 How-
ever, few studies have evaluated virtual histology IVUS for
determining the histopathologic plaque composition and
morphology in the peripheral arterial system. The limita-
tions of IVUS include its requirement for intraluminal ac-
cess and having a wire across the lesion, which is the
primary mode of immediate endovascular technical fail-
ure.7,8 Furthermore, it is a side-looking device and cannot
assess total occlusions or vessels <2 mm. Compared with
optical coherence tomography (OCT) and MRI, IVUS im-
ages contain more artifact and lower frame rates and are
inherently user dependent.58,59



Table. Advantages, disadvantages, and approximate cost of imaging methods for treatment planning

Imaging modality Advantages Disadvantages Approximate cost (USD)

Noninvasive modalities

Color duplex ultrasound Noninvasive; nonionizing; no
need for contrast material;
provides hemodynamic
information; good for follow-
up

Operator dependent; limited
field of view; longer
examination time; limited
assessment of calcified
vessels

$900.00 (unilateral); $1100.00
(bilateral)

Computed tomography
angiography

Noninvasive; affordable; high
availability; high spatial
resolution; fast; 3D imaging
data

postprocessing also possible

Ionizing radiation; requires
iodinated contrast material;
limited assessment of
calcified and infrapopliteal
vessels

$1600.00

Dual-energy computed
tomography

High spatial resolution; good
image quality in crural
region; allows for more
detailed tissue imaging

Ionizing radiation; requires
specialized hardware;
limited accessibility

NA

Photon-counting
computed tomography

High spatial resolution; great
contrast/noise ratio; lower
radiation ratio; intrinsic
spectral information;
reduced blooming artifacts

Ionizing radiation; limited
accessibility

NA

Magnetic resonance
imaging

Noninvasive; no need for
contrast material; 3D image
reconstruction; high
resolution; outstanding soft
tissue contrast for evaluating
plaque; flow-independent
assessment of below-the-
knee vessels; can provide
hemodynamic information;
gadolinium-based contrast
material more tolerable for
patients with impaired renal
function

Longer acquisition time;
more expensive than
computed tomography;
some techniques might
allow for limited assessment
for calcifications;
claustrophobia; non-MRI
conditional devices

$1750.00

Invasive modality

Digital subtraction
angiography

High resolution; fast Invasive; requires iodinated
contrast material; limited
assessment of vessel wall

$286.00

Intravascular ultrasound Widespread
detailed diagnostic

information on lumen size,
vessel wall, and plaque
burden

Artifacts; lower frame rate;
operator dependent

$4422.50 (cost of intravascular
ultrasound catheters:
$600.00-$1200.00)

Optical coherence
tomography

High resolution; 2D and 3D
images

suitable for smaller vessels

Limited penetrative depth;
limited field of view; requires
irrigation with saline
accompanied by occlusion
of inflow

NA

Angioscopy Direct visualization of vessel
wall and wall-associated
structures; colored images

Evaluation of disease present
on intraluminal surface;
plaque volume, content, and
depth not measurable;
requires irrigation with saline
accompanied by occlusion
of inflow

NA

2D, Two-dimensional; 3D, three-dimensional; MRI, magnetic resonance imaging; NA, not available.
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Fig 5. Anterior tibial artery plaque morphology on 7T
magnetic resonance imaging (MRI) and computed to-
mography angiography (CTA). The 7T MRI images (ultra-
short echo time [UTE], T1, T2) show a detailed structure of a
concentric, calcified plaque with calcium as a signal void.
Assessment on the CTA image is limited because of
extensive calcification and consequential blooming artifact.

Fig 6. Detailed ex vivo plaque morphology of tibioperon
mography angiography (CTA) for the same patient in
calcification. Assessment of the plaque was limited on in
histologic samples (A,B), and micro-computed tomogra
concentric calcium sheet.
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Optical coherence tomography. OCT is another estab-
lished coronary imaging modality that is now emerging
for lower extremity endovascular imaging. Compared
with IVUS, OCT provides higher resolution imaging with
two- and three-dimensional images. The technology
uses a low-coherence light to create images from the
optical scattering created from penetration of biologic
tissue.61 Like IVUS, the utility of OCT has focused mainly
on luminal measurements, stent planning, and imme-
diate feedback with direct visualization of the artery after
intervention.61 Although few studies have investigated
OCT, perhaps the real utility of OCT compared with IVUS
in the peripheral arterial system might be in determining
plaque composition and morphology owing to the
increased resolution of the images. OCT data are severely
limited in the peripheral arteries; however, it has been
shown to accurately demonstrate plaque composition
(confirmed by histologic findings) in the coronary ar-
teries.62 In contrast to IVUS, OCT requires displacement
of blood flow through the vessel at the time of imaging.
This increases the use of contrast and/or saline and limits
the use of OCT to smaller vessels (<5 mm diameter). OCT
is also limited in its penetrative depth (1-3 mm) and small
field of viewdthe reason its scope might be limited to
the smaller infrapopliteal arteries in treating PAD.61

Angioscopy. Angioscopy was regularly used by vascular
surgeons in the context of saphenous vein assessments
but was largely abandoned because of the limited
benefit. It is now experiencing a resurgence for lower ex-
tremity arterial disease.63,64 Angioscopy refers to the
direct visualization of the inner surface of an arterydand
any associated plaque, thrombus, or calcificationdusing
eal trunk compared with preoperative computed to-
Fig 3. The vessel was affected by extensive, circular
vivo CTA. On intravascular ultrasound (IVUS), ex vivo

phy (CT; C,D), we can see the explicit pattern with a
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a small endoscope. Angioscopy is the only intravascular
imaging technique that can image total occlusions and
can provide color images, which adds a unique element
to the characterization of a lesion and guidance for
intervention. Although color differences of coronary pla-
ques have been associated with all-cause mortality and
major adverse cardiovascular events, angioscopy has not
been widely adopted into use.65 Angioscopy is limited to
evaluation of disease present on the intraluminal surface;
thus, evaluation of plaque volume, content, and depth
might be better provided by other imaging modalities.65

DISCUSSION
Despite remarkable advancements in endovascular de-

vices and techniques, endovascular procedures still have
a remarkable immediate failure rate (15%-20%), and the
early failure rate also remains high.7-9 Because the main
reason for this can be attributed to the challenge of
effectively crossing CTOs, arterial plaque composition
and calcification play a major role in the ability to inter-
vene and the success of the intervention.29 Invasive and
noninvasive imaging methods that can accurately pre-
dict plaque characteristics have been shown to improve
endovascular outcomes.28 Several invasive and noninva-
sive imaging techniques have been used to evaluate
lower extremity vessels as described and as illustrated
in an algorithm in Fig 4. However, each has benefits
and limitations to remember when making therapeutic
decisions (Table).
CTA and MRA are both excellent imaging techniques

for visualizing peripheral arteries, particularly in aortoiliac
and femoropopliteal segments. However, in some cases,
such as in severely calcified tibial vessels, blooming arti-
facts on CTA can obscure the vessel lumen (Figs 5 and
6). In these cases, the high resolution of MRA, which ex-
cludes calcific disease, might be better for assessing
patency and noncalcific plaque or thrombus of small
vessels (Fig 5). On CT scans, calcifications can be easily
identified, which can affect therapeutic decision-
making; however, recent gradient-echo MRI sequences
can also be used for the accurate depiction and quanti-
fication of, not only vascular calcifications, but also
collagen-rich fibrous plaque components in patients
with PAD,49,66 which are also challenging to treat percu-
taneously.50,67 Although research on MRI plaque charac-
terization for PAD is in its early phases, it could be used in
the future to select patients and tailor device selection
using a safe, noninvasive method before intervention.
Additionally, by avoiding administration of contrast
agents, nonenhanced MRA techniques reduce the risk
of adverse reactions and offer valuable diagnostic infor-
mation in various clinical scenarios. Compared with
DSA alone, the use of intraluminal imaging techniques
such as IVUS (Figs 3 and 6) and OCT provide more accu-
rate measurements of luminal patency and lesion
composition. Thus, these techniques have been used to
accurately assess narrowing and size stents or balloons
intraoperatively. However, intravascular imaging
methods require physicians to cross the lesion and
because that is the most common reason for endovascu-
lar treatment failure, patients with such lesions would
ideally be identified before invasive procedures, making
it easier to find the optimal technique and device for tar-
geted intervention.

CONCLUSIONS
Ultimately, the choice of imaging technique for revas-

cularization procedure planning in peripheral arteries
should be patient specific owing to the complexity of
the various anatomic patterns of disease, lesion charac-
teristics, symptoms, and patient comorbidities. The use
of a combination of current imaging techniques can
help provide a deeper understanding of underlying dis-
eases, thus contributing to improved procedure
planning. Future innovations in imaging are required to
aid patient selection and rationally guide device selec-
tion to improve the immediate and long-term success
of lower extremity revascularization procedures.
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