
pathogens

Review

Human Papillomavirus and Cellular Pathways: Hits and Targets

Alessandro Medda , Daria Duca and Susanna Chiocca *

����������
�������

Citation: Medda, A.; Duca, D.;

Chiocca, S. Human Papillomavirus

and Cellular Pathways: Hits and

Targets. Pathogens 2021, 10, 262.

https://doi.org/10.3390/

pathogens10030262

Academic Editor: Lawrence S. Young

Received: 28 December 2020

Accepted: 19 February 2021

Published: 25 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy;
alessandro.medda@ieo.it (A.M.); daria.duca@ieo.it (D.D.)
* Correspondence: susanna.chiocca@ieo.it; Tel.: +39-0257489835

Abstract: The Human Papillomavirus (HPV) is the causative agent of different kinds of tumors,
including cervical cancers, non-melanoma skin cancers, anogenital cancers, and head and neck
cancers. Despite the vaccination campaigns implemented over the last decades, we are far from
eradicating HPV-driven malignancies. Moreover, the lack of targeted therapies to tackle HPV-related
tumors exacerbates this problem. Biomarkers for early detection of the pathology and more tailored
therapeutic approaches are needed, and a complete understanding of HPV-driven tumorigenesis is
essential to reach this goal. In this review, we overview the molecular pathways implicated in HPV
infection and carcinogenesis, emphasizing the potential targets for new therapeutic strategies as well
as new biomarkers.

Keywords: HPV; EGFR; PI3K/Akt/mTOR; AP-1; autophagy; EMT; JAK/STAT; DNA damage
response; miRNA; head and neck cancer; cervical cancer

1. Introduction

The Human Papillomavirus (HPV) is the causative agent of more than 90% of cervical
cancers, but it is also implicated in the development of other malignancies, such as non-
melanoma skin cancers, anogenital tumors, and squamous cell carcinoma of the Head
and Neck (HNSCC) [1]. Despite the presence of vaccines against the most prevalent
HPVs, the burden of HPV-related tumors is still far from being in consistent reduction [2].
Moreover, the lack of targeted therapy against HPV-related cancers evidences the need of
new therapeutic approaches. Thus, a complete understanding of the pathways involved in
HPV-mediated carcinogenesis could open to new strategies for targeting these tumors.

In this review, we will give a broad overview of the molecular mechanisms and path-
ways affected by HPV as well as which of them has potential features for new biomarkers
or targeted therapy.

HPVs are small DNA viruses belonging to the Papillomaviridae family [3]. Currently,
more than 200 HPV types have been defined and can be subdivided in two main groups: the
high risk (HR) and low risk (LR), based on their ability to induce cancers. Indeed, LR HPVs
are responsible for anogenital or cutaneous warts, recurrent respiratory papillomatosis and
Heck’s disease, while HR HPV are known for their ability to drive tumorigenesis in the
cervix, in the anogenital tract and in the mucosa of the Head and Neck (HR and LR HPVs
and their related diseases are listed in Table 1) (reviewed in [4]). HPVs are non-enveloped
viruses consisting of an icosahedral capsid of about 60 nm in diameter, with a double
stranded circular DNA of approximately 8000 base pairs [5]. HPVs contain three genomic
regions, including approximately ten open reading frames (ORFs). Polycistronic mRNAs
generate many of the viral proteins [6]. The viral genome can be subdivided into three
regions, including the early region (E), with up to seven ORFs encoding viral regulatory
proteins; the late region (L), that encodes the two viral capsid proteins; and the long control
region (LCR), or upstream regulatory region (URR), composed by the origin of replication
and transcription control sequences [7].
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Table 1. Main HPV types and their associated diseases.

Low Risk High Risk

HPV Type 1, 6, 10, 11, 32, 42, 44 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, 68

Associated Disease

Anogenital warts
Cutaneous warts

Recurrent respiratory
papillomatosis
Heck’s disease

Intraepithelial neoplasia
Invasive carcinoma:

HNSCC, Cervical cancer, Anogenital cancers,
Non-melanoma skin cancer

HPV infects basal cells of the mucosal epithelium. Capsid protein L1, upon attachment
to heparan sulphate proteoglycans (HSPG), changes conformation and exposes capsid
protein L2 to cleavage, inducing internalization of the virus. E1 and E2 proteins are the first
transcribed and are essential for viral genome amplification, which can stay in the basal
cells either as a multicopy plasmid or episome, or a mix of both. E1 and E2 recruit cellular
components of DNA replication machinery to the replication fork and bind to the origin
of replication. The E5 protein is a multi-pass protein which activates receptors tyrosine
kinase (RTKs) and induces proliferation. The E6 and E7 proteins change the environment of
differentiated basal cells of the epithelium. Specifically, E6 inhibits apoptosis by interacting
with p53 and inducing its degradation. E6 increases telomerase activity by upregulation
of telomerase reverse transcriptase (TERT). E7 protein interacts with the retinoblastoma
protein (pRb), sending it to proteasomal degradation, thereby releasing and activating
important transcription factors involved in cell cycle progression. E6 and E7 modify the
cellular environment to induce genome amplification in growth arrested differentiated
cells, and, through induction of uncontrolled proliferation, they increase the infected area.
HPV genome can then be packaged into L1 and L2 capsid protein and, after a maturation
period, can exit from cells which have lost nuclear and cytoplasmic integrity, aided by the
E4 protein that disrupts cytokeratin filaments (reviewed in [4]).

The main drivers of carcinogenesis, which discriminates HR and LR HPVs, are the
early proteins E6, E7, and E5. Both HR and LR E6 and E7 proteins can interact respectively
with p53 and retinoblastoma protein (pRb), but only HR HPVs are able to induce their
degradation and inactivation. Upon HPV integration into the host genome, E6 and E7
lose their regulation mediated by the E2 repressor protein, leading to their uncontrolled
expression. E6 and E7 oncoproteins expression induces genomic instability and accelerates
the accumulation of mutations, hence resulting in the development of malignancies [8,9].

To precisely assess whether a tumor is truly HPV-driven, several markers are used
for HPV detection: viral DNA detection through PCR techniques, E6/E7 HPV mRNA
RT-PCR, HPV DNA in situ hybridization, and p16INK4a detection through immunohisto-
chemistry [10]. This is crucial, for example, in HPV-related head and neck cancers, where
HPV positive tumors have a different prognosis with respect to HPV negative ones (recently
reviewed in [11]).

In the next sections, we will give an overview of the main pathways and cellular
processes affected by the action of HPV, indicating potential biomarkers for early de-
tection of HPV-driven tumors, as well as potential druggable targets for antiviral and
antineoplastic agents.

2. Signaling Pathways and HPV
2.1. p53

The ternary E6/E6AP/p53 is the best characterized interaction between HPV and
host proteins [12]. The tumor suppressor p53 is essential in preventing tumors thanks to
its diverse functions. P53 is a transcription factor involved in many cellular processes,
including induction of DNA damage response, cell cycle arrest, and apoptosis [13]. To
evade the control of the genome achieved by p53, it is mutated in 50% of human cancers [14].
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HR-HPVs are able to induce p53 degradation, as well as escape apoptosis and cell
cycle arrest. The viral oncoprotein E6 forms a ternary complex with p53 and with the
ubiquitin E3 ligase E6-associated protein (E6AP), resulting in the ubiquitination of p53 and
its consequent degradation by the proteasome system (Figure 1a). It is important to note
that only high risk, and not low risk HPVs, can cause p53 degradation [15,16]. p53 levels
are kept low and infected cells can evade apoptosis and cell cycle arrest. This also causes
chromosomal instability, which eventually leads to carcinogenesis [17,18]. In this context, it
is easy to understand the importance of p53 downregulation for carcinogenesis and why the
disruption of the binding between E6 and p53 could be a potential target for HPV-mediated
cancer therapy. Indeed, recently, Celegato et al. identified a small molecule inhibitor of
p53/E6 interaction, which repristinates p53 activity and blocks cancer cells growth, thus
showing a promising target for HPV-related cancers [19]. HR HPV E6/E7 oncoproteins can
also upregulate, at both the mRNA and protein level, another member of the p53 family of
proteins, namely p63 and in particular the ∆Np63α isoform, which is important in HNSCC
carcinogenesis [20]. This could allow the targeting of p63 for the treatment of HPV-positive
HNSCC patients, for example, with the use of histone deacetylase inhibitors which were
shown to induce its downregulation in HNSCC cell lines [21].

2.2. pRb and Pocket Proteins

The tumor suppressor retinoblastoma protein is a member of the so-called “pocket
proteins”, together with p107 and p130 [22–25]. Pocket proteins are fundamental in con-
trolling the cell cycle by directly interacting with E2F family proteins (reviewed in [26]).
In a hypophosphorylated form, pRb binds to E2F, causing its negative regulation and a
quiescent state of the cell. When mitogenic signals are present, D-cyclins are transcribed
and associate with cyclin dependent kinases (CDKs), specifically CDK4 and CDK6, which
phosphorylate pRb. Hyperphosphorylated pRb releases to E2F that, now free and active,
can transcribe a family of genes involved in cell cycle progression [27].

The HPV oncoprotein E7 interacts with pRb, inducing the release of E2F and leading
to uncontrolled cell cycle progression. HR-HPV E7 is able to inactivate and destabilize
pRb even in the absence of CDKs and to induce its degradation through the proteasome
system (Figure 1b) [28–30]. LR HPV 6 and 11 express E7 proteins with a lower pRb binding
efficiency and without transforming activity in vitro [31,32]. On the other hand, the LR
HPV1 E7 has high affinity to pRb as HR HPVs, but it fails to induce transformation of
primary cells [32]; moreover, it is not capable of inducing pRb degradation [1].

2.3. EGFR

The epidermal growth factor receptor (EGFR) is a tyrosine kinase, member of the
ErbB/HER (ERBB, from the related avian viral erythroblastosis oncogene; HER, human
EGF receptor) family [33]. EGFR is a transmembrane protein that is activated by the binding
of some ligands, in particular the epithelial growth factor (EGF), the transforming growth
factor α (TGF α), and others [34]. It consists of an extracellular part that binds the ligands,
a transmembrane part, and an intracellular part capable of catalytic activity. Inactive
EGFR is monomeric, but the binding of ligands activates it, giving rise to the formation of
homodimers. EGFR is a very well-studied proto-oncogene, because it is implicated in many
cellular processes such as proliferation, migration, survival, and angiogenesis [35–37]. Once
activated, EGFR homodimers autophosphorylate, and propagate extracellular mitogenic
signals to the nucleus, resulting in the activation of many cellular genes and pathways such
as mitogen-activated protein kinase (MAPK) and phosphoinositide-3-kinase (PI3K)/protein
kinase B (AKT) implicated in differentiation, mitogenesis, mobility, and survival [35]. EGFR
is important in cancer cell proliferation: it regulates many metabolic processes (fatty acids
and pyrimidines synthesis, glucose catabolism) in a direct fashion by phosphorylating
enzymes, or indirectly by activating signaling pathways (AKT) [38–40].
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Figure 1. Signaling pathways impinged by HPV: (a) HPV E6-mediated degradation of p53; (b) pRb degradation and
inactivation by HPV E7; (c) EGFR regulation by HPV E5; (d) PI3K, Akt and mTOR are deregulated by HPV; (e) HPV gene
transcription induced by AP-1; (f) Autophagy inhibition by HPV oncoproteins.

High EGFR expression is associated with poor prognosis in cervical cancer [41]. The
HPV oncoprotein E5 is involved in the activation and increase of the EGFR pathway
dependently on the ligand (Figure 1c) [42]. Viral oncoprotein E5 can upregulate VEGF
(vascular endothelial growth factor) and cyclooxygenase 2 through EGFR [43]. Activation
of EGFR pathway by E5 results in the initiation of an intracellular cascade that activates
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many proto-oncogenes. In particular, mitogen associated protein kinases (MAPKs) and
the activating protein-1 (AP-1) components are activated, inducing the expression of the
viral oncoproteins E6/E7, as explained in detail in the following sections [42,44]. Moreover,
HPV16 E5 enhances recycling of the EGFR to the surface of cells and an increase in EGFR
phosphorylation levels, although requiring EGF binding [45,46]. This can be observed in
the absence of any change in EGF internalization and degradation rates, as well as affinity
levels of EGFR for EGF, resulting in an increased number of EGF receptors on the cell surface
and lower degradation of EGF-bound EGFR. During HPV infection, E5 has a key role in
hyperproliferation of keratinocytes, enhancing EGFR signaling to delay differentiation [42].
E5 is expressed mainly in differentiating suprabasal cells of the stratified epithelium, based
on in vivo and in vitro studies [47]. EGFR is an important target for targeted therapy
in HNSCC. High expression of the receptor, detected by immunohistochemistry (IHC),
occurs in 90% of HNSCC specimens. Many studies have correlated high EGFR expression
with low survival rates, radioresistance, and locoregional failure. Inhibition of EGFR
confers higher sensitivity of cancer cells to ionizing radiations in preclinical studies on
HNSCC [48–51]. Cetuximab, the monoclonal antibody against EGFR, is currently used
for recurrent and metastatic HNSCC [52]. However, it is not clear if there is a difference
in efficacy between HPV positive and HPV negative tumors because results of different
studies are controversial [53,54].

2.4. PI3K/Akt/mTOR

The PI3K/Akt/mTOR cascade is important for cellular control and signal transduction:
it promotes cell survival, growth, proliferation, migration, and energy metabolism. Phos-
phoinositide 3-kinases (PI3Ks) are a class of enzymes that are phosphorylated (activated)
in the presence of external stimuli and are regulated by receptor tyrosine kinases (RTKs) or
G protein-coupled receptors (GPCRs) GTPases. Active PI3K generates the membrane lipid
phosphatidylinositol-3,4,5-trisphosphate (PIP3) and phosphatidylinositol-3,4-bisphosphate
(PI3,4P2) by phosphorylation of phosphatidylinositol-4,5-bisphosphate (PI4,5P2) [55]. This
induces the recruitment of Akt to the cell membrane and the consequent activation of
this protein through its phosphorylation by the mammalian target of rapamycin complex
2 (mTORC2). Phosphatase and tensin homolog (PTEN) negatively regulates PI3K activation
of Akt by dephosphorylation of PIP3. Active Akt phosphorylates many targets involved
in cell cycle control, cell proliferation, cell mobilization, angiogenesis, anti-apoptosis, and
cell survival [56]. Among those targets, Akt inhibits tuberous sclerosis complex 2 (TSC2),
with the consequent activation of mTORC1. mTORC1 is involved in sensing of energy,
oxygen, growth factor, amino acids and stress; this to ensure adequate resources to activate
downstream processes. Phosphorylated mTORC1 activates protein translation, lipid and
nucleotide synthesis, and inhibits autophagy (reviewed in [57]).

The PI3K/Akt/mTOR axis is frequently deregulated in many tumor types, contribut-
ing to malignant growth and resistance to therapy [58]. PIK3CA gene (encoding class I
PI3K catalytic subunit) is mutated or amplified in many cancers; in particular, it is mutated
in 17.5% and amplified in 15.7% of HNSCC; the loss of PTEN also contributes to carcino-
genesis [59]. Moreover, mutations in PIK3CA and PTEN are more common in HPV-positive
than HPV-negative HNSCC [59,60]. The HPV16 E7 protein binds to protein phosphatase
2A (PP2A) subunits, preventing their interaction with p-Akt and keeping it active. E6 can
activate Akt as well, or bind TSC2, leading to its degradation and resulting in stimulation
of mTORC1 (Figure 1d) [61–64]. Furthermore, targeting mTOR inhibits carcinogenesis in a
mouse model of HPV [65]. Recently, many clinical trials on HNSCC patients are ongoing
to evaluate the efficiency of PI3K/AKT/mTOR inhibitors, often using rapamycin analogs,
and these show partially promising treatment responses [66–68]. Thus, this pathway can
be considered a potential target for the treatment of HPV-induced cancers.
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2.5. JNK/ERK/ AP-1
2.5.1. JNK

c-jun N-terminal kinase (JNK) is a subfamily of Ser/Thr kinases from the canonical
signal transduction of MAPK; JNK1, JNK2, and JNK3 are present, encoded by three
different genes [69,70]. JNKs respond to different external signals, such as infections
(both viral and bacterial), cytokines, growth factors, heat shock, UV radiation, and other
stresses [71]. JNKs are activated by a cascade of upstream signals (JNK kinases and
JNK kinase kinases) and, in turn, phosphorylate target proteins, including activating
transcription factors (ATF, ETS Like-1 protein (Elk1) and AP-1 family proteins [72–74].
Among AP-1 family members, JNK phosphorylates Jun protein family. It has been shown
that JNK1/2 phosphorylation is upregulated in primary keratinocytes transduced with
HPV18 [75]. Moreover, a recent study found that HPV E6 induces JNK phosphorylation
via the PDZ-binding motif, activating c-jun expression, thereby promoting proliferation
and expression of viral oncoproteins through EGFR in cervical cancer [76].

2.5.2. ERK

The extracellular signal-regulated kinase (ERK) pathway is implicated in the phospho-
rylation of a variety of substrates involved in cell proliferation, differentiation, survival,
and motility [77]. The Ras (from Rat sarcoma) GTPase recruits RAF (Rapidly Acceler-
ated Fibrosarcoma), in particular Raf-1, which in turn phosphorylates serine of MEK1/2
(MAPK/ERK kinase 1 and 2) [78–80]. MEK1/2 induce ERK1/2 phosphorylation of ty-
rosine and threonine residues, resulting in the activation of a plethora of downstream
pathways [77]. For the variety of pathways regulated by ERK signaling, the deregulation
of this pathway has been associated with different kinds of cancers [81,82]. Nowadays,
many inhibitors of the ERK signaling pathway are available, increasing the interest in this
pathway for targeted cancer therapy [83].

The ERK pathway is involved in HPV-induced cancers. The 5-aminolevulinic acid
photodynamic therapy downregulates HPV viral load by the ERK, Akt, and mTOR path-
ways [84]. A recent report has shown that the E6 protein can change the activity of the
Eukaryotic translation initiation factor 4E (eIF4E) protein via ERK and Akt pathways [85].
Moreover, the E6 oncoprotein induces the activation of ERK signaling and upregulates
the expression of HIF-1α (hypoxia inducible factor 1α), VEGF, and interleukin 8 expres-
sion [86]. Activation of Erk1/2 signaling by benzo[α]pyrene upregulates the expression of
HPV 31 [87].

2.5.3. AP-1

AP-1 is a dimeric transcription factor implicated in the regulation of many path-
ways, including differentiation, proliferation, and apoptosis (reviewed in [88]). AP-1 can
vary its transcriptional function according to dimer composition, which can range over
4 different family proteins: Jun, Fos, ATF/CREB (activating transcription factor, cyclic
AMP-responsive element-binding), and Maf (musculoaponeurotic fibrosarcoma) [88]. AP-1
is regulated at multiple levels and in a complex way from dimer composition to specific
interactions between AP-1 proteins and other transcription factors as well as to transcrip-
tional and post-transcriptional mechanisms [89]. The most relevant proteins of the AP-1
complex are from the Jun and Fos families, which form heterodimers with the highest
affinity to an asymmetric heptameric sequence TGA(C/G)TCA (called AP-1 sequence) and,
with a slightly lower affinity, to a symmetric octameric sequence, TGACGTCA [90,91]. Jun
family proteins can form homodimers and are composed by c-jun, junB, and junD [92].
C-jun activity is regulated by the JNKs on serine 63 and 73 [93]. The Fos family of proteins
can only form heterodimers with Jun and is composed by c-Fos, FosB, Fra-1, and Fra-2.
In particular, c-fos is regulated by the ERK signaling pathway with a dual mechanism:
increasing c-fos transcription and increasing its activity by direct phosphorylation [94–97].

AP-1 is fundamental for HPV oncoproteins transcription. HPV 18 promoter 105 (p97
in HPV16) contains an AP-1 consensus sequence, that starts the transcription of E6/E7
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by AP-1 transcription factors (Figure 1e) [98]. Mutations in the AP-1 binding site abolish
E6/E7 expression, and altered AP-1 is correlated with tumorigenic phenotypes in HeLa
cells, while c-fos upregulation induces cervical cancer cells proliferation [99,100]. AP-1 is a
key regulator of E6/E7 expression and mediates chemoradiation resistance, which can be
reverted by curcumin [101]. It has been shown that exposure to tobacco upregulates the
expression of E6/E7 oncoproteins by increasing AP-1 mediated transcription in cervical
cancer cells [102]. On the contrary, inhibiting the AP-1 pathway using berberine, induces
the suppression of E6/E7 and the restoration of p53 and pRb activity, resulting in growth
arrest and apoptosis in cervical cancer cells [103,104]. Given the importance of this pathway
for HPV oncoproteins’ expression, this could be a potential target for HPV-induced cancers.

2.6. Autophagy

Autophagy is a self-consumption mechanism used by cells to maintain homeostasis.
It balances sources of energy in response to nutrient stress. It is involved in degrada-
tion of long-lived proteins, misfolded proteins, and damaged mitochondria, as well as the
elimination of intracellular pathogens [105]. It has been shown that autophagy can be dereg-
ulated in several types of cancers [106]. Autophagy can be subdivided in microautophagy,
chaperon-mediated autophagy and macroautophagy (hereafter referred as autophagy).
During autophagy autophagosomes, double-membraned organelles containing cargoes
from different origins, upon fusion with lysosomes (acidic degradative organelles), give rise
to autolysosomes, achieving degradation of the cargo [107]. Initiation of the phagophore
is mediated by the unc-51 like autophagy activating kinase 1 and 2 (ULK1/2) kinase
complex [108]. Autophagy factors are recruited to the phagophore and form a curved
double-membrane layer that detaches from the membrane it originates from. The elonga-
tion process consists in the expansion of the phagophore by the class III PI3K complex I
composed by the vacuolar protein sorting 34 (VPS34), PI3K, autophagy related gene 14L
(ATG14L), VPS15, and Beclin1. Thus, two ubiquitin-like conjugation systems are recruited
to conjugate phosphatidylethanolamine, to the microtubule-associated protein 1 light chain
3 (LC3) [109]. The lipidated form of LC3 (LC3-II), localized on the autophagosome, is
widely used as an indicator of autophagic flux, and it regulates membrane elongation
and autophagosome maturation [110]. P62, another marker of autophagy, interacts with
LC3 and localizes in the autophagosomes. Fusion of autophagosomes with lysosomes
is achieved by class III PI3K complex II, composed of VPS34, VPS15, Beclin 1, and UV
radiation resistance-associated gene protein (UVRAG), which activates Ras-associated
protein-7 (Rab7), leading to activity formation of autolysosomes [111].

HPV16 E5 down-regulates the mRNA expression of autophagic genes, such as ATG4a,
ATG5, LC3, ULK1, ULK2, Beclin 1, and ATG7, suggesting a downregulation of phagophore
assembly (reviewed in [112]). With a different approach, HPV16 E6/E7 affect autophagy by
inhibiting autophagosome-lysosome fusion (Figure 1f). Oncoproteins’ overexpression in
primary human keratinocytes upregulated both the lipidated LC3 and p62, indicating au-
tophagosome accumulation (increase in LC3-II) caused by decreased degradation capability
(increased p62) [113]. Moreover, HPV oncoprotein E7 induces the degradation of Ambra1,
inhibiting autophagy and sensitizing HNSCC cells to cisplatin-induced apoptosis [114].

3. EMT

Epithelial-mesenchymal transition (EMT) is a phenotypical change occurring in the
epithelial cells of many malignant tumors, and it is a shift in polarity corresponding to
greater invasiveness and metastatic potential [115–117]. EMT is a normal physiologic
process in wound healing and fibrosis (Type II) and embryonic development (Type I), but
in tumorigenesis, it acquires a pathologic function, leading to fibrosis and cancer (Type III),
which associates with a poor prognosis [118–120]. As the shift also favors a range of other
underlying mechanisms—such as cell migration, prevention of apoptosis and senescence,
and creation of an immunosuppressive microenvironment—resistance to common and
advanced treatments such as chemotherapy and immunotherapy might develop [117].
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At the molecular level, many changes are associated with and lead to EMT in cancer
cells. Their increased invasive potential is supposedly due to HPV-16 E6 and E7 onco-
proteins’ activation of Slug, Twist, and ZEB1/2 transcription factors. The action of E7
leads to actin reorganization and mutation of important cell adhesion molecules. For
example, mesenchymal-related Vimentin (VIM), N-Cadherin, and Fibronectin (Fn) over-
come epithelial cell-cell adhesion complexes such as E-cadherin, occludin, claudin, and
β-catenin (Figure 2a) [116,121–123]. Several cell-signaling molecules are also essential for
transformed cancer cells to evade apoptosis. Upregulation of the epidermal growth factor
receptor (EGFR) by E5 and by transforming growth factor-β (TGF-β) allows escape from
Fas/FasL (ligand) and Bax/Bak mediated programmed cell death [116]. The detachment
from the basal membrane through proteolytic degradation, leads to the loss of the typical
apico-basal orientation and a change associated with angiogenesis and metastasis. A close
correlation between EMT and cancer stem cells (CSC), responsible for the heterogenicity
and self-renewal of cancer cell populations, has also been observed [117].
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3.1. E-Cadherin

Among the various changes induced by HPV, the cadherin switch is considered an
important indicator of cell transformation, which, as mentioned, is associated with invasive-
ness and metastatic potential [116,117,124]. Cadherins are part of a superfamily of calcium
(Ca2+) dependent membrane proteins further divided into cadherin, cadherin-related pro-
teins, and protocadherin families whose role is mainly related to cell adhesion and various
developmental differentiation processes [125,126]. Cadherin switch means a change in the
normal epithelial cell adhesion molecule E-cadherin to the mesenchymal-associated N-
cadherin and P-cadherin (Hu et al., 2015). These are type I classical cadherins with extracel-
lular domains for cell-cell attachment, transmembrane domains, and important cytoplasmic
domains cooperating with catenins (α, β and γ) for cytoskeletal attachment. This allows
the formation of adherens junctions connecting epithelial cells and maintaining tissue
stability [127]. Thus, E-cadherin is considered an important tumor suppressor implicated
in several homeostatic signaling pathways and often down-regulated where the epithelial
phenotype gives space to the mesenchymal phenotype of malignant cells [125]. E-cadherin
favoring contact between neighboring cells was also found to play a role in inhibiting un-
controlled proliferation through the action of tyrosine kinase and receptor tyrosine kinase
(RTK) [126,128]. Uncontrolled growth and resistance to programmed cell-death are associ-
ated with its loss in favor of N and P-cadherin [129]. Their upregulation and EMT suggest
dissemination of cancer cells, greater invasive potential, and formation of metastasis. It
was also found that cell-cell adhesion mediated by E-cadherin is an important suppressor
of the Wnt/β-catenin pathway, while the switch to N-cadherin favors cell migration and
resistance to programmed death through the activation of PI3K (Phosphoinositide-3-kinase)
and MAPK/ERK (mitogen-activated protein kinase/extracellular signal-regulated kinases)
pathways [126].

Interestingly, several studies observed how oncogenic viruses such as HPV-16, can
induce E-cadherin downregulation in epithelial cells in favor of N-cadherin and EMT
upregulation, favoring the formation of dysplastic lesions and cancer [129,130]. A study
investigated the effect of various tyrosine kinase inhibitors (nilotinib, dasatinib, erlotinib,
and gefitinib) on E-cadherin and β-catenin expression in both HPV-positive and negative
HNSCC [131]. These small molecules do not act directly on these adhesion molecules
but on EGFR and Wnt and only have a secondary effect on E-cadherin and β-catenin.
Still, their use on HPV-positive cell lines caused a decrease in the previously dysregulated
β-catenin expression, while both HPV-positive and negative cell lines showed patterns of
E-cadherin increase.

3.2. Wnt/β-Catenin Pathway

The Wnt signaling pathway is a mechanism by which a range of glycoproteins called
Wnt transduce signals from the outside to the inside of the cell through the action of
β-catenin, a protein originally thought to be only involved in cell adhesion but now known
to be also implicated in cell signaling and regulation of developmental and homeostatic
processes [132,133]. This multifunctional protein is an important marker of EMT, and
its expression goes hand-in-hand with that of E-cadherin; both adhesion molecules are
abnormally expressed when the mesenchymal phenotype takes over. While the cadherin
switch allows cancer invasiveness, the Wnt/b-catenin pathway plays a major role in cancer
cell proliferation and differentiation [116,134]. While in normal epithelial cells, β-catenin
closely cooperates with α-catenin, E-cadherin, and other adhesion molecules towards
the stabilization of cell-cell adhesion, in cancer cells this pathway is atypically activated
leading to abnormal expression and accumulation of β-catenin in the cytoplasm [135]. Its
translocation to the nucleus interferes with transcription factors such as TCF/LEF (T-cell
factor/lymphoid enhancing factor). The resulting complex activates expression of several
genes involved in tumorigenesis, including c-myc, MMP-7 (matrix metalloproteinase-
7), and VEGF [136]. Underlining the importance of the Wnt/b-catenin pathway is its
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association with APC (adenomatous polyposis coli), a tumor suppressor often mutated in
cancer cells, found to be upregulated by Wnt1 and downregulated by β-catenin.

As previously mentioned, EMT is associated with several oncoviruses including HPV-
16 and leads to the transformation of cells ultimately favoring cancer progression. A study
by Rampias et al. reported that upon knock down of E6/E7 oncoproteins, there was a
significant upregulation of Siah-1, a protein which normally promotes the degradation of β-
catenin through the ubiquitin/proteasome system [137]. The effect was therefore a decrease
in its nuclear levels and its effect on the previously mentioned oncogenes. Moreover, E7
binds to a component of APC, inhibiting its activity and therefore increasing β-catenin
levels (Figure 2b) [61].

4. Immunology and Inflammation

As introduced in the previous section, it is well established that most tumors present
an immunosuppressive microenvironment facilitating their growth and development [138].
This does not mean that no immune cells are present nor that those present are oblivious to
the tumor’s presence. Instead, the inflammatory cells which infiltrate the tumor and detect
tumor antigens to eliminate it (i.e., immune surveillance) end up helping its growth and
spread [139]. These are usually immune suppressor cells, such as regulatory T lymphocytes
(Treg) and myeloid-derived suppressor cells (MDSC), which normally regulate the immune
system to avoid excessive harmful reactions (i.e., autoimmunity) [138]. Other cells can also
be found, such as other T lymphocyte subsets, B lymphocytes, dendritic cells (DC), and
macrophages [139].

Natural killer (NK) cells, which are a potent cytotoxic defense against pathogens and
tumor cells and which respond to the downregulation of HLA antigens and MHC (major
histocompatibility complex) class I induced by tumor cells to evade recognition, are rarely
found in the TME [140]. This is another survival strategy enacted by the tumor, which
purposely avoids NK cell recruitment [141]. In fact, in tumor infiltrating lymphocytes
(TILs), studies showed an impaired recognition and response to antigens, as well as
impaired cytokine secretion and recruitment of cytotoxic cells. Additionally, certain T cell
subsets respond poorly to the persistent antigen stimulation caused by tumors and become
exhausted over time, not responding effectively anymore. They are instead inhibited
by downregulatory molecules such as PD-1, later discussed in the context of treatment
strategies [139]. This has in many cases been associated with a worse prognosis but is
still a source of great debate. CD4+ TCRαβ+ T helper cells (Th) are known to express the
CD40L ligand that interacts with CD40 on dendritic cells, allowing secretion of several
cytokines (IL-2, IL-15 and IFN γ) and activation of CD8+ cytotoxic T lymphocytes (CTLs), a
T cell subset efficient in anti-tumor responses [142]. This, however, becomes exhausted and
ineffective over time due to the down-regulatory effect of the TME, aided by TAMs (M2
type macrophages) and Tregs. This because CTLs only carry out their potent anti-tumor
function after priming and activation by DCs, CD4+ T cells, and NK cells (which specifically
respond to MHC class I downregulation, which “hides” tumors from other immune cells).
CTLs then infiltrate the tumor to carry out their function. This step is not always allowed,
so a treatment strategy might involve induction of priming and activation, possibly with
immunotherapy. This allows to selectively target and sequester coinhibitory molecules
on immune cells to allow binding of costimulatory molecules and activation [143]. This
is known as immune checkpoint blockade (ICB), and an example could be targeting of
PD-1/PD-L1 (programmed death receptor/programmed death ligand) or CTLA-4 with
monoclonal antibodies such as nivolumab [138,144].

Saloura et al. investigated CTL infiltration in HPV-positive and negative HNSCC and
analyzed the presence of immune checkpoints according to HPV status [142]. First, tumors
were divided according to CTL infiltration and the presence of a 12-chemokine signature
previously described as related to immune filtration and patient survival [145]. Tumors
with high CTL infiltration were found to have a high chemokine signature, while less
infiltrated tumors showed low chemokine levels, suggesting a relationship with patients’
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prognosis. It was also found that the highly infiltrated tumors with a high chemokine
signature were also HPV-positive, which is in line with the notion that HPV-positive tumors
generally have a better prognosis. These also expressed the previously mentioned immune
checkpoints, making them a possible target for the immunotherapy treatment approach.

4.1. NF-κB Pathway

Nuclear factor kappa B (NF-κB) is a family of transcription factors which bind the
immunoglobulin (Ig) κ light chain enhancer element of B cells and hold a very important
role in a range of physiological and immune functions. They were found to control cell
growth and survival but also regulate immune responses and inflammatory processes [146].
Five members of the NF-κB family were identified, but the main one is a p65/p50 subunits
heterodimer. These are usually inactive and bound to IκB (inhibitor of nuclear factor kappa
B), released when NF-κB needs to be activated [147]. Recently, its role in tumorigenesis
was established. NF-κB can be activated in two ways. The classical (canonical) pathway
is dependent on IκB release through IKK and NEMO (NF-κB essential modulator) and
is triggered by external stimuli (i.e., antigens, cytokines) picked up by TLRs (Toll-like
receptors), ILRs (interleukin receptors), and TNFRs (Tumor-necrosis factor receptors). This
could lead to the development of tumors or autoimmune disease. The alternative (non-
canonical) pathway does not rely on the same components and is more likely to be tumor
suppressive [148].

In cervical cancer, HPV E6/E7 oncoproteins downregulate NF-κB through a mutated
IκB, preventing an immune response [149]. In this way, the virus can thrive, and the
infection becomes chronic. After the formation of cancerous lesions, NF-κB is constitutively
reactivated, probably by cytokines released by M2 macrophages in the TME [148,150,151].
The upstream mutations in signaling molecules, such as EGFR and RAS caused by the
infection, result in dysregulated NF-κB function. This causes the expression of genes which
lead to an aberrant growth and survival, such as cell immortalization and proliferation
(i.e., telomerase genes, c-myc), as well as metastasis (i.e., EMT) and angiogenesis (i.e.,
VEGF) [147,152]. Its reactivation also induces expression of a family of proteins known to
aid the development of cancer by causing genomic damage. These are called AID/APOBEC
(activation induced cytodine deaminase) and target p53 and c-myc, which promote tu-
morigenesis when mutated [153]. Inhibition of this transcription factor might potentially
present a solution to the problem of chemoradiotherapy resistance, no effective targeting
strategy has however been uncovered for now.

4.2. JAK/STAT Pathway

The Janus Kinase/Signal Transducer and Activator of Transcription pathway (JAK/STAT),
similarly to NF-κB, mediates signaling pathways controlling cell proliferation and survival
(mainly STAT3 and 5) and also has a role in immune responses (STATs 1 and 2). JAK/STAT
mediates signals (i.e., cytokines and growth factors) from transmembrane type I and II re-
ceptors directly into the nucleus, allowing a quick response to immune stimuli. Receptor
dimerization induces phosphorylation of JAKs and of the receptor’s cytoplasmic tyrosine
residue sequentially. STATs then bind and are phosphorylated to form dimers which translo-
cate to the nucleus [154,155]. This mechanism also controls immune responses and in viral
immunity. This happens mainly through the interferon signaling pathway involving STATs 1
and 2 and various receptors according to the type of IFN (I, II, III).

This pathway allows an anti-viral response which blocks its replication and spread,
facilitating a response. HPV seems to interfere with this, and E6 and E7 may be implicated
in a mutated pathway favoring the transcription of mutated genes and the development of
cancer [156,157]. HPV in fact is capable of disrupting the STATs involved (1 and 2) in order
to maintain its replication. This is achieved through binding of IRF9 (interferon 9 regulating
factor) and inhibition of ISGF3 (interferon stimulated gene factor 3), normally translocated
to the nucleus, preventing the expression of interferon stimulated genes (ISGs) essential
to building an immune response. These STATs seem to play minor roles in tumorigenesis,
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and only STAT3 is truly considered an oncogene [158]. In the presence of E6, STAT3, after
being activated mainly by the IL-6 cytokine family (it could also be activated by EGF and
other cytokines and growth factors), mediates expression of genes such as VEGF and c-myc
(also anti-apoptotic Cyclin-D and cell-cycle progression Bcl-xL), which play important
roles in tumor growth, proliferation, and angiogenesis [154,159]. Even more relevant is the
finding that a high HPV-16 viral load is associated with a high STAT3 phosphorylation
(Figure 3). Similar results have been obtained for STAT5, suggesting that the inhibition of
their associated pathways might represent a potential therapeutic target. IL-6 blockade
using monoclonal antibodies might be promising to prevent activation of STAT3 in HPV-
positive cells [158]. The use of small molecule inhibitors has been considered but has not,
for now, yielded significant results due to their high toxicity; other strategies under testing
involved the direct targeting of STAT3 mRNA with nucleotide therapeutics [160–162].
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4.3. TGF-β/TNF-α

As seen, various cytokines are involved in the oncogenesis of several tumors, starting
from the infection of cells by high-risk HPV (in the case of HPV-positive tumors) up to
the dysregulation of many of the pathways involved [163]. Tumor necrosis factor alpha
(TNF-α) is a 17kDa protein produced and secreted by several cells of the immune system,
such as macrophages, NK cells, and T lymphocytes, to act as a pro-inflammatory cytokine.
Its roles mainly relate to immune function during (i.e., leukocyte trafficking) and after
infection (i.e., clearance of immune complexes). For this reason, it is clear that many things
could go wrong in each part of this process, which ultimately lead to the formation of a
tumor. TNF-α, together with other cytokines such as IL-10, represents part of the first line of
defense against viruses, by its ability to induce a polarization of T cells to the specific subset
needed. The Th1 subset of T helper lymphocytes (polarized by TNF-α) is the preferred
choice in this case as its proinflammatory function can effectively prevent viral replication
and clear the infection; defective polarization instead, leads to the immunosuppressive Th2
subset (polarized by IL-10), which could lead to tumor formation. It is also worth noting,
however, that chronic inflammation is also associated with the formation of precancerous
and cancerous lesions [163].

The exact role of TNF-α in tumor development is not entirely clear. Some studies do
indeed suggest a beneficial role of the Th1 polarization in HPV infections, suggesting that
polarization prevents replication and the transformation of infected cells through apoptosis.
Other studies involving HPV-16 and 18, however, suggest a viral resistance and thus an



Pathogens 2021, 10, 262 13 of 23

irrelevant effect of TNF-α [164,165]. Some studies even suggested that TNF-α might play
a role in the influence of E7 on NF-κB through the inhibition of IκB [164]. Similar results
were obtained in a study investigating the effect on NF-κB of TNF-α in the presence of TGF-
β [166]. This combination allegedly induced EMT, migration, and self-renewal in HeLa
cells through the specific action of the NF-κB/Twist axis. Another study investigated the
presence in OPSCC (oropharyngeal squamous cell carcinoma) patients of various pro and
anti-inflammatory cytokines known to play a role in HPV-infection and tumorigenesis [167].
The cytokines included were TNF-α, TGF-β, and IL-10 as well as IFN-γ and VEGF, and they
were tested through the collection of patients’ saliva samples. Their elevated presence was
confirmed in patients, especially in patients where HPV was also detected, as opposed to
controls. These results suggest possible future diagnostic applications, treatment strategies,
and prognosis indicators.

5. miRNAs

Microribonucleic acids (miRNAs) are small (19–25 nucleotides long) single stranded
RNAs, also found in cervical cancer and HNSCC, that are both HPV-positive and HPV-
negative (reviewed in [168–170]). miRNA are non-coding and can only interfere with
RNA by altering its expression towards an oncogenic or tumor suppressor function [170].
Their expression also changes throughout the various phases of tumorigenesis [171]. As
illustrated in Table 2, miRNAs can be both markers for diagnosing HPV-positive tumors, as
prognostic indicators for response to therapy, as well as new targets for treatment strategies
(described in [172]). Targeting miR-21 and 7a expression, for example, could positively
influence STAT3 and lead to a correct functioning of the JAK/STAT pathway [173]. San-
nigrahi et al. found that upon upregulation of the HPV-inhibited Hsa-miR-139-3p, p53
function can be restored and chemoresistance can be reverted [174].

Table 2. Main features of miRNA commonly dysregulated in HPV-positive cancers.

miRNA Viral Oncoprotein Pathways Involved Role in Tumorigenesis References

miR-200a HPV-16 E6/E7 EMT
Downregulated Wang et al., 2019 [175]

Downregulation prevents
EMT inhibition Eades et al., 2011 [176]

miR-9 HPV-16 E6 Cell metabolism Upregulated in recurring
HNSCC and cervical cancer Božinović et al., 2019 [177]

miR-7a, miR-21 HPV-16 E6 JAK/STAT Maintain STAT3 activated in
HPV-positive cells Shishodia et al., 2015 [173]

miR-29 HPV-16 E6/E7 Often downregulated. Božinović et al., 2019 [177]

miR-218 HPV-16 E6 PI3K/Akt pathway, cell-cycle Upregulates expression of the
LAMB3 epithelial cell marker. Zheng et al., 2013 [178]

miR-34a HPV-16 E6 p53-dependent pathway Downregulated Zhang et al., 2016 [179]

Hsa-miR-139-3p HPV-16 E1, E6/E7 p-53, cell-cycle Upregulation restores p53
expression and inhibits E6/E7. Sannigrahi et al., 2017 [174]

6. DNA Damage Response

The DNA damage response (DDR) is a repair mechanism found in cells which detects
damaged DNA, adjusting it and preventing its duplication [180]. The major repair mecha-
nism ensuring genomic integrity in human cells is formed by a group of kinases belonging
to the PI3-K-related kinase family (PIKK): ATR, ATM, and DNA-PK (DNA-dependent
protein kinase). Each can contribute to restore the correct DNA sequence through different
mechanisms. DNA-PK, for instance, relies on non-homologous end-joining (NHEJ) to ligate
double-stranded breaks (DSB) without using a homologous template. Thus, it is more error
prone than ATM, which relies on homologous recombination. ATK is instead needed to
repair single-stranded breaks [181]. These kinases generally act by phosphorylating several
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downstream effector proteins like, for example, BRCA1 and CHK1 in the case of ATM, and
CHK2 in the case of ATR [180].

Oncogenic viruses have been found to interfere with and modulate various compo-
nents of these DDR pathways in order to survive and replicate in host cells. HPV uses E2 to
identify an origin of replication and recruit the E1 helicase. E6 and E7 then allow the virus
to degrade important regulatory proteins in order to interfere with the cell-cycle; re-entry
into the S-phase allows amplification of the viral DNA [182]. Several changes were found
to be induced in HPV-positive cells, such as the HPV-mediated activation of the ATM and
ATR pathways in order to favor viral replication [180]. Specifically, important damage
regulatory proteins such as BRCA1, FANCD2, and γH2AX are activated. Recently, it was
shown that HPV infection induces DNA damage and correlates with cervical precancerous
lesions and cancer [183]. Transformation and immortalization of keratinocytes is thought
to be likely induced by the high level of genomic instability caused by E6 and E7 [184].
These changes could potentially represent a starting point for developing new targeted
therapies. A study found a relationship between HPV status and radiosensitivity [185].
HPV-positive OPSCC cells in fact showed increased levels of several proteins involved
in single stranded DNA repair (as well as base excision repair), such as PARP-1, DNA
polymerase β, PNKP, and XRCC1. Treatment with Cidofovir, an antiviral agent targeting
viral DNA polymerases, showed a decreased cellular growth due to increased levels of
DNA repair proteins and γH2AX, as well as an arrest in the cell-cycle at S and G2/M [186].

7. DNA Methylation

DNA methylation is an epigenetic change consisting in the covalent modification
of a strand of DNA through the addition of methyl groups. This is accomplished and
maintained through the action of several enzymes called DNA methyltransferases. In
humans, this involves the 5′ position of cytosine rings placed at 5′ from guanine bases,
thus forming CpG islands (reviewed in [187]). Like other epigenetic changes, methylation
results in altered gene expression without changing the DNA sequence [188].

DNA hypermethylation was reported in both host and HPV genes of tumor cells
and was recently proposed as a biomarker for cervical cancer as well as for other HPV-
related cancers such as HNSCC [188,189]. The most widely studied of these alterations
interests the CpG islands located in the promoter region of genes, such as tumor suppressor
genes. The DNA methylation of 5-cytosine at CpG dinucleotides leads to the silencing of
these tumor suppressor genes and activation of oncogenes, with a resulting carcinogenic
effect [189]. Moreover, the presence of this modification in the HPV upstream regulatory
region (URR) E2-binding sites (E2BS) seems to play a pivotal role in the carcinogenic
transformation of squamous cells [190]. It is not entirely clear what the initial trigger for
hypermethylation is, although we know that the low levels of E2 resulting from it allow E6
and E7 overexpression, which in turn promote DNA methyltransferase 1 (DNMTI), leading
to more methylation and cancer development. It is worth noting that hypermethylation
has also been found in normal cells close to HPV-related lesions [191,192].

In a screening of various populations of HPV-positive women, in which all HR-HPVs
were included, CpG islands of L1 and L2 genes were analyzed in several cervical cancer
types. The results showed a strong correlation between positivity to HPV (independent
of HPV type), methylation, and cancer risk, suggesting the possible future application of
methylation assays in diagnostic cancer screens for HPV-positive patients [193]. Similarly,
gargle and biopsy samples from OPSCC male patients were analyzed for HPV-status and
type as well as methylation at various CpG sites in order to understand the potential for
early cancer detection through analysis of methylation biomarkers. A strong correlation
was observed between OPSCC biopsy samples and gargles, suggesting a potential early,
non-invasive screening method [194].
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8. Conclusions

HPV tumorigenesis is quite complex. Understanding all the events which take place
during this process is important to help future research towards the development of
effective therapies against HPV-tumors. Here we showed a variety of mechanisms by
which HPV can impinge cellular pathways for its own needs. It can interact with and
change the activity of many proteins.

Processes altered by HPV ranged from its most known targets, p53 and pRb inhibition
dependent pathways, to signaling pathways such as EGFR and MAPKs. HPV can also tailor
energy and metabolism by targeting Akt, mTOR, and autophagy. DNA damage response is
pushed by HPV to obtain an efficient viral replication. Epithelial-mesenchymal transition
is achieved by HPV, as well as deregulation of immune and inflammatory responses. We
also reviewed many miRNAs that are regulated by HPV and interfere with a plethora
of cellular pathways. HPV also upregulates DNA methylation, leading to inhibition of
tumor suppressors.

Among these cellular processes, we highlighted several potential targets for HPV
therapies, but further studies are needed to understand which can evolve from a poten-
tial target to a real targeted therapy for HPV-tumors. We have also discussed potential
biomarkers involved in pathways that are differentially affected or modified during the
onset of HPV-related cancers, such as Akt, mTOR, miRNAs, TNF-α, TGF-β, BRCA1, and
FANCD2. However, the translation to the clinics of potential prognostic and/or diagnostics
biomarkers remains a challenge. In this respect, in order to advance our understanding,
it will be crucial in the next years to develop strong preclinical models and increase the
number of clinical studies.

Importantly, HPV vaccination is the most important prevention effort towards the
eradication of HPV-driven diseases. These campaigns are already ongoing worldwide
(reviewed in [195]).
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