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Abstract

Responding to change is a fundamental property of life, making time-series data invaluable

in biology. For microbes, plate readers are a popular, convenient means to measure growth

and also gene expression using fluorescent reporters. Nevertheless, the difficulties of ana-

lysing the resulting data can be a bottleneck, particularly when combining measurements

from different wells and plates. Here we present omniplate, a Python module that corrects

and normalises plate-reader data, estimates growth rates and fluorescence per cell as func-

tions of time, calculates errors, exports in different formats, and enables meta-analysis of

multiple plates. The software corrects for autofluorescence, the optical density’s non-linear

dependence on the number of cells, and the effects of the media. We use omniplate to

measure the Monod relationship for the growth of budding yeast in raffinose, showing that

raffinose is a convenient carbon source for controlling growth rates. Using fluorescent tag-

ging, we study yeast’s glucose transport. Our results are consistent with the regulation of

the hexose transporter (HXT) genes being approximately bipartite: the medium and high

affinity transporters are predominately regulated by both the high affinity glucose sensor

Snf3 and the kinase complex SNF1 via the repressors Mth1, Mig1, and Mig2; the low affinity

transporters are predominately regulated by the low affinity sensor Rgt2 via the co-repressor

Std1. We thus demonstrate that omniplate is a powerful tool for exploiting the advantages

offered by time-series data in revealing biological regulation.

Author summary

Time series of growth and of gene expression via fluorescent reporters are rich ways to

characterise the behaviours of cells. With plate readers, it is straightforward to measure 96

independent time series in a single experiment, with readings taken every 10 minutes and

each time series lasting tens of hours. Analysing such data can become challenging, partic-

ularly if multiple plate-reader experiments are required to characterise a phenomenon,

which then should be analysed simultaneously. Taking advantage of existing packages in

Python, we have written code that automates this analysis but yet still allows users to
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develop custom routines. Our omniplate software corrects both measurements of opti-

cal density to become linear in the number of cells and measurements of fluorescence for

autofluorescence. It estimates growth rates and fluorescence per cell as continuous func-

tions of time and enables tens of plate-reader experiments to be analysed together. Data

can be exported in text files in a format immediately suitable for public repositories. Plate

readers are a convenient way to study cells; omniplate provides an equally convenient

yet powerful way to analyse the resulting data.

Introduction

Microbes live in dynamic environments [1], and time-series data is invaluable for measuring

and understanding their response to change [2]. Such extracellular changes may be applied by

the experimenter or brought about by the microbes themselves as they grow and consume

extracellular resources. A common, medium throughput way to phenotype microbial

responses over time is to use plate readers, which continually measure both optical density and

fluorescence from wells in microplates.

Although using growth curves to evaluate microbial behaviour is long established [3],

researchers now characterise the response mechanistically through combining such data with

tagging by fluorescent proteins. These markers are used either to monitor the proteins of a sys-

tem of interest or to follow the activity of exogenous copies of their promoters. With plate

readers, the fluorescence per cell as a function of time can then be determined in a range of

extracellular conditions. Such data are rich enough to reveal, for example, the structure of a

biochemical network [4, 5], to discriminate specific from generic responses depending on

growth rate [6–8], to investigate regulatory conflicts generated by applying a pair of antibiotics

[9], and to demonstrate that expression of metabolic genes is controlled by only a few metabo-

lites [10].

Nevertheless, averaging over different wells, estimating growth rates as a function of time,

correcting for autofluorescence, determining the fluorescence per cell, and particularly com-

bining data from multiple experiments can all become bottlenecks because of the amount of

data generated. For example, with measurements taken every 10 minutes, experiments lasting

say 24 hours, and 96 wells, one plate-reader experiment will generate almost 14,000 data

points, and multiple experiments are typically required to characterise a biological system.

Here we present software that performs a comprehensive analysis of plate-reader data via

established methods and data structures using the free programming language Python. We

illustrate the power of our approach both by finding the Monod curve for budding yeast grow-

ing in the sugar raffinose and by studying glucose transport in yeast, where cells need at least

one of seven transporters to grow aerobically on glucose [11]. Using Green Fluorescent Protein

(GFP) to tag genes HXT1–7 and using mutants of the regulatory network, we show that with

times-series data we are able not only to recover the regulatory control known from biochemi-

cal experiments, but also to clarify previously ambiguous regulation.

Design and implementation

The omniplate software

The omniplate Python module takes as input the data file produced by a plate reader, such

as those made by Tecan, and a ‘contents’ file, which is a Microsoft Excel file with a 8 × 12 table

that gives the strains and extracellular media in each well in a 96-well plate. Using the Python
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module pandas, omniplate creates three data frames, each a two dimensional, labelled

data structure similar to a spreadsheet or to a table in SQL. The first data frame contains the

raw time-series data, the second contains processed time-series data, and the third contains

summary statistics calculated from the processed data, such as maximal growth rates and lag

times.

The user has great flexibility to customise analysis because omniplate is built on the core

packages both of scientific Python—numpy, scipy, and matplotlib—and of Python’s

tools for data science—pandas and seaborn. To ensure reproducibility, omniplate cre-

ates a log of the methods called by a particular instance, which is exported as plain text. Fur-

ther, it allows all figures to be saved into a single PDF file.

With omniplate, the user can automatically perform multiple tasks:

Ignore any corrupted wells. Data in some wells of the plate can be corrupted, perhaps by

being contaminated or because of condensation. Using plotplate, which generates a plot

of either the OD or fluorescence of all the wells in a 8 × 12 format (Fig 1A), the user can iden-

tify any such wells by eye and remove them from the analysis using ignorewells.

Correct OD to be proportional to numbers of cells. For the optical density (OD) to be

proportional to the number of cells—the Beer-Lambert law—light passed through the cells

should only be absorbed, but most microbes scatter light [12]. This scattered light is typically

captured by the detectors in the plate reader when there are few cells in each well. As the cell

populations become more dense, however, light is scattered multiple times, and all of it is no

longer detected, causing the Beer-Lambert law to fail [12].

One way to correct for this failure is to calibrate [12, 13]. A dense culture of cells can be

diluted in a series, samples measured in the plate reader, and the measured OD compared to

the initial culture’s OD multiplied by the appropriate dilution factor. Any discrepancies are

generated by a non-linear relationship between the OD and the number of cells. By plotting

the measured OD on the x-axis and the expected OD on the y-axis, we generate a calibration

Fig 1. Using omniplate, it is straightforward to simultaneously analyse data from multiple wells in the same plate and from multiple plates. A An

overview of the measurements of OD in each well of an experiment investigating growth of budding yeast in the sugar raffinose. Wells at the edge of the

plate have been left empty because the media in these wells can evaporate more than others, at least for our plate reader. The OD measured in each well is

plotted as a function of time. We used the wells in the last row for normalisation. They contain only media and have a different scale on the y-axis. B

omniplate estimates growth rate as a function of time using a Gaussian process [17]. To determine yeast’s growth rate in different concentrations of

raffinose, data from two plates with seven replicates for each raffinose concentration per plate was combined. Each concentration is present in both plates

except for 0.25% and 0.35% raffinose. We show the average for the two plates of the mean growth rate inferred from all the relevant wells in each plate. Data

from the first hour of the experiments was not used to estimate growth rates because of fluctuations in the measured OD. Shaded errors are standard

deviations. C Yeast’s growth in raffinose obeys Monod’s equation (dashed line) with a best-fit KS of 1.0% (20 mM); the best-fit corresponding growth-rate

parameter is 0.82 h−1. The local maximal growth rate for each concentration for each plate is shown.

https://doi.org/10.1371/journal.pcbi.1010138.g001
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curve, which we fit using a Gaussian process to interpolate to ODs that have not been mea-

sured [14].

We use this calibration curve to correct all measured ODs, but the units of the corrected

OD are determined by the OD of the initial dense culture we used to generate the dilution

series. Rather than keep this arbitrary value, we rescale so that the measured OD and correct

OD are the same at an OD of 0.3. This rescaling means that the corrected OD varies linearly

with cell numbers for sufficiently small ODs, as it should [12]. The value of 0.3 is also arbitrary,

but recovering the linear scaling at sufficiently low ODs ensures that the units are such that the

corrected OD is larger than the measured OD, as expected intuitively.

With omniplate, correctOD fits a dilution series and corrects all measured ODs. We

include data for a dilution series for haploid budding yeast in glucose, but the user can provide

another via a text file comprising two columns: one of the measured ODs and the other of the

corresponding dilution factors.

Correct for the OD and fluorescence of the media. The OD and fluorescence of wells

containing medium only are subtracted from the OD and fluorescence of wells containing

medium and microbes by correctmedia. We use a Savitzky-Golay filter to smooth mea-

surements as a function of time.

Correct for autofluorescence. Two methods correct for autofluorescence, one specialised

to Green Fluorescent Protein (GFP) and one more general, if potentially less accurate. Both

require multiple technical replicates (the same strain in the same conditions in more than one

well) and wells with strains not carrying any fluorescent markers. To unambiguously detect

any outliers, we use five wells for the tagged strain. For the untagged strain, we use seven wells

because data from this strain corrects all fluorescent strains and must be reliable. Both methods

are called through correctauto.

When measuring GFP, we perform the correction with linear unmixing, which estimates the

autofluorescence using measurements from the GFP-tagged strains themselves [15]. We excite

at a single wavelength, but measure emissions both at the wavelength appropriate to GFP and at

a higher wavelength where emissions mostly come from autofluorescence. Data from the

untagged strain indicates how autofluorescence at the higher wavelength is related to autofluor-

escence at GFP’s wavelength. Using this relationship and the measured fluorescence of the

tagged strains at the higher wavelength, we correct for autofluorescence [15]. Where tested, this

method performs better than alternatives, particularly when fluorescence is low [16].

In practice, there is some GFP emission at the higher wavelength, but the ratio of GFP emis-

sions at the two wavelengths can be measured and included in the correction [15]. To combine

measurements from multiple replicates, we use a Savitzky-Golay filter to smooth ra, the ratio

of emissions at the two wavelengths for the untagged strain, as a function of OD. We interpo-

late the value of this ratio to the OD of tagged strains at each time point and so perform the

correction via [15]

fcorr ¼
raf525 � f585

ra � rg
ð1Þ

where rg is the measured ratio of GFP’s emission at 585 nm to that at 525 nm. Here f525 is the

emission of a tagged strain at the wavelength for GFP and f585 is its emission at the higher

wavelength of 585 nm. The error at each time point is estimated as the variance of the cor-

rected fluorescence of the tagged strain over its replicates.

We estimate the fluorescence per cell by dividing the corrected fluorescence for each repli-

cate by that replicate’s OD and taking the mean over the replicates. The error is given by the

corresponding variance.
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As an alternative and for other fluorophores, such as mCherry, we estimate autofluores-

cence as the fluorescence of the untagged strain as a function of its OD. To perform the correc-

tion, we subtract this autofluorescence interpolated to the OD of a tagged strain from the

tagged strain’s fluorescence at each time point [8]. We use a Savitzky-Golay filter to smooth

the fluorescence of the untagged strain’s replicates and estimate errors by the variance of the

corrected fluorescence of the tagged strain over its replicates.

Both methods check consistency by returning the corrected fluorescence of the untagged

strain, which should fluctuate around zero.

Estimate growth rates. To estimate growth rates using data from multiple replicate wells,

we use a Gaussian process, which makes only weak assumptions on the mathematical form of

the growth curve and propagates the errors in measuring the OD to the errors in the inferred

growth rates [17]. The getstats method not only determines the specific growth rate as a

function of time, but also its time derivative and calculates statistics, such as the maximal

growth rate, the local maximal growth rate (at a true maximum and not at the beginning or

end of the experiment), and the lag time, as well as their errors, which are estimated using

bootstrapping. We use a Matern covariance function [14], which only constrains the growth

curve to be twice differentiable—by growth curve we mean the logarithm of the OD because

we estimate the specific growth rate. The user can select a covariance function that is a squared

exponential or neural-network-like [14] if preferred.

The getstats method can be applied to other data to estimate its time derivative, such as

the fluorescence per OD.

Average over experiments. Either data from multiple experiments can be imported and

processed simultaneously or previously processed data can be loaded at once. Data can be

exported to text and JSON files or to Microsoft Excel spreadsheets.

Even if the plate reader is programmed identically, different experiments with the same

strain in the same condition typically have measurements at slightly different time points.

Therefore to average over experiments, using addcommonvar, we determine a common

time variable and interpolate measurements not made at this common time to the common

time. Averaging is then performed for each common time point.

Create new columns in the data frames. To enable plotting, it is often useful to add col-

umns to the data frames specifying the values of variables that the experimenter has systemati-

cally changed, such as the concentration of a nutrient or antibiotic. These numerical values

can be automatically extracted using addnumericcolumn.

Experimental methods

Although strains were kept in plates of XY media with 2% glucose, we prepared pre-cultures

by inoculating single yeast colonies in SC medium (Table A in S1 Text), complemented with

2% pyruvate—cells then respire and perform gluconeogenesis, and so we avoid any glucose-

dependent effects. We incubated such pyruvate cultures for 24 hours, then diluted and grew

cells in fresh medium for another 21 hours, and then again diluting and growing in fresh

medium for 3–5 hours to reactivate growth.

We measured optical density in either a Tecan F200 or M200 plate reader in 96-well micro-

plates (Thermo-Fisher) with 200 μl of cell culture using low fluorescence SC medium (Table A

in S1 Text). Individual OD measurements are close to identical between the machines, and we

measured fluorescence exclusively in a M200 machine.

All strains were derived from BY4741 (Table B in S1 Text).
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Results

Characterising the growth of budding yeast in raffinose

To illustrate omniplate, we measure the Monod curve for budding yeast growing with raffi-

nose as the carbon source. Monod observed that the mid-log growth rate of Escherichia coli
often obeys a hyperbolic relationship with the concentration of a carbon source [3]. Writing μ
as the mid-log growth rate, he observed that

m ¼
mmaxS
KS þ S ð2Þ

where S is the concentration of the carbon source, μmax is the maximal growth rate, and KS is a

constant characterising the carbon source. Eq 2 shows that growth increases with the availabil-

ity of carbon until carbon is no longer limiting.

Many researchers are interested in determining how a phenomenon of interest is affected

by growth rate [18], and the Monod constant, KS, is useful because it indicates the concentra-

tion of the carbon source around which a change in concentration will modify growth rate.

For budding yeast, for example, the KS for glucose is around 0.15 mM or 0.003% [19], making

growing in glucose a poor choice for studying the effect of growth rate because such small con-

centrations are difficult to prepare.

As an alternative, we used raffinose, a trisaccharide for which only the fructose moiety is

metabolised [20], and performed two plate-reader experiments (Fig 1A) where the OD was

measured for cells growing in 10 different raffinose concentrations over 24 hours. Using

omniplate, we worked on the two datasets simultaneously, correcting both for the OD of

the media and for non-linearities between the OD and cell numbers and then estimating the

growth rate using data from wells containing technical replicates (Fig 1B). By plotting the local

maximal growth rate—the growth rate at a time where the growth rate has a true peak—versus

the initial concentration of raffinose for the corresponding wells, we see that the results are

well described by a Monod curve (Fig 1C) with a KS of 20 mM or 1%, a more manageable con-

centration than for glucose.

A time-series analysis of budding yeast’s response to glucose

To illustrate further omniplate’s capabilities, we performed a fluorescence-based study of

one aspect of yeast’s response to glucose. Yeast chiefly uses seven hexose transporters (Hxts) to

grow on glucose [21, 22]—so many possibly to mitigate rate-affinity tradeoffs [23], and we cre-

ated strains where one of those transporters is tagged with GFP.

Although the transporters are known to have different affinities for glucose [24, 25], the

control of their expression is only partly understood. Expression is predominately regulated by

two subsystems (Fig 2A) [22].

The first is the Snf3-Rgt2 subsystem, comprising a low affinity sensor for glucose—Rgt2, a

high affinity sensor—Snf3, and the transcriptional regulator Rgt1, together with its two co-

repressors Mth1 and Std1 [26]. If Rgt1 forms a complex at a HXT promoter with at least one

of Mth1 and Std1 [27], it inhibits expression [28, 29]. Sufficient extracellular glucose inacti-

vates the co-repressors Mth1 and Std1 via the Rgt2 and Snf3 sensors [30]. Mth1 is inactivated

by being degraded [31]; Std1 is inactivated not only by being degraded [32] but also by con-

densing into cytoplasmic granules [33]. With Mth1 and Std1 inactivated, the HXT genes

express.

The Snf3-Rgt2 subsystem negatively regulates another repressor gene MIG2 [34], which

therefore expresses in glucose. Its protein product also inhibits HXT expression.
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The second subsystem is SNF1 kinase, a complex of three proteins known as AMP kinase

in higher eukaryotes. SNF1 responds to both low intracellular glucose [21] and to active Std1

[33, 35] (Fig 2A). It promotes HXT expression by phosphorylating the repressor Mig1, pre-

venting its binding to the HXT promoters [34, 36].

We sought to understand how these four repressors—Std1, Mth1, Mig1, and Mig2—differ-

entially regulate the HXTs, whose expression peaks at different glucose concentrations [28,

37–41]. Using GFP-tagging, we followed the Hxt levels in the wild-type strain and in strains

where either one of the sensors Snf3 or Rgt2 or one of the co-repressors Mth1 or Std1 was

deleted. To set an initial, basal level of glucose transport, each strain was pre-cultured in pyru-

vate where cells do not use glycolysis. We performed nine different experiments and analysed

the data from all nine plates together with omniplate.

Although the HXTs respond to extracellular glucose, we cannot straightforwardly measure

its concentration in this many experiments, and instead we estimated the concentration from

each culture’s OD. Assuming that a fixed amount of glucose must be imported for a cell to

Fig 2. Measuring over time GFP-tagged outputs of a system of interest both in wild-type and in mutant strains missing components of the regulatory

network can reveal much of the network’s structure. We illustrate with the network that controls the expression of hexose transporters in budding yeast.

A Expression of the HXT genes is controlled by at least two subsystems, which together regulate the activities of four repressors. Extracellular glucose is

sensed by the Snf3-Rgt2 network: Snf3 is a low affinity sensor; Rgt2 has a high affinity. Mth1 and Std1 are co-repressors that interact with the transcription

factor Rgt1 to repress the HXTs. Extracellular glucose is sensed by the Snf3-Rgt2 system, which inactivates Mth1 and Std1 and increases HXT expression.

Via Rgt1, the system also regulates MIG2, which encodes another repressor. Intracellular glucose is sensed by the SNF1 kinase complex, which when active

phosphorylates a final repressor, Mig1. When phosphorylated, Mig1 exits the nucleus and cannot repress the HXTs. B-G Using plate readers we followed

levels of Hxts tagged with GFP. We transformed the resulting time-series measurements first into GFP per cell and then, approximately, into functions of

extracellular glucose by estimating glucose from the culture’s OD. Time increases from left to right as glucose falls and the OD increases. At the extreme

left—corresponding to t = 0, the level of each Hxt is the level attained in the pyruvate used for pre-growth. Data are the average of at least two experiments,

each with four biological replicates. Errors are 95% confidence intervals. B HXT1 is strongly repressed by Std1, and Rgt2 is required to relieve Std1’s

repression. C HXT3 behaves similarly to HXT1, but expresses in low glucose and requires Snf3 to do so. D HXT2 is strongly repressed by Mth1 but not

Std1, and Snf3 is required to relieve Mth1’s repression. E HXT4 is repressed by Mig1 and Mig2 in high glucose because its levels both decrease when STD1

is deleted and increase when RGT2 is deleted. F HXT5 is at best weakly regulated by the network—all mutants behave similarly to the wild-type strain. G

HXT6 is strongly repressed by Mth1 but not Std1 in low glucose. HXT7, which also encodes a high affinity transporter, behaves similarly (Fig G in S1 Text).

https://doi.org/10.1371/journal.pcbi.1010138.g002
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replicate, we estimated the glucose concentration as a linear decreasing function of the OD [42]:

gðtÞ ¼ g0 �
ODmax � ODðtÞ
ODmax � ODmin

: ð3Þ

This function has the culture’s initial glucose concentration, g0, at the minimal OD when

the experiment begins and is zero when the experiment finishes because the OD has then pla-

teaued. Although the estimate is crude, plotting the fluorescence per cell as a function of the

estimated glucose concentration emphasises how the deleted genes affect the transporters’ lev-

els (Fig 2B–2G).

Building on previous work [22, 26, 28], these time-series data allow us to draw three conclu-

sions about how the glucose sensors Rgt2 and Snf3 regulate the two co-repressors Mth1 and

Std1:

1. The low affinity sensor Rgt2 predominately inactivates the co-repressor Std1. Deleting the

gene for STD1—but not the gene for the other co-repressor MTH1—substantially increases

the levels of Hxt1 and Hxt3 (Fig 2B and 2C), implying that HXT1 and HXT3 are repressed

almost entirely by Std1 in these concentrations of glucose. Rgt2 likely inactivates Std1

because HXT1’s expression in 2% glucose is only completely inhibited when RGT2 is

deleted (Fig 2B). Nevertheless, the high affinity sensor Snf3 also inactivates Std1, if weakly

in 0.2% glucose because HXT3’s expression in 0.2% glucose is only completely inhibited

when SNF3 is deleted (Fig 2C).

2. Mth1 is inactivated at lower concentrations of glucose than Std1. Hxt1 and Hxt3 are absent

in pyruvate in the mth1Δ and std1Δ strains (data on extreme left of Fig 2B and 2C), and so

each is repressed by both Mth1 and Std1. Yet in 0.2% glucose, Hxt3 levels increase if STD1

but not if MTH1 is deleted (Fig 2C). The difference is consistent with Mth1, but not Std1,

being sufficiently inactivated to no longer repress at this glucose concentration. In agree-

ment, the MTH1 gene is known to be repressed in glucose whereas STD1 is not [43].

3. The high affinity sensor Snf3 predominately inactivates Mth1. Focusing on Hxt2 (Fig 2D),

HXT2 is strongly regulated by Mth1 because only deleting MTH1 increases its levels in

pyruvate (data on extreme left). Considering the deletions for the two sensors, removing

SNF3 causes a weaker response than the wild-type, and so Snf3 must inactivate Mth1.

There is, however, still some response in the snf3Δ strain (Fig 2D), and so Rgt2 does inacti-

vate Mth1, if weakly.

Although perhaps not so explicitly stated before, these results dovetail with the general

understanding of the Snf3-Rgt2 network available from the literature.

We can also infer regulation by the other two repressors Mig1 and Mig2 from our measure-

ments. Perhaps counterintuitively, deleting the gene for the co-repressor STD1 can actually

decrease an Hxt’s levels compared to the wild-type, and if so deleting the sensor RGT2

increases its levels. This phenomenon is most obvious for Hxt4 (Fig 2E), but occurs too for

Hxt2, Hxt6, and Hxt7 (Figs B, F, and G in S1 Text).

Two mechanistic explanations both imply that the HXT is regulated by Mig1 and Mig2.

Std1 inhibits repression by Mig1 and Mig2 both by promoting SNF1’s activity and by repress-

ing the MIG2 gene (Fig 2A). Deleting STD1 therefore reduces an Hxt’s levels if that Hxt’s pro-

moter is repressed by Mig1 and Mig2. In contrast, deleting RGT2 hyper-activates Std1,

increasing its inhibition of Mig1 and Mig2 and raising the Hxt’s levels. Lower levels in the

std1Δ strain with higher levels in the rgt2Δ strain therefore imply Mig1 and Mig2 regulate a

HXT, and the absence of this effect implies they do not.
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Our data therefore give new insight into which of the four repressors regulate each HXT

gene:

1. The genes for the low affinity transporters HXT1 and HXT3 are repressed by Std1 and also

by Mth1 in sufficiently low glucose, but only weakly if at all by Mig1 and Mig2 (Fig 2B and

2C, Figs A and C in S1 Text).

2. HXT4 is repressed by Mth1 and Std1 and also by Mig1 and Mig2 in high glucose (Fig 2E

and Fig D in S1 Text).

3. HXT5 is weakly regulated by the Snf3-Rgt2 subsystem if at all [44] because all the deletions

leave Hxt5’s behaviour unchanged (Fig 2F and Fig E in S1 Text). HXT5 is unlikely to be

redundantly repressed by Mth1 and Std1 because deleting STD1 at glucose concentrations

where Mth1 is expected to be inactive has no phenotype (Fig 2F).

4. HXT2, HXT6, and HXT7 are repressed predominately by Mth1 in low glucose (Fig 2D and

2G) and by Mig1 and Mig2 in high glucose (Figs B, F, and G in S1 Text), where they

respond to deleting RGT2 and STD1 similarly to Hxt4.

Taken together, the data support the regulation of the HXTs having a bipartite structure.

The high affinity transporters, HXT6 and HXT7, and the medium affinity transporters, HXT2

and HXT4, constitute one output of the system. Through Mth1 and Mig1 and Mig2, they are

predominately regulated by both the high affinity sensor Snf3 and the kinase complex SNF1

and express in lower and intermediate concentrations of glucose. The low affinity transporters,

HXT1 and HXT3, constitute the second output of the system. Through Std1, they are predom-

inately regulated by the low affinity sensor Rgt2 and express at higher concentration of

glucose.

Discussion

Plate readers are a convenient, medium throughput means to measure microbial growth and

gene expression, but their application is limited by the difficulties of analysing the resulting

data. Here we have presented omniplate, which automates correcting OD to be propor-

tional to the number of cells, correcting for the effects of the media, correcting fluorescence for

autofluorescence, normalising per cell, and estimating growth rates as functions of time. Fur-

ther, omniplate estimates errors, using the numbers of measurements and their variation,

and allows meta-analysis and averaging across multiple plates, with powerful, established data

structures.

As illustrations, we characterised the Monod curve for budding yeast in raffinose, demon-

strating that raffinose is a convenient carbon source for controlling growth rates, and, through

using fluorescent reporters to study yeast’s glucose transport, showed that the time-series data

produced by plate readers can reveal aspects of gene regulation that are challenging to infer

from snap-shot data.

Availability and future directions

The software is in Python and either complements or extends that available in R [45], which

focuses on calibrating and comparing with data from flow cytometers, and Matlab [46], which

focuses on estimating the activities of promoters.

It is available from Python’s standard repository, PyPI, at https://pypi.org/project/

omniplate as well as from gitlab. Instructions for installation, a tutorial, and documentation

are at https://swainlab.bio.ed.ac.uk/software/omniplate.
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