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Abstract

The use of 3C-based methods has revealed the importance of the 3D organization of the

chromatin for key aspects of genome biology. However, the different caveats of the variants

of 3C techniques have limited their scope and the range of scientific fields that could benefit

from these approaches. To address these limitations, we present 4Cin, a method to gener-

ate 3D models and derive virtual Hi-C (vHi-C) heat maps of genomic loci based on 4C-seq

or any kind of 4C-seq-like data, such as those derived from NG Capture-C. 3D genome

organization is determined by integrative consideration of the spatial distances derived from

as few as four 4C-seq experiments. The 3D models obtained from 4C-seq data, together

with their associated vHi-C maps, allow the inference of all chromosomal contacts within a

given genomic region, facilitating the identification of Topological Associating Domains

(TAD) boundaries. Thus, 4Cin offers a much cheaper, accessible and versatile alternative

to other available techniques while providing a comprehensive 3D topological profiling. By

studying TAD modifications in genomic structural variants associated to disease pheno-

types and performing cross-species evolutionary comparisons of 3D chromatin structures in

a quantitative manner, we demonstrate the broad potential and novel range of applications

of our method.

Author summary

Chromatin conformation capture (3C) methods have revealed the importance of the 3D

organization of the chromatin, which is key to understand many aspects of genome biol-

ogy. But each of these methods have their own limitations. Here we present 4Cin, a

software that generates 3D models of the chromatin from a small number of 4C-seq

experiments, a 3C-based method that provides the frequency of contacts between one

fragments and the genome (one vs all). These 3D models are used to infer all chromo-

somal contacts within a given genomic region (many vs many). The contact maps facili-

tate the identification of Topological Associating Domains boundaries. Our software

offers a much cheaper, accessible and versatile alternative to other available techniques
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while providing a comprehensive 3D topological profiling. We applied our software to

two different loci to study modifications in genomic structural variants associated to dis-

ease phenotypes and to compare the chromatin organization in two different species in a

quantitative manner.

This is a PLOS Computational Biology Methods paper.

Introduction

The three-dimensional (3D) architecture of the genome is important for most of its functions,

such as gene expression regulation and DNA replication[1–3]. As with proteins, knowledge of

the 3D structure of a genomic locus can reveal information not accessible from its primary

sequence only. Indeed, the use of chromosome conformation capture (3C) methods together

with high-throughput sequencing has profoundly changed our understanding of the 3D

nuclear organization, adding a new dimension to the study of genome biology.

Amongst those new key findings is the discovery that the genomes of diverse animal line-

ages are organized in topologically associating domains (TADs)[4–7], genomic regions that

typically span less than one Mbp within which the chromatin has a higher propensity to inter-

act with itself. TADs are broadly preserved in interphase across different cells[4,8], they pro-

vide a structural basis to regulatory landscapes[1,9] and their structural perturbation has been

linked to diseases[10–12]. Accordingly, TADs are largely conserved across different species

[4,13,14].

Despite the growing interest in studying genomic information from a 3D perspective, 3C-

based methods are still far from reaching their full potential to investigate a wider range of bio-

logical questions, partly because of the inherent limitations of these methods. All 3C technolo-

gies are based on similar biochemical principles to capture chromatin interactions, although

with important variations (reviewed in [15,16]). They all start by cross-linking chromatin frag-

ments that are located in close proximity in the nuclear space; the genome is then digested and

ligated to capture interacting regions. Afterwards, these regions are identified and quantified

by PCR or sequencing. Each 3C technique has its own experimental biases, but more impor-

tantly, they have different scopes, resolutions, costs, sequencing depths and data processing

requirements[15]. Hi-C addresses chromatin contacts between all the regions in the genome

and it is currently the only technique that allows the identification of genome-wide, large-scale

genomic organizational features. However, this comes at the cost of losing power to determine

fine-scale intra-TAD interactions, which are precisely the ones responsible for the regulation

of individual genes and therefore of special interest in a variety of biomedical and genetic

fields. This can in principle be overcome by performing Hi-C at the highest possible resolu-

tion, but this requires sequencing several billions reads per sample, implying financial costs

exceedingly high for the vast majority of laboratories. 4C-seq (Circular Chromosome Confor-

mation Capture) provides a good alternative solution for some of these problems. This tech-

nique is able to identify all the interactions of a given region of interest, usually termed

‘viewpoint’. With just ~1 million reads, 4C-seq can generate detailed high-resolution interac-

tion profiles for a single locus. This high sensitivity and reduced sequencing cost has made

this method particularly suitable for studies comparing multiple samples, between different
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species, genotypes or developmental stages, where it has been widely used to identify interac-

tions between distal enhancers and gene promoters. Moreover, the recently developed NG

Capture-C (next-generation Capture-C) technique[17] yields 4C-seq-like data in a high-

throughput manner and of a higher resolution, making it a suitable technique to get detailed

information of a certain locus, since multiple probes for multiple viewpoints within the region

of interest can be designed.

Notwithstanding these advantages, both 4C-seq and NG Capture-C have also important

limitations and provide incomplete information about TAD topology and borders, even when

several viewpoints are used. Thus, in the absence of complementary Hi-C information from

the same species, it may be difficult to get a complete and integrated picture of the interactions

of a certain region. Finally, other technologies such as 5C (Chromosome Conformation Cap-

ture Carbon Copy) and Capture Hi-C (when designed to target a particular region using a

tiled oligonucleotide capture approach), bridge somehow the gap between Hi-C and 4C-seq,

being able to identify the large scale 3D chromatin organization of a given locus together with

a high resolution contact map. Furthermore, as in the case of 4C-seq, they require a modest

amount of sequencing depth. However, both approaches rely on the use of hundreds to thou-

sands of probes or oligonucleotides from which the interaction profiles are identified and the

costs and experimental design to produce these probes are far from trivial.

In sum, currently there is no experimental tool that combines, in a cost-effective manner,

high-depth interaction profiles for particular loci with Hi-C-like information on TAD-level

organization, hampering the accessibility of C-techniques to a wider number of scientists that

will strongly benefit by incorporating 3D chromatin studies in their research.

Integrative modeling methods provide versatile approaches to infer 3D structures, since

they are able to consider information derived from different techniques simultaneously. There

are several integrative modeling method tools available at the moment that given a matrix of

distances between genomic elements inferred from 3C contact frequencies, can compute the

localization in the 3D space of these genomic elements[18–21]. These methods mostly use 5C

or Hi-C based matrices as input data for the reconstruction of the genome structure, but none

of them use 4C-seq-like data[22–25]. We have recently shown that 3D chromatin models can

be successfully reconstructed from a small number of 4C-seq interaction profiles[3]. Here, we

present 4Cin, a completely automated and easy to use pipeline to generate 3D chromatin mod-

els from 4C-seq data. 4Cin can also generate models using 4C-seq-like data coming from

recently developed techniques such as NG Capture-C or Capture-C, as long as they are used to

capture at least 4 viewpoints within each region of interest. 4Cin also allows the generation of

vHi-C maps, the identification of TADs boundaries, the comparison of 3D structures and the

integration of 3D structures with different epigenetic features. Here, we show the utility of

4Cin with two detailed case-studies that highlight some of the most important fields of applica-

tion of our method: the study of genomic loci affected by structural variations causative of

aberrant phenotypes using the mouse Shh locus, and evolutionary comparisons of 3D chroma-

tin structures across different vertebrate species using the Six gene clusters.

Results

The tool: 4Cin, a 4C-seq to 3D pipeline

4Cin was developed as an alternative to Hi-C to study particular genomic regions. Data from

4C-seq experiments are integrated to obtain 3D models that are represented afterwards as a

vHi-C, a Hi-C like matrix of a given genomic locus (Fig 1 and S1 Fig). The tool was developed

around IMP, the integrative modeling platform[26]. The tool was developed to handle data

coming from multiple cells. Thus, the output models are representative of the average
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conformation of the chromatin in all cells and variability between models has not been shown

to be related to chromatin dynamics.

Modeling the chromatin as a string of beads. The genome is represented as a flexible

string of beads (Step 1 in Fig 1). The diameter of the beads corresponds to the theoretical

length of the portion of straightened chromatin that we are representing, assuming the canoni-

cal chromatin width of 30 nm[27,28]. Beads are allowed to inter-penetrate, since we assume

that the chromatin is unlikely to be straightened, occupying the full volume of the bead. We

have previously shown that this type of representation generates robust results[3].

3D reconstruction of the chromatin: 4C-seq counts as a proxy for distances. The cen-

tral assumption of all 3C-derived integrative modeling methods is that read counts and physi-

cal distances are inversely related; high read counts connecting two DNA fragments imply

close proximity between them whereas low counts imply larger distances. Accordingly, 4Cin

uses these distance proxies as restraints (Steps 1 and 2 in Fig 1). Therefore, each 4C-seq experi-

ment includes sequencing data that are interpreted as a pool of distances to the corresponding

viewpoint. After various iterations of optimization of the position of the beads and evaluation

of their fit with the restraints, a model that fulfills as many of the distance restraints as possible

Fig 1. 4Cin pipeline. (1) A genomic locus is represented as concatenated beads. Beads representing the viewpoints are color coded. The size of the beads is

proportional to the size of their corresponding 4C-seq fragments. 4C-seq data is translated into distance restraints that are used in the optimization step. (2) Bead

positions are optimized from random start positions. (3) Models that fulfill most of the restraints (i.e. with the best scores) are gathered and clustered based on

their RMSD. (4) Models belonging to the most populated cluster are gathered and superimposed. (5’) The most representative model can be painted using

genomic or epigenomic data. (5) Distance between the beads representing the 3D models is measured from the population of best models and represented as a

virtual Hi-C. Directionality index can be calculated to infer TAD boundaries. Two virtual Hi-C’s can be compared (6) and subtracted (7).

https://doi.org/10.1371/journal.pcbi.1006030.g001
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is generated. The optimization procedure combines a Monte Carlo exploration with steps of

conjugate gradients as local optimization and simulated annealing. The fulfillment of the

restraints is expressed as a score, where a score of 0 represents the fulfillment of all the

restraints. The optimization process for each model ends when the score reaches a plateau or

reaches 0. The process is repeated many times, generating many (typically 50000) models, in

order to explore as completely as possible the variability between the models (Step 3 in Fig 1).

A subset of the models that best fits the available data (i.e. those with the best scores) is ana-

lyzed afterwards (Step 4 in Fig 1). The end point of 5C or Hi-C experiments is a matrix of con-

tact frequencies represented as a heat map. Hi-C heat map plots show the frequency of

interaction between all pairs of DNA fragments which, given the initial 3C assumption, is used

as a proxy for spatial proximity. A contact map mimicking a Hi-C heat map, in essence, a

‘vHi-C map’, can be generated by averaging the distances between all beads in the best 3D

models (Step 5 in Fig 1).

To check the robustness of our method, we have generated 3D models of the six2a-six3a
locus in zebrafish and generated vHi-Cs down-sampling the input 4C data, using a variable

percentage of the original 4C-seq read counts to generate the models. The high correlation

(Spearman rank correlation ρ> 0.7) of the vHi-C’s even when only 5% of the original data are

used in the modeling, proves that 4Cin is robust to the sequencing depth of the underlying 4C

data. We also carried out an unbalanced down-sampling, where three of the five 4C-seq exper-

iments where down-sampled 95% and we also generated models where the raw 4C-seq data

was modified, inserting read counts corresponding to the value representing the 95th percentile

of the data, as erroneous data, in randomized positions. We generated 3 rounds of modeling,

with 1%, 2% and 5% of errors inserted. We were still able to get high correlations (Spearman

rank correlation ρ> 0.7), supporting even more the robustness of our method (S2 Fig).

Our tool can be parallelized, allowing an acceleration of the process. 50.000 models based

on a data set of 5 4C-seq experiments and represented by 56 beads, can be generated in about

half an hour, on a computer with 20 cores and CPU’s of 2.5GHz. A region with 14 different

4C-seq experiments and 211 beads can be modeled in 7 hours.

Choosing the viewpoints. 4Cin modeling is possible with as few as four 4C-seq datasets

(distances from four different viewpoints; to be able to position each DNA fragment of the

genomic locus in 3D space), but it is important to take into account that in order to leverage

the complementarity of the data, the viewpoints should be well distributed along the entire

locus. To show the importance of the distribution of the viewpoints, we modeled the Six2-Six3
locus in mouse (Section 3.3) with three different sets of four viewpoints (S3 Fig). The correla-

tion between the vHi-Cs and the original Hi-C suggests that a small number of viewpoints can

generate reliable models, as long as these viewpoints are well distributed along the locus and

not focused near the corners.

Importantly, we have previously shown with jackknifing experiments that vHi-C maps

obtained from 3D models are very robust in terms of the number of viewpoints used, being

able to accurately recapitulate original vHi-C results even when 10 out of 14 viewpoints are

eliminated (average increase in correlation of 0.12)[3].

Therefore, although the quality of the 3D reconstruction improves by increasing the num-

ber of viewpoints provided, this improvement is relatively minor and furthermore, it is paral-

leled by an increase in computational cost. Thus, based on our experience[3], data coming

from between four and ten 4C-seq assays are enough to achieve reliable models of a locus of

2Mbp.

The quality of the data is also important in order to generate reliable models. The tool pro-

vides a script to check the quality of the 4C-seq data before starting with the modeling steps

(S4 Fig). Kurtosis and skewness values are calculated in order to check the suitability of the
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data for the modeling[29]: Kurtosis value measures the shape of the distribution, accounting

for the central peak and the tails, while skewness value informs about the symmetry of this

distribution.

Postprocessing analyses: TAD border calling, vHi-C comparisons and genome paint-

ing. TADs are major organizational elements of the chromatin and their organizations are

informative about the overall architecture of specific loci. We provide a script that identifies

TAD boundaries using the directionality index[4] (Step 5 in Fig 1). The script calculates the

directionality index iteratively, ranging between the biggest (all beads) and smallest (one bead)

possible size for a TAD, delivering a set of potential TAD boundaries.

TADs display important structural information, but combining 3D chromatin structure

with epigenetic data can also reveal valuable information that is more difficult to observe from

a linear perspective. Beads representing the chromatin can be colored with gradients according

to genomic and epigenomic data. As examples, here, we colored the representative chromatin

model of the wild type Shh locus using CTCF ChiP-seq data (GEO accession: GSM918741)

[30]. As expected, the beads with the highest read counts are found near the TAD boundaries

[8,14,31,32] and contain high score CTCF binding motifs. We also checked for the orientation

of the CTCF binding sites in these peaks and observed the convergent orientation typically

found flanking chromatin loops[8] (S5 Fig and S1 Table).

Moreover, two scripts to compare vHi-Cs are provided in the 4Cin package. One allows

comparing the organization of homologous loci in different species providing conserved

regions, which generates a heat map where each triangle represents a locus. The other one per-

mits the comparison of different conformations of a region that underwent structural variation

or mutation. This one yields a subtraction of both vHi-Cs. Both scripts calculate the correlation

between the vHi-Cs that are being compared.

Below we demonstrate the use of the different tools implemented in our 4Cin method

studying structural variations as well as evolutionary comparisons of 3D chromatin structures.

Structural variation studies: Disruption of long-range regulation in the Shh
locus

Genomic mutations that compromise the structural integrity of TADs, such as inversions,

duplications and boundary element deletions, have been shown to cause severe transcriptional

mis-regulation of their associated genes, leading to the appearance of diverse disease pheno-

types[10–12]. To illustrate the utility of 4Cin in understanding the molecular nature and effects

of these structural genomic mutations, we focused on the region surrounding the gene sonic

hedgehog (Shh), a locus encoding a key diffusible signaling molecule for vertebrate develop-

ment. Shh regulatory landscape spans over 900 kb, comprising several unrelated neighboring

genes and multiple long-range enhancers, including one of the most distal enhancers identi-

fied so far, the Shh limb-specific enhancer known as ZRS. Previous works using 4C-seq data

have shown that in mice with genomic mutations in the Shh-TAD, such as inversions, dele-

tions and duplications, Shh regulatory interactions and expression were impaired, causing

severe malformations[33]. In particular, INV(6-C2), a large 600 kb inversion encompassing

nearly half of the Shh-ZRS TAD, greatly diminished 4C-seq contact frequencies between the

ZRS and the Shh promoter. By applying 4Cin to these published 4C-seq datasets, we generated

3D models for both the wt Shh locus and the INV(6-C2) inversion mutant genotype (Fig 2).

This revealed that the two corresponding chromatin topologies are markedly different:

whereas in the wt Shh and the ZRS lie in close proximity, they are widely separated in the

inversion (Fig 2A and 2C). In fact, vHi-C maps derived from these models and subsequent

TAD border calling showed that the inversion completely changed the relative locations of
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some of the TAD boundaries, most likely due to changes in the relative orientations of the

CTCF binding sites located next to Nom1 and ZRS (Fig 2B and 2D and S5 Fig).

Thus, in the mutant genotype, the ZRS enhancer together with nearly half of the Shh regula-

tory landscape, are now part of another TAD. This enhancer is therefore isolated from the Shh
promoter, explaining the reduced contact frequencies observed previously[33]. Indeed, a

global quantification of distance changes across the entire locus by comparing the two vHi-Cs

contact matrices showed that the distance between ZRS and Shh in the 3D models increases in

the inversion (Fig 2E).

The topology of the Shh locus explains its regulatory organization. Using a large collec-

tion of insertions of regulatory sensors at multiple locations within the Shh regulatory land-

scape, the responsiveness to enhancers of different regions within the Shh-ZRS TAD was

evaluated[33,34]. The results showed that most regions within the TAD were able to respond

to at least some of the multiple tissue-specific Shh enhancers. However, there were a few inser-

tion locations with no or very little responsiveness. Given that these regulatory “blind spots”

did not show any particular location trend in terms of their linear distance to the enhancers

(in particular to the ZRS) or local chromatin features such as histone marks or accessibility,

the authors hypothesized that the lack of responsiveness may be related to their position within

the 3D native structural folding of the locus. To test this hypothesis we mapped the positions

of all the insertion sensors to a high resolution 3D chromatin model. We also located the posi-

tions of the comprehensive collection of Shh regulatory elements so far identified[35–40],

which allowed us to define a 3D space containing all known Shh enhancers (Fig 3A). We then

classified insertion sensors into three groups (high, low and no expression) depending on the

level of expression of their associated reporter genes[33,34,41] (S2 Table). Consistent with the

Fig 2. ZRS enhancer lies outside the Shh-TAD in mutant mice for the INV(6-C2) inversion. (a) Representative 3D model of the WT Shh region. Viewpoints are

depicted as colored beads. CTCF binding sites are represented as oriented cones. The genomic region included in the inversion is colored with a yellow-to-blue

gradient. (B) Virtual Hi-C of the WT Shh region (Top). Directionality index (Bottom) was applied to call TAD boundaries, showed with black arrows. (C, D) 3D model

and virtual Hi-C heat map of the INV(6-C2) mutant, showed as in (A) and (B). (E) Subtraction of heat maps (B and D), blue corresponds to shorter distances in the

WT, red to shorter distances in the mutant. The zoom-in shows that in WT mice, Shh is close to ZRS and far away from Nom1 in comparison with the mutant.

https://doi.org/10.1371/journal.pcbi.1006030.g002
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proposed hypothesis[33], these different expression activities of the sensors correlated

inversely with their average distance to the enhancers (Spearman rank correlation ρ< 0.05)

(Fig 3C), accordingly, most of the high expression sensors fell inside the enhancer area (Fig

3B). This supports the idea that the low enhancer responsiveness of certain chromatin regions

is related to their topological position and their ability to interact with the different enhancers

in the locus.

In conclusion, in comparison with 4C-seq alone and without generating any additional

experimental data, the use of 4Cin provides further and deeper insights into the structure and

regulatory interactions of a chromatin locus, generating a more complete characterization of

the region, with identification of TAD borders, quantitative comparisons between different

genetic backgrounds and testing specific hypothesis related to topological interactions.

Comparative genomics and evolution: Conserved 3D chromatin structures

in the Six2-Six3 gene cluster of bony vertebrates

The evolution of genome architecture in animals has been traditionally studied using compar-

ative genomics methods that can only consider DNA sequences from a linear perspective. The

advent of 3C-based techniques has literally added a new dimension to this field, but so far

cross-species comparisons of 3D chromatin structures have been performed only in a handful

of species (in particular mammals) and have mostly relied on the use of Hi-C data[4,13]. This

Fig 3. Insertion sensors with high responsiveness are close to enhancers in the 3D space. (A) Stepwise explanation showing how we obtain top figure in panel B.

Beads are color coded to indicate different regions: enhancers (black), Shh promoter (purple), ZRS (orange), and the three type of insertions, high, low and no

expression (green, yellow and red, respectively). The enhancer area at 75 nm away from the enhancers is shown with a gridded surface. (B) Insertions, Shh and ZRS

locations relative to the enhancer area. Below, beads that are outside and inside the area are depicted. On the right, plot showing the distance between enhancers and

insertions. (C) Boxplot showing average distance between beads representing the insertions and enhancers.

https://doi.org/10.1371/journal.pcbi.1006030.g003
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situation currently restricts the development of 3D-aware comparative genomic studies, since

they would ideally involve the use of evolutionary relevant species for which Hi-C data is either

still unavailable or difficult to produce, especially in cases comparing multiple lineages. We

applied 4Cin to compare orthologous genomic loci, the Six2-Six3 gene clusters, from two bony

vertebrate species, mouse, a mammal with several published Hi-C data, and zebrafish, a teleost

fish for which Hi-C data are still unavailable.

The Six2-Six3 locus is conserved in vertebrates. Six homeobox genes are essential devel-

opmental regulators organized in genomic clusters conserved in multiple animal phyla[14,42].

The clusters consist of three subfamilies: Six1/2, Six3/6 and Six4/5. Due to the two rounds of

whole genome duplications that happened at the origin of vertebrates, most species within this

group have two paralogous copies of the cluster, one containing Six2 and Six3 genes, and the

other containing Six1, Six6 and Six4 genes. Teleosts, like zebrafish, have undergone another

round of duplication and contain four Six clusters.

Here we use available 4C-seq data to explore the conformation of the cluster containing the

six2a and six3a genes in zebrafish, which has been described to have a bipartite organization

that split the regulatory landscapes of each of these genes into two different adjacent TADs

[14]. The 3D models of the six2a-six3a locus in zebrafish and their derived vHi-C show two

TADs with the Six genes located between them (Fig 4A and 4B), corroborating previous results

based on 4C-seq profiles only[14].

We also generated 3D models of the mouse Six2-Six3 locus using publicly available mouse

Hi-C[4] converted into virtual 4C-seq like data (Fig 4C and 4D). From those 3D models, we

derived a vHi-C that shows high correlation with the real Hi-C (Spearman rank correlation ρ
= 0.86, S3B Fig), that provides further support to our method, in agreement with our previous

observations[3].

In order to quantify the degree of structural similarity of mouse and zebrafish Six2-Six3
clusters, we focused on a set of 18 regions that are conserved at the sequence level between the

two species, comparing the distance heat maps corresponding to these regions (Fig 4E and 4F

and S3 Table). The strong correlation observed between these two sets of distances (Spearman

rank correlation ρ = 0.81) shows the high degree of topological conservation in the two species.

Indeed, the two species have maintained very similar relative distances between these con-

served regions, with an average change of just 20% (S6 Fig). Interestingly, the vast majority of

distance changes were all in the same direction, decreasing their relative distances in mouse in

comparison with zebrafish (red bins, Fig 4F). We hypothesize that the greater compaction in

mouse helps compensate for the larger sequence length of this species, maintaining therefore

similar 3D structural organizations in the two vertebrate lineages. Nevertheless, we are aware

that the differences in the techniques used to model both loci could influence the final

modeling.

Directionality index analysis[4] was also applied in these regions to call TAD boundaries

(Fig 4B and 4D). A TAD boundary is found between the genes Six2 and Six3 in both species,

supporting the conserved bipartite configuration of the clusters. Thus, our results show that

the evolutionary conservation of gene expression in this cluster is not only due to the presence

of conserved regulatory regions but also to a largely constrained 3D chromatin topology along

the vertebrate lineage.

Discussion

Thinking about the chromatin as a 3D structure and trying to unravel its spatial organization

have become necessary steps to properly understand genetic information in a functionally

coherent manner. 3C-based methods can help to achieve this goal, but existing techniques
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Fig 4. Mouse and zebrafish Six2-Six3 clusters have conserved 3D topologies. (A) Representative 3D model of the six2a-six3a gene

cluster in zebrafish. Orthologous regions conserved at the sequence level between the two species are depicted as purple beads,

genes are indicated with yellow beads. (B) Virtual Hi-C of the zebrafish six2a-six3a cluster. Directionality index shows the TAD

boundary, represented by a black arrow. (C, D) Representative 3D model of the same cluster and the Virtual Hi-C from mouse,

labeled as in (A, B). (E) Changes in relative distances between conserved regions are obtained by subtracting the relative distance

values of the two species. (F) Subtraction heat map of the distance changes obtained from (E). Red squares indicate shorter

distances in mouse, blue squares indicate shorter distances in zebrafish.

https://doi.org/10.1371/journal.pcbi.1006030.g004
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provide different compromises between resolution, scope and costs and can therefore be diffi-

cult to implement from economical and technical points of view.

The tool presented here, 4Cin, can generate 3D models and derive vHi-C contact maps

from a reduced number of 4C-seq datasets, uniting some of the specific advantages of different

3C techniques in a cost-effective manner. This makes 4Cin particularly useful for a broad

range of single-locus studies dealing with multiple samples, conditions or species in which

detailed 3D chromatin profiling was until now economically unfeasible. We have illustrated

this with detailed examples showing the important biological implications and the multiple

possibilities to test specific hypotheses that 4Cin can offer.

In order to generate reliable 3D models, various steps of the process have to be taken with

additional caution: Data obtained from different species, tissues, time points or different

experiments (like simulating virtual 4C-seq data from Hi-C data) should be carefully harmo-

nized before integration with 4Cin, and, likewise, a proper normalization of these data has to

be carried out (check 4C-seq data processing in Methods section). In addition, the tool expects

data to be derived from multiple cells and it is not optimized to be used with single-cell 3C-

based experiments.

We believe that 4Cin will expand even further the use, interest and applications of chroma-

tin capture techniques, helping a growing number of researchers to switch the way in which

genomic information has been traditionally studied and generating new ideas, hypotheses and

methods.

Methods

In this work, we refined and automated our previous algorithm[3] and provide novel scripts to

ease the postprocessing analyses of the results and the discovery of biological novelties. This

tool generates 3D chromatin models from 4C-seq data. The code is public and available at

https://github.com/batxes/4Cin with a GNU GENERAL PUBLIC LICENSE. The usage of the

pipeline (Fig 1 and S1 Fig) is also explained in the repository link. The 4Cin pipeline can be

deployed pulling the docker image from https://hub.docker.com/r/batxes/4cin_ubuntu/ to

avoid the installation of the dependencies. The input data and the final 3D models of all the

regions studied in this work are also uploaded in github.

Our method uses the Integrative Modeling Platform (IMP)[26] and is based on a previous

work[22]. The 3D models are composed of beads representing chromatin fragments and 4C-seq

data is encoded as distance restraints between these beads. IMP tries to fulfill these restraints that

are expressed in a single scoring function that the optimization algorithm attempts to minimize.

Chromatin representation

The chromatin is represented as a flexible chain of beads, each bead representing a fixed num-

ber of consecutive DNA fragments, as previously described[3]. In the six2a-six3a locus in zeb-

rafish, 33 DNA fragments are represented as one bead, while for the same region in mouse,

each fragment corresponds to one bead, depending on the data resolution. Each bead compris-

ing the Shh locus in mouse, both wild type and the inversion mutant, represents 100 frag-

ments. The size of these beads is proportional to the length of the represented fragments.

Assuming a canonical chromatin width of 30 nm (6–7 nucleosomes per 11 nm fiber length

[27,28]), the radius (ri) of these beads is defined as:

ri ¼ 0:0423 � li

where li is the length of the DNA fragments represented in each bead. Our Six2-Six3 loci mod-

els in zebrafish and mouse are represented with 56 and 75 beads, that, at the same time, are
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representing a region of 1,12 and 1,48 Mbp. The Shh locus is 1,41 Mbp long and is represented

by 71 beads.

4C-seq data processing

4C-seq data were analyzed as previously described[43]. Briefly, raw sequencing data were

demultiplexed and aligned using mouse July 2007 assembly (mm9) or zebrafish July 2010

(danRer7) as the reference genomes using bowtie[44]. Reads located in fragments flanked by

two restriction sites of the same enzyme, or in fragments smaller than 40 bp were filtered out.

Mapped reads were then converted to reads-per-first-enzyme-fragment-end units, and

smoothed using a 30 fragment mean running window algorithm. To be more consistent, the

4C-seq data corresponding to the Shh region was processed as in Symmons et. Al[33]. For the

INV(6-C2) genotype, we mapped the 4C-seq data and did all the subsequent analyses using a

custom version of the mouse genome that incorporates the corresponding genomic inversion

at the previously described breakpoints[33].

4C-seq data normalization

4C-seq data consists of frequencies of interactions between the viewpoint DNA fragment and

the rest of the locus. Our modeling protocol is based on trilateration, so we need at least four

distances to locate a bead in 3D space: due to the fact that the 4C-seq method provides infor-

mation between a DNA fragment and the rest of the fragments, we need at least four 4C-seq

experiments to determine the position of a fragment. Each 4C-seq experiment is done in dif-

ferent population of cells and, therefore, the output of each experiment is likely to vary in the

number of read counts. Hence, we first adjusted the measured values of each experiment to

the same scale, multiplying each read count in each 4C-seq experiment by a factor so that we

get the same read counts as the 4C-seq experiment with the biggest number of read counts.

For the Six2-Six3 locus, we used 5 experiments in zebrafish and 10 in mouse, while the Shh

locus was modeled with four 4C-seq experiments in both the wild type and the inversion (S4

Table). Afterward, a Z-score is assigned to each bead. The Z-score indicates how many stan-

dard deviations separates a datum from the mean, identifying pair of (sets of) fragments (in

this case, pair of beads) that interacts more or less than the average interaction frequency. To

calculate the Z-score, the data needs to follow a normal distribution. The 4C-seq data does not

follow a normal distribution, therefore, read counts are transformed by applying a log10 trans-

formation to achieve a normally distributed data[22]. The Z-score is computed as follows:

The standard score of a raw score x is

z ¼
x � m

s

where μ is the mean of the population and σ is the standard deviation of the population.

We set two thresholds called upper bound Z-score and lower bound Z-score. Contact fre-

quencies that fall between both cutoffs are not used for the modeling as those interaction

counts are more likely to happen by chance, since they don’t fall in the tails of the normal dis-

tribution (S4 Fig). The optimal values for these thresholds were calculated empirically (see

Empirical determination of upper and lower Z-scores).

Restraints and scoring function

As the chromatin fragments that they represent, consecutive beads were imposed to be con-

nected by the application of harmonic upper bound distance restraints between consecutive

beads. These distances are the sum of the radii of both consecutive beads.
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We defined the “reach window” as previously described[3]. Briefly, the “reach window” of a

4C-seq experiment is the area between the furthest upstream and downstream fragments with

a Z-score above the upper Z-score. Harmonic distance restraints were applied between beads

corresponding to the viewpoints and the rest of the beads that were inside the reach window,

as long as the Z-scores of the beads were not between the upper and lower Z-scores. Beads

outside the reach window were restrained with harmonic lower bound distances. We set as

weights the absolute values of the Z-scores of each bead, to give more importance to the beads

with lowest and highest read counts.

The conversion from the read counts to the distance restraints is achieved by a linear rela-

tionship based on two assumptions: (I) the bead(s) with the maximum number of reads in

each experiment will be imposed a harmonic distance restrain of 30 nm[27,28], (ii) the bead(s)

with the minimum number of reads or zero reads, will be imposed a harmonic lower bound

distance restrain equal to the maximum distance variable (see Empirical determination of

scale and S4 Fig).

The sum of these restraints (Table 1) is the scoring function, a function that is minimized in

each iteration. A scoring function of zero, means that all restraints are fulfilled, thus, this score

represents the degree of consistency between the restraints and each 3D structure.

The IMP scoring function is defined as:

Sðri;::; rNÞ ¼
XN� 1

i¼1

Uconnðri; riþ1Þ þ
XM

j¼1

X

i2a

Uireaðri; rjÞþ
X

i2b

Uoreaðri; rjÞ

 !

ri represents the 3D coordinate vector of each bead i, N is the total number of beads in the

model, M is the list of assigned numbers to the viewpoint beads, α is the set of beads inside the

reach window and β is the list of beads outside the reach window.

Chromatin connectivity restraints (Uconn) restrict the beads to be connected within a dis-

tance which is the sum of the radii of both consecutive beads with harmonic upper bound

distances.

Inside reach window chromatin restraints (Uirea) impose harmonic distance restraints

between beads inside this window and outside reach window chromatin restraints (Uorea)

impose harmonic lower bound distances between the rest of beads.

Empirical determination of scale

Beads containing the lowest number of reads in each experiment will be located at the maxi-

mum distance away from the viewpoint. This distance in calculated empirically as follows.

Models are generated varying this maximum distance in steps of 1000 (by default) and keeping

the upper and lower Z-scores low, in order to take into account most of the distance restraints.

Afterwards, the mean length of the models is calculated, summing the distance between conse-

cutive beads in each model. Then, the theoretical length of the chromatin of the region we are

modeling is calculated assigning a theoretical length of 0.846nm to each of the nucleotides

[27,28]. The maximum distance of the models with a length closer to the theoretical optimum

will be set for the final modeling. In the mouse and zebrafish six loci, 11000Å and 13000Å

Table 1. Information on restraints.

Name Restraint type Functional form distance(nm) Bead i weight(k)

Uconn Chromatin connectivity restraint Harmonic upper bound distance restraint Ri+Ri+1 i = {1..N-1} 1

Uirea Inside reach window chromatin restraint Harmonic distance restraint direa Any i ∊ β |z-score|

Uorea outside reach window chromatin restraint Harmonic lower bound distance restraint dorea Any i ∊ α |z-score|

https://doi.org/10.1371/journal.pcbi.1006030.t001
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were set as maximum distances. On the other hand, the maximum distance in the Shh locus

was of 10000Å for the wild type and 7000Å for the inverted region.

Empirical determination of upper and lower Z-scores

A similar approach as in “Empirical determination of scale” is used to set the upper and lower

Z-score parameters. In this case, models are generated with the previously obtained maximum

distance fixed, varying the upper and lower Z-score parameters, in bins of 0.1 by default. Then,

the distance between the viewpoint beads and the rest of the beads is measured and the mean

of these distances is obtained from all the generated models to compare with the raw 4C-seq

data (S7 Fig). The Z-scores of the set of models that correlate best with the raw data is used in

the final modeling. For the zebrafish six locus 0,1 and -0,1 were set as the uZ and lZ, while 0,2

and -0,1 were set for mouse in the same region. Likewise, 0,1 and -0,1 was set in the Shh region

for the wild type, and 0.2 and -0.1 were the values for the inverted region.

Optimization

With the maximum distance and upper and lower Z-scores fixed, models are generated starting

from entirely random set of positions of the beads. The number of models should be big enough

in order to sample the space of solutions thoroughly and allow a reliable analysis afterwards. In

this work, 50.000 models were generated in all 4 examples. We have seen that generating less

than 10.000 models can lead to very variable models (S8 Fig). The modeling is carried out with

IMP, optimizing the scoring function. The algorithm combines a Monte Carlo exploration with

steps of local optimization and simulated annealing. The optimization ends when the score dif-

ference between the rounds is below 0.00001 or when the score reaches 0.

Analysis and clustering of models

From the whole population of models, the models with the best score are selected as long as

they fulfill most of the distance restraints. The standard deviation and the percentage of

restraints fulfillment is used to filter out unreliable models. The method starts from a very low

distance and high restraints fulfillment percentage and does many analysis iterations loosening

up these cut-offs until 200 models can be retrieved. We selected the 200 models with best score

as long as they fulfilled 85% of the restraints for zebrafish and mouse, with an std-dev of 2000Å
and 2250Å as a limit of restraint fulfillment. We also selected 200 models with best score for

both wild type and inverted Shh locus that fulfilled 85% of the restraints with an std-dev of

1000Å and 960Å respectively.

Then, these models are clustered according to their similarity measured by the Root Mean

Square Deviation (RMSD). The goal of this step is to identify mirror image models since we

don’t have information to discriminate the mirror images. The set of models for both zebrafish

and mouse and the wild type and inverted Shh locus were clustered showing two mirror image

clusters (S7 Fig).

The number of clusters depends on: 1) the quality of the modeling, but also 2) the structural

variability of the genome locus. The high number of clusters could indicate high structural var-

iability, meaning the there is no enough data to filter between them or that the quality of the

data is not good.

Representative and superposition of models

4Cin selects the biggest cluster of models for next analyses. From the models in the selected

cluster, the most similar model to the average of all the models is used as the representative
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model (Fig 3A). The superposition of all the set of final models is shown also to see the variabil-

ity between them (S9 Fig). In addition, the variability of the beads between the models in the

biggest cluster is shown.

Virtual Hi-C generation and comparisons

A contact map is generated resembling a Hi-C heat map plot, that we called virtual Hi-C (vHi-

C). For this, the average distance between pair of beads from the best models is calculated

(Figs 2B and 3B). vHi-C’s of the wild type and inverted Shh region were compared and a sub-

traction of both virtual Hi-C’s was done, repositioning the inverted region as in the wild type,

in order to compare the change in contacts of each bead. The heat map shows in blue the con-

tacts that were lost in the inversion, and in red the contacts that were gained (Fig 2C). To com-

pare the six loci in both species quantitatively, we measured the distance between beads that

represent conserved regions in both mouse and zebrafish (Fig 4, S3 Table). In our models,

each bead represents almost the same amount of nucleotides, 20Kbp, making the comparison

of conserved regions more reliable.

Generation of the 4C-seq mouse data form Hi-C data

The virtual 4C-seq data representing the viewpoints containing the six2 and six3 genes and the

data of 8 other scattered viewpoints was extracted from the original Hi-C data from Dixon et.

al.[4] (S4 Table). This data was used as 10 single 4C-seq experiments to generate the 3D models

and the virtual Hi-C heat map plot.

Directionality index

Directionality index (DI) was calculated in all the vHi-Cs as in ref 3 with slight changes. The

DI for the beads at the edges of the vHi-Cs, was calculated by assigning the mean of all the

values in the vHi-C for the heat map squares that are not represented in the vHi-C. We also

calculated the DI iteratively, ranging the TAD size from 1 (size of TAD = 1 bead) to the total

number of beads of the model (size of TAD = N). Afterwards, we overlaped all the DIs to gen-

erate the plot (Step 5 in Figs 1, 2B, 2D, 4B and 4D) and give a list of all the TAD boundaries

called, sorted by the number of times that they were called in each iteration.

Genome painting

CTCF Chip-seq data used in the Shh region was adquired from Encode https://www.

encodeproject.org/experiments/ENCSR000CEB/ and painted in the representative model

(mm9 data) with a black-to-white gradient, from high to low score.

3D models manipulation and surface calculation around enhancers

4Cin generates 3D models that can be opened and modified in UCSF Chimera (https://www.

cgl.ucsf.edu/chimera/). The molmap command of UCSF Chimera was used to generate a mesh

surface of 75 nm in radius around the Shh region enhancers in Fig 3.

Determination of conserved regions between zebrafish and mouse

To define genomic regions conserved at the sequence level between mouse and zebrafish Six2--
Six3 clusters, we downloaded the corresponding chained alignments available in UCSC. We

then manually inspected and curated these aligned regions to verify that their locations and

orientations were equivalent in the two species and that they corresponded to bona-fide con-

served sequences. Genomic coordinates are provided in S3 Table.
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CTCF directionality calculation

Clover (https://zlab.bu.edu/clover/) was used in the Shh region to predict CTCF binding sites

and their orientation (S1 Table), using a mouse CTCF position weight matrix (http://cisbp.

ccbr.utoronto.ca/TFreport.php?searchTF=T049038_1.02) and setting a threshold of 7.

Mapping of insertion sensors and generation of the enhancer contact area

To map these positions with high accuracy, we generated 3D models of the Shh locus with a

fivefold higher resolution. We then selected the best models and used the most representative

model to map the enhancers and insertion sensors. The measurements between the enhancers

and the sensors were carried out taking into account the whole population of best 3D models.

4C-seq data down-sampling and erroneous data insertion

Bed files that were mapped in the zebrafish genome (danrer10) were shuffled and then, the

first 20%, 40%, 60%, 80%, 90%, and 95% lines of the files were removed to get the down-sam-

pled data. Afterwards, the same procedure as in 4C-seq data processing was followed. To gen-

erate a set of erroneous data, we calculated the value representing the percentile 95 of the data

for each experiment, and switched with random read counts of pair of fragments.

Supporting information

S1 Fig. Schematic explanation of 4Cin. (Pipeline) First, the maximum distance, the upper

bound Z-score (uZ) and the lower bound Z-score (lZ) are calculated so these parameters are

afterwards used in the final modeling. Then, these models are subjected to an analysis to

retrieve the best models and clustered based on their RMSD to distinguish between mirror

image models. Best models can also be super imposed, to see structural variability. The repre-

sentative model can be colored depending on genetic or epigenetic data. Finally, best models

are used to generate a virtual Hi-C (vHi-C). Additionally, TAD boundaries can be called in

the vHi-Cs and other vHi-Cs can be compared using the scripts provided with the pipeline.

(Modeling) The modeling process first encodes the 4C-seq data into restraints. Distance

restraints are also used to connect beads. These restraints and the representation of the chro-

matin fragments as beads are taken into account in the optimization process to generate a sin-

gle model.

(PDF)

S2 Fig. Correlation with down-sampled and erroneous 4C data. Pearson’s and Spearman’s

correlation between the vHi-C derived from six2a-six3a zebrafish locus models and the vHi-

C’s of the same locus down-sampling and inserting errors in the 4C data.

(PDF)

S3 Fig. Mouse Six2-Six3 cluster topology comparison. (a) Hi-C of the Six2-Six3 cluster

(Gene Expression Omnibus (GEO) accession number GSM862722). (b) vHi-C of the Six2-Six3

cluster. (c,d,e) vHi-Cs of the Six2-Six3 cluster generated with different viewpoints. (f) Spear-

man’s correlation between the Hi-C (a) and the vHi-Cs (b,c,d,e).

(PDF)

S4 Fig. Output plot generated by the data_manager.py script. Example corresponds to the

Six3 viewpoint in mouse. Top, 4C-seq read counts by bead. Red bar shows the viewpoint.

Middle, Z-scores in red corresponding to the read counts from the top panel. Horizontal blue

lines indicate the upper bound Z-score and lower bound Z-score. Bottom, Distance restraints
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encoded from the read counts in the top panel.

(PDF)

S5 Fig. Shh-TAD boundaries are enriched in CTCF sites. (a) vHi-C of the Shh WT region

on top. CTCF Chip-seq data corresponding to the region colored in white-to-black gradient,

white for low reads, black for high reads. CTCF sites with highest reads are depicted with ori-

ented triangles. (b) Shh WT representative model colored as in panel (a). Yellow beads repre-

sent Shh-TAD boundaries. Shh-TAD is encircled in yellow-black. (c and d) vHi-C, CTCF

Chip-seq data and representative model depicted as in (a) and (b).

(PDF)

S6 Fig. Zebrafish and mouse topology comparison. Subtraction heat map of the distance

changes between conserved regions in the Six2-Six3 cluster in zebrafish and mouse as

explained in Fig 2E. Top triangle corresponds to zebrafish data and bottom triangle to mouse

data. Red squares indicate shorter distances in mouse, blue shorter distances in zebrafish.

(PDF)

S7 Fig. Analysis and clustering of 3D models. (a, c, e, g) Heat maps comparing the raw 4C-

seq data and the mean distances between beads of the models with the best parameters (upper

bound Z-score, lower bound Z-score and max distance): Shh WT region: 0.1, -0.1, 11000; Shh

inverted region: 0.2, -0.1, 10000; Six2-Six3 cluster in zebrafish: 0.1, -0.1, 13000 and in mouse:

0.2, -0.1, 11000. (b, d, f, h) Heat maps showing 2 clusters in the Shh WT and inverted region

and the Six2-Six3 cluster in zebrafish and mouse. The clustering was performed based on the

RMSD of the 3D models.

(PDF)

S8 Fig. Variability depending on number of models. Average variability of the 3D models

depending on the sampling.

(PDF)

S9 Fig. Superposition of 3D models and their variability. Superposition of 3D models of the

biggest cluster after clustering the best models of the Shh WT region and variability of each

bead in the cluster showed in standard deviation devided by their maximum distance to show

them at scale. (a), Shh inverted region (b), Six2-Six3 cluster in zebrafish (c) and mouse (d).

(PDF)

S1 Table. Viewpoints used. Viewpoints used in the generation of 3D models.

(PDF)

S2 Table. Conserved regions in Six2-Six3. Conserved regions and genes between Zebrafish

and Mouse in the Six2-Six3 region.

(PDF)

S3 Table. CTCF locations. Location and sign of CTCF binding sites.

(PDF)

S4 Table. Sensor probes and enhancers. Sensor probes and enhancers in the Shh region.

(PDF)
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matin domains determines pathogenicity of genomic duplications. Nature. Nature Publishing Group;

2016; 538: 265–269. https://doi.org/10.1038/nature19800 PMID: 27706140

13. Vietri Rudan M, Barrington C, Henderson S, Ernst C, Odom DT, Tanay A, et al. Comparative Hi-C

Reveals that CTCF Underlies Evolution of Chromosomal Domain Architecture. Cell Rep. The Authors;

2015; 10: 1297–1309. https://doi.org/10.1016/j.celrep.2015.02.004 PMID: 25732821

14. Gómez-Marı́n C, Tena JJ, Acemel RD, López-Mayorga M, Naranjo S, de la Calle-Mustienes E, et al.

Evolutionary comparison reveals that diverging CTCF sites are signatures of ancestral topological asso-

ciating domains borders. Proc Natl Acad Sci. 2015; 112: 7542–7547. https://doi.org/10.1073/pnas.

1505463112 PMID: 26034287

15. Davies JOJ, Oudelaar AM, Higgs DR, Hughes JR. How best to identify chromosomal interactions: a

comparison of approaches. Nat Methods. Nature Publishing Group; 2017; 14: 125–134. https://doi.org/

10.1038/nmeth.4146 PMID: 28139673

16. de Wit E, de Laat W. A decade of 3C technologies: Insights into nuclear organization. Genes Dev.

2012; 26: 11–24. https://doi.org/10.1101/gad.179804.111 PMID: 22215806

17. Davies JOJ, Telenius JM, McGowan SJ, Roberts NA, Taylor S, Higgs DR, et al. Multiplexed analysis of

chromosome conformation at vastly improved sensitivity. Nat Methods. Nature Publishing Group; 2015;

13: 74–80. https://doi.org/10.1038/nmeth.3664 PMID: 26595209

18. Serra F, Di Stefano M, Spill YG, Cuartero Y, Goodstadt M, Baù D, et al. Restraint-based three-dimen-

sional modeling of genomes and genomic domains. FEBS Lett. 2015; 589: 2987–2995. https://doi.org/

10.1016/j.febslet.2015.05.012 PMID: 25980604

19. Adhikari B, Trieu T, Cheng J. Chromosome3D: reconstructing three-dimensional chromosomal

structures from Hi-C interaction frequency data using distance geometry simulated annealing. BMC

Genomics. BMC Genomics; 2016; 17: 886. https://doi.org/10.1186/s12864-016-3210-4 PMID:

27821047

20. Trieu T, Cheng J. 3D genome structure modeling by Lorentzian objective function. Nucleic Acids Res.

2017; 45: 1049–1058. https://doi.org/10.1093/nar/gkw1155 PMID: 28180292
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