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Abstract
Background: DNA methylation and histone deacetylation are epigenetic mechanisms that play
major roles in eukaryotic gene regulation. We hypothesize that many genes in the human hepatoma
cell line HepG2 are regulated by DNA methylation and histone deacetylation. Treatment with 5-
aza-2'-deoxycytidine (5-aza-dC) to inhibit DNA methylation with and/or Trichostatin A (TSA) to
inhibit histone deacetylation should allow us to identify genes that are regulated epigenetically in
hepatoma cells.

Results: 5-aza-dC had a much larger effect on gene expression in HepG2 cells than did TSA, as
measured using Affymetrix® HG-U133 Plus 2.0 microarrays. The expression of 1504 probe sets
was affected by 5-aza-dC (at p < 0.01), 535 probe sets by TSA, and 1929 probe sets by the
combination of 5-aza-dC and TSA. 5-aza-dC treatment turned on the expression of 211 probe sets
that were not detectably expressed in its absence. Expression of imprinted genes regulated by
DNA methylation, such as H19 and NNAT, was turned on or greatly increased in response to 5-
aza-dC. Genes involved in liver processes such as xenobiotic metabolism (CYP3A4, CYP3A5, and
CYP3A7) and steroid biosynthesis (CYP17A1 and CYP19A1), and genes encoding CCAAT element-
binding proteins (C/EBPα, C/EBPβ, and C/EBPγ) were affected by 5-aza-dC or the combination.
Many of the genes that fall within these groups are also expressed in the developing fetal liver and
adult liver. Quantitative real-time RT-PCR assays confirmed selected gene expression changes seen
in microarray analyses.

Conclusion: Epigenetics play a role in regulating the expression of several genes involved in
essential liver processes such as xenobiotic metabolism and steroid biosynthesis in HepG2 cells.
Many genes whose expression is normally silenced in these hepatoma cells were re-expressed by
5-aza-dC treatment. DNA methylation may be a factor in restricting the expression of fetal genes
during liver development and in shutting down expression in hepatoma cells.

Background
DNA methylation at the C5 position of a cytosine within

a CpG dinucleotide is a primary mechanism in gene
silencing [1]. Approximately 60% to 90% of the CpG
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dinucleotides in the genome of a vertebrate are methyl-
ated [2,3]. 5-aza-2-deoxycytidine (5-aza-dC) exerts its
demethylating function by sequestering DNA methyl-
transferase 1 (DNMT1) to 5-aza-dC-substituted DNA via
the irreversible binding of the cysteine in the catalytic
domain of DNMT1 to the 6 position of the cytidine ring
(4,5). This decreases the cellular concentration of
DNMT1, which leads to genomic DNA demethylation in
the course of successive cell divisions [6-8]. 5-aza-dC has
been shown to reactivate silenced genes in vitro [9,10].

Regulation of gene expression in eukaryotes also involves
the acetylation and deacetylation of histones, followed by
chromatin remodeling [11-14]. Histones H3 and H4 are
acetylated on the ε-amino groups of lysines to a greater
extent than H2A or H2B [15]. Histone acetylation
increases the accessibility of nucleosomal DNA to tran-
scription factors and other regulatory molecules [16,17].
Turnover of the acetyl groups on histone molecules occurs
very rapidly in cells [18,19] and the level of acetylation is
controlled by an equilibrium of histone acetyltransferase
and histone deacetylase (HDAC) activities [20-23]. Tri-
chostatin A (TSA) is a reversible inhibitor of HDAC in vitro
and in vivo, active at nanomolar concentrations, that
causes a marked increase in histone acetylation [24].

DNA methylation and histone deacetylation can be mech-
anistically linked in gene silencing [25]. For example, the
silenced rRNA genes can be re-expressed after either 5-aza-
dC or TSA treatments [26-29] but treatment with both
drugs together does not result in additional re-expression,
suggesting that DNA methylation and histone deacetyla-
tion cooperate to silence rRNA gene expression [26].
Microarray analyses using human colorectal cancer cells
showed that HDAC inhibitors alone could re-express
some genes, but not genes that contain hypermethylated
CpG islands; genes with hypermethylated CpG islands
were only re-expressed after 5-aza-dC treatment [30]. 5-
aza-dC and TSA have been shown to act in a synergistic
fashion to re-express silenced genes in colorectal carci-
noma cells [31,32].

The human hepatocellular carcinoma cell line HepG2
[33] synthesizes and secretes many of the major human
plasma proteins, such as fibrinogen, plasminogen, and
α2-macroglobulin [34]. These cells exhibit many cellular
features of normal human hepatocytes [35] but also dis-
play characteristics resembling those of a fetal hepatocyte,
because albumin and α-fetoprotein are both expressed;
adult hepatocytes exclusively express albumin [36].
HepG2 cells also fail to express many of the hepatocyte-
specific metabolic enzymes that characterize the neonatal
and adult liver [34,37]. These cells express very low levels
of the alcohol dehydrogenase 1B (ADH1B) and ADH1C

genes, both of which are regulated by epigenetic mecha-
nisms in HepG2 cells [38].

We were interested in determining what genes are regu-
lated by DNA methylation and histone deacetylation in
HepG2 cells. Affymetrix® HG-U133 Plus 2.0 microarrays
were used to measure the expression of approximately
54,000 transcripts in the presence and absence of 5-aza-
dC and/or TSA. We report that the expression of many
genes was altered upon 5-aza-dC treatment, and many
fewer with TSA treatment. Groups of genes involved in
xenobiotic metabolism, steroid biosynthesis, and CCAAT
element binding were affected by 5-aza-dC (some exclu-
sively with 5-aza-dC and TSA). Most of these genes are
also expressed in the fetal and adult liver.

Results
Global gene expression in treated HepG2 cells
We treated HepG2 cells with 5-aza-dC to inhibit DNA
methylation, TSA to inhibit histone deacetylation, or the
combination of both 5-aza-dC and TSA, and measured
changes in gene expression using Affymetrix® HG-U133
Plus 2.0 microarrays. To ensure that 5-aza-dC treatments
resulted in DNA demethylation, we performed methyla-
tion-sensitive PCR on a site 2916 bp upstream of the
ADH1B translational start site. If the site is methylated, it
is resistant to Hpa II digestion and can be amplified by
PCR; if it is demethylated, this site will be cleaved and can
no longer be amplified. Figure 1A demonstrates that
genomic DNA from untreated cells was methylated at the
bp -2916 Hpa II site, as demonstrated by the presence of
robust 319 bp PCR products. DNAs from 5-aza-dC-treated
HepG2 cells had methylation levels less than one-fifth
that of untreated cells, as evidenced by the absence of PCR
products (Figure 1A and 1B).

Many genes were affected by the treatment of 5-aza-dC
and/or TSA in HepG2 cells (Table 1). The expression of
1504 probe sets was changed by 5-aza-dC (p-value of
0.01; FDR ≤ 0.17), 535 by TSA (FDR ≤ 0.46), and 1929 by
the combination of 5-aza-dC and TSA (FDR ≤ 0.13) (Table
1). Hierarchical clustering of the microarrays based on a
set of 355 genes that varied most across the experiment
(chosen based upon the ratio of standard deviation to the
mean ≥ 0.6, without regard for whether the variation was
within or between conditions) showed a clear separation
of cells that received 5-aza-dC from cells that did not (Fig-
ure 2). Within this major division, cells treated with TSA
did not segregate from untreated cells. Thus, 5-aza-dC had
a marked effect on gene expression while TSA had only a
minimal effect. At a p-value of 0.01, 5-aza-dC treatment
increased the expression of 883 probe sets while decreas-
ing the expression of 620 probe sets. TSA increased 244
and decreased 291 while 5-aza-dC plus TSA increased
1078 and decreased 851. Additional file 1 shows genes for
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Treatment of HepG2 cells with 2.5 μM 5-aza-dC results in DNA demethylationFigure 1
Treatment of HepG2 cells with 2.5 μM 5-aza-dC results in DNA demethylation. Demethylated DNA is cleaved by 
Hpa II digestion and cannot be amplified; therefore the amount of methylated DNA is reflected in the amount of PCR product. 
(A) Electropherogram of genomic DNA from untreated HepG2 cells or cells treated with 5-aza-dC; DNA was extracted and 
digested with Rsa I + Hpa II and subjected to PCR using primers that flank the endogenously methylated Hpa II site at bp -2916 
upstream of the ADH1B gene. (B) Quantitation of the PCR products produced in (A) using 2 X PicoGreen® and an ABI PRISM® 

7700 Sequence Detection System. The order of the quantitation is the same as the order of the PCR products seen in (A).
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which any of the treatments significantly altered its
expression (p ≤ 0.05).

Gene re-expression in 5-aza-dC treated cells
DNA methylation is known to play a large role in silenc-
ing the expression of many genes, thus we wanted to
examine which genes in HepG2 cells were re-expressed by
treatment with 5-aza-dC. We defined re-expressed strin-
gently, requiring that the gene be undetectable ("Absent"
as defined by the Affymetrix MAS5 algorithm) on any of
the 4 arrays before treatment and detected ("Present") on
all 4 arrays after treatment [see Additional file 2]. Treat-
ment of HepG2 cells with 5-aza-dC restored the expres-
sion of 211 probe sets (188 different genes). Only two
genes were turned off by 5-aza-dC. The additional pres-
ence of TSA did not substantially change the number of
probe sets (208) that were re-expressed. A relaxed defini-
tion of re-expression (allowing one of the 8 arrays in the
comparison to be called "Marginal") resulted in an addi-
tional 45 probe sets being re-expressed by 5-aza-dC and
33 by 5-aza-dC and TSA. Several genes regulated by
imprinting were re-expressed or significantly up-regulated
(H19) by treatment with 5-aza-dC, including H19 (mater-
nally expressed), NDN (paternal), NNAT (paternal), and
MEG3 (maternal) [see Additional file 2]. The latter three
genes were not detectably expressed in untreated cells;
H19 was minimally detected in untreated cells but is
clearly being re-expressed. Another set of re-expressed
genes included TSPY1, DAZ2, and DAZ4; these genes are
involved in spermatogenesis [see Additional file 2].

Tissue culture and cancer cells are known to have an
increase in genome wide methylation of CpG islands [39-
42]. Thus, we examined the frequency of CpG islands
within the promoters of 18 (10%, randomly selected) of
the genes re-expressed by 5-aza-dC. Using CpG Island
Finder [43,44] we found that 13 of 18 genes contained at
least one CpG island. Of the 10 genes whose expression
was confirmed by quantitative real-time RT-PCR (below)
we found that 8 contained at least one CpG island.

Only four genes were turned on by the combination of 5-
aza-dC plus TSA but remained off after treatment with 5-
aza-dC or TSA alone (Table 2). The most striking of these
was chromogranin A (CHGA), which is a central regulator

of catecholamine storage and release [45]; expression was
not detected on any of the arrays for 5-aza-dC, TSA, or
untreated cells but it was present on all 4 arrays from 5-
aza-dC plus TSA-treated cells. We confirmed this syner-
gism by quantitative real-time RT-PCR. The expression of
CHGA was not reliably detected in untreated cells or in
two samples of TSA-treated cells. Expression was detected
at very low-levels in two other TSA-treated samples and in
all three 5-aza-dC-treated cells (CHGA Ct - GAPDH Ct
[ddCt] = 7.7, corresponding to 0.5% of the level of
GAPDH). Cells treated with the combination of both 5-
aza-dC and TSA showed greatly enhanced expression of
CHGA, approximately 80-fold, illustrating the synergy
(ddCt = 1.4; 38% of the level of GAPDH).

Groups of genes involved in liver processes are affected by 
5-aza-dC
Genes affected by 5-aza-dC treatment were further ana-
lyzed to determine whether the expression of particular
groups of genes (as defined by Gene Ontology) was
affected by DNA methylation. We were initially interested
in identifying groups of genes related to liver processes
since this cell line is of liver origin (hepatoma). Table 3
shows groups of genes involved in xenobiotic metabo-
lism, steroid biosynthesis, and CCAAT element binding
that are regulated by DNA methylation; some genes are
regulated by both DNA methylation and histone
deacetylation, but not solely methylation. Many genes
within these groups are also expressed in the developing
fetal liver and adult liver (Table 3).

Verification of microarray results by quantitative real-time 
RT-PCR
Quantitative real-time RT-PCR assays were performed to
confirm microarray gene expression changes (Table 4).
Genes were selected based on their role in the liver,
imprinting status, cell cycle function, or as important tran-
scription factors. The pattern of differences detected by
RT-PCR was consistent with those from the microarrays,
but the fold-changes obtained by real-time RT-PCR assays
were, in most cases, much greater than fold-changes seen
in microarray analyses. This observation was particularly
true for genes re-expressed by 5-aza-dC treatment; in that
case, the denominator in the microarray experiment
(baseline, control value) is essentially zero (the gene is

Table 1: Number of probe sets changed by different treatments

p-/values1 5-aza-dC TSA 5-aza-dC and TSA

0.05 3974 (.326)2 2161 (.569) 4927 (.257)
0.01 1504 (.172) 535 (.460) 1929 (.132)
0.001 346 (.075) 55 (.455) 468 (.053)
0.0001 73 (.041) 10 (.200) 126 (.024)

1Based on Welch's t-test log(signal).
2Number and (FDR) of probe sets significant at each p-value.
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called "Absent") so the exact fold change calculated from
microarray data is not meaningful or accurate. RT-PCR
assays allow one to obtain a lower baseline value, and
therefore a higher fold-change. It should be noted that we
have not determined the amplification efficiency of each
assay so these calculated fold-changes are based on 100%
efficiency; this can overstate the fold change.

Discussion
DNA methylation has a larger role in the inhibition of
gene expression in the human hepatoma cell line HepG2
than does histone deacetylation. This is demonstrated by
the greater effect by the DNMT inhibitor 5-aza-dC on gene
expression than of the HDAC inhibitor TSA, as evidenced
by the numbers of probe sets with altered gene expression
(Table 1). It is also demonstrated by hierarchical cluster-
ing (Figure 2) in which the cells treated with 5-aza-dC,
either alone or with TSA, segregated from cells not treated
with TSA. 5-aza-dC treatment re-expressed 211 probe sets
(188 genes) that had been silent in HepG2 cells [see Addi-
tional file 2], and up regulated more genes than were
down regulated. In the overall pattern of gene expression,
we do not detect much synergy between 5-aza-dC and TSA
on gene expression in these cells. A small number of genes
(4) required both 5-aza-dC and TSA for re-expression; we
confirmed the synergistic effects of 5-aza-dC and TSA on
CHGA gene expression by performing quantitative real-
time RT-PCR.

A subset of autosomal genes, known as imprinted genes,
display expression exclusively from one of the parental
alleles [46]. The imprinted genes NDN, NNAT, and MEG3
were turned on in 5-aza-dC-treated cells (Table 4 and see
Additional file 2), demonstrating that the DNA demethyl-
ation was sufficient to re-express genes silenced by DNA
methylation in the HepG2 cells. The expression of H19
(maternal) was greatly increased (156-fold [see Addi-
tional file 2]; essentially turned on) while the expression
of IGF2 (paternal) was decreased (-4.2-fold, p = 0.02 [see
Additional file 1]. Both genes lie together on chromosome
11p15, and the upstream region of H19 is the down-
stream region of IGF2; this intergenic region, also known
as the differentially methylated region, is responsible for
monoallelic expression of both genes [47-49]. If this DMR
is unmethylated, the transcription factor CTCF can bind
and block the activity of an enhancer that activates IGF2
expression; this allows the enhancer to now interact with
the H19 promoter [47]. Our results are consistent with
this.

5-aza-dC also turned on the expression of several Y chro-
mosome-specific genes [see Additional file 2]. Past studies
using prostate cancer cell lines showed that DNA methyl-
ation regulates the expression of these genes and that 5-
aza-dC can restore their expression [50]. The expression of

Hierarchical cluster analysis of genes that vary across the experimentFigure 2
Hierarchical cluster analysis of genes that vary across 
the experiment. Genes that varied across the experiment 
(CV ≥ 0.6) were selected and clustered [75] based upon 
Euclidean distance. Colors represent differences from the 
median expression of the gene across different conditions: 
the top 5% are yellow, then in declining order from red to 
green (median), then progressively more blue (below 
median) to blue (bottom 5%).
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TSPY1 is normally restricted to the testis where it plays a
role in spermatogonial proliferation [51]. TSPY1 contains
a putative CpG island in its promoter that is hypermethyl-
ated in melanoma cell lines; treatment with 5-aza-dC can
restore TSPY1 expression [52]. The DAZ cluster of genes
are thought to be involved in germ cell differentiation in
humans and old world monkeys [53]; deletions in this
region can cause infertility in males [54]. This finding is
interesting given that we treated hepatoma cells, a cell
type that normally does not express spermatogenesis
genes. It confirms that DNA methylation plays a large role
in shutting down the expression of many genes that have
no role in contributing to the proper functioning of that
cell type.

We further analyzed genes that were significantly affected
by 5-aza-dC treatment and identified groups of genes that
are involved in xenobiotic metabolism, steroid biosynthe-
sis, and CCAAT element binding (Table 3). The most
affected in the xenobiotic metabolism group, the CYP3A
genes, play major roles in metabolic disposition of wide
variety of drugs [55]. CYP3A4 and CYP3A5 comprise
nearly 30%-40% of total hepatic cytochrome p450 [55]
while CYP3A7 expression is restricted to the fetal liver
[56]. CYP3A expression in untreated HepG2 cells is fairly
low (signals ranging from 370 to 968), suggesting that
their expression is reduced in these partially de-differenti-
ated cells; however, 5-aza-dC greatly increased the expres-
sion of each CYP3A gene. This increase in expression was
confirmed by real-time RT-PCR for CYP3A7 (Table 4).

Genes within the steroid biosynthesis group also included
two CYP genes. The CYP19A1 gene, which was re-
expressed by 5-aza-dC treatment [see Additional file 2],
encodes the main estrogen biosynthesis enzyme, which
converts androgen to estrogen [57]. CYP19A1 expression
can be increased in endometriotic stromal cells upon in
vivo down-regulation of C/EBPβ [58]. This finding is inter-
esting given that C/EBPβ expression was decreased by 2-
fold; this may contribute to CYP19A1 re-expression. The
CYP17A1 enzyme (Table 3) functions in the biosynthesis
of testosterone through the regulation of 17-hydroxylase
and 17, 20-lyase [59]. CYP17A1 is not expressed in the
fetal or adult liver; hence DNA methylation may be a

major mechanism to transcriptionally silence its expres-
sion in the liver.

We examined seven genes that bind CCAAT DNA ele-
ments to regulate transcription of many important liver
genes (Table 3). Most notable are the three genes encod-
ing C/EBPα, C/EBPβ and C/EBPγ (Table 3; CEBPA,
CEBPB, and CEBPG) that were differentially affected by 5-
aza-dC or TSA and the combination of 5-aza-dC and TSA.
Surprisingly, the expression of CEBPB and CEBPG were
decreased by 5-aza-dC; because methylation generally
inhibits gene expression [1], this down-regulation could
be a secondary effect of the increase in an inhibitory fac-
tor. CEBPA was up-regulated by TSA and the combination
of 5-aza-dC and TSA, but not with 5-aza-dC alone. The
transcriptional state of many other hepatocyte-specific
genes in these cells is likely altered based on the expres-
sion profile of these C/EBP genes. CEBPB can generate two
isoforms from a single mRNA: the full-length protein
termed liver activation protein (LAP) or the truncated liver
inhibitory protein (LIP) isoform [60-63]. LIP is a domi-
nant-negative factor that can attenuate transcription by
forming a heterodimer with LAP to negate the transactiva-
tion ability of LAP [62]. LIP is still able to attenuate the
transcriptional activity of LAP even when present at sub-
stoichiometric amounts (i.e. LAP/LIP ratio of 5:1) [62,64].
C/EBPγ heterodimerization with C/EBPα and LAP can
also attenuate transcription of C/EBP responsive promot-
ers, suggesting dominant negative regulation by this factor
[65]. Hence, the decreased expression of C/EBPβ and C/
EBPγ transcripts may aid in increasing the expression of
the hepatocyte-specific genes they regulate.

The CEBPA gene is regulated by histone deacetylation
(and slightly increased with 5-aza-dC and TSA) in the
HepG2 human hepatoma cell line. An increase in C/EBPα
expression will increase the expression of several hepato-
cyte-specific genes that are regulated by this factor. How-
ever, a larger picture emerges from our data. HepG2 cells
display many characteristics of fetal and adult hepato-
cytes. Many genes regulated by DNA methylation that
function in liver processes (Table 3) are expressed in the
fetal and adult liver. DNA demethylation may be, in part,
responsible for silencing the expression of fetal liver

Table 2: Genes re-expressed by 5-aza-dC and TSA, but not by either drug alone

Gene Symbol Unigene Affymetrix ID Fold Change p-value Control Signal 5-aza-dC
+ TSA Signal

5-aza-dC Signal Description

CHGA Hs.150793 204697_s_at 3.03 0.012 214 648 214 Chromogranin A 
(parathyroid secretory 

protein 1)
TKTL1 Hs.102866 214183_s_at 57.92 0.00004 49 2809 1276 Transketolase-like 1
BG1 Hs.250616 206465_at 6.16 0.00007 172 1057 630 Lipidosin

- Hs.399852 1559213_at 43.98 0.0003 19 842 193 IMAGE:5394246, mRNA
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Table 3: Groups of genes involved in liver processes that are affected by 5-aza-dC.

Gene
Symbol

Unigene Affymetrix
ID

Fold
Change

p-value FDR Control
Signal

5-aza-dC
Signal

Description

Xenobiotic Metabolism
ABHD6^ Hs.476454 221552_at 1.82 0.00394 0.12238 634 1151 Abhydrolase domain containing 6
AKR1C1^ Hs.460260 1555854_at 2.92 0.00027 0.04452 345 1007 Aldo-keto reductase family 1, member C2 

(dihydrodiol dehydrogenase 2; bile acid binding 
protein; 3-a

CYP3A4^ Hs.442527 205999_x_at 1.78 0.01792 0.21785 370 660 Cytochrome P450, family 3, subfamily A, 
polypeptide 4

CYP3A5^ Hs.150276 214234_s_at 2.53 0.00159 0.08806 968 2447 Cytochrome P450, family 3, subfamily A, 
polypeptide 5

CYP3A7^ Hs.111944 211843_x_at 4.11 0.00387 0.12175 515 2120 Cytochrome P450, family 3, subfamily A, 
polypeptide 7

HAMP^ Hs.8821 220491_at 2.34 0.01066 0.17693 1076 2512 Hepcidin antimicrobial peptide
UGT1A6^ Hs.546397 215125_s_at 2.73 0.00318 0.11285 143 389 UDP glycosyltransferase 1 family, polypeptide 

A9
UGT2B15^ Hs.150207 207392_x_at 1.79 0.01965 0.22477 323 577 UDP glycosyltransferase 2 family, polypeptide 

B15
UGT2B28 Hs.137585 211682_x_at -2.69 0.00131 0.08111 11036 4109 UDP glycosyltransferase 2 family, polypeptide 

B28
Steroid Biosynthesis
CYP17A1 Hs.438016 205502_at 1.92 0.00208 0.09647 325 622 Cytochrome P450, family 17, subfamily A, 

polypeptide 1
CYP19A1^ Hs.511367 203475_at 2.43 0.00356 0.11831 470 1144 Cytochrome P450, family 19, subfamily A, 

polypeptide 1
CYP51A1^ Hs.417077 202314_at -1.31 0.00975 0.17073 11672 8910 Cytochrome P450, family 51, subfamily A, 

polypeptide 1
DHCR7^ Hs.503134 201791_s_at -1.4 0.02202 0.23665 3628 2588 7-dehydrocholesterol reductase
FDFT1^ Hs.546253 208647_at -1.37 0.00820 0.16076 24377 17858 Farnesyl-diphosphate farnesyltransferase 1
FDXR^ Hs.69745 207813_s_at 2.31 0.00046 0.05618 2066 4764 Ferredoxin reductase
HMGCR^ Hs.11899 202539_s_at -1.34 0.03567 0.28427 10570 7864 3-hydroxy-3-methylglutaryl-Coenzyme A 

reductase
HSD17B1^ Hs.500159 205829_at 6.02 0.00853 0.16330 157 944 Hydroxysteroid (17-beta) dehydrogenase 1
HSD17B2^ Hs.162795 204818_at 2.68 0.00198 0.09502 1818 4869 Hydroxysteroid (17-beta) dehydrogenase 2
LSS^ Hs.517366 202245_at -1.32 0.00717 0.15151 5751 4356 Lanosterol synthase (2,3-oxidosqualene-

lanosterol cyclase)
PMVK Hs.30954 203515_s_at 1.6 0.00661 0.14527 1046 1674 Phosphomevalonate kinase
RODH^ Hs.524513 37512_at 3.67 0.00046 0.05648 173 634 3-hydroxysteroid epimerase
SC5DL^ Hs.287749 211423_s_at -1.19 0.01127 0.18081 10122 8494 Sterol-C5-desaturase (ERG3 delta-5-desaturase 

homolog, fungal)-like
SQLE^ Hs.71465 209218_at -1.32 0.00603 0.14008 16131 12229 Squalene epoxidase
STARD4^ Hs.93842 226390_at -1.22 0.01833 0.21953 4385 3593 START domain containing 4, sterol regulated

CCAAT element binding proteins
CEBPA*^ Hs.76171 204039_at 1.69 0.00049 0.04052 3106 5262 CCAAT/enhancer binding protein (C/EBP), 

alpha
CEBPB^ Hs.517106 212501_at -1.95 0.01864 0.22082 28789 14762 CCAAT/enhancer binding protein (C/EBP), 

beta
CEBPG^ Hs.429666 225527_at -2.15 0.04308 0.30614 3734 1741 CCAAT/enhancer binding protein (C/EBP), 

gamma
CEBPZ*^ Hs.135406 203341_at -1.34 0.00286 0.08197 4880 3655 CCAAT/enhancer binding protein zeta
CUTL1*^ Hs.438974 214743_at -1.57 0.00957 0.1289 1672 1067 Cut-like 1, CCAAT displacement protein 

(Drosophila)
NFIC*^ Hs.170131 226895_at 1.23 0.01727 0.16248 1452 1786 Nuclear factor I/C (CCAAT-binding 

transcription factor)
NFYC^ Hs.233458 202215_s_at 1.38 0.01163 0.18301 1612 2228 Nuclear transcription factor Y, gamma

* = Genes that are only significantly affected by both 5-aza-dC and TSA.
^ = Expressed in fetal and/or adult liver.
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genes. C/EBPα and C/EBPβ may play important roles in
this. The haptoglobin (Hp) gene, which is important in
liver development, is transcriptionally regulated by C/
EBPα and C/EBPβ in the rat liver; Dinic et al. have shown
that Hp transcription is regulated by C/EBPα during nor-
mal liver development while C/EBPβ regulates this gene
during the acute phase response during the later phase of
differentiation and in the adult [66]. Also, the suppression
of C/EBPα expression may be a prerequisite to biliary cell
differentiation in a hepatoblast population in the devel-
oping mouse liver [67].

Conclusion
In summary, we demonstrate that DNA methylation plays
a much larger role than histone deacetylation in regulat-
ing gene expression in HepG2 human hepatoma cells.
Many genes were in fact turned on in these cells by the
DNMT inhibitor 5-aza-dC; which included imprinted
genes and spermatogenesis genes. 5-aza-dC affected
groups of genes involved in liver processes such as xeno-
biotic metabolism, steroid biosynthesis, and CCAAT ele-
ment binding. A majority of the genes in these groups are
expressed in the developing fetal and adult liver indicating
that DNA methylation may play a role in restricting the
expression of fetal liver genes and in shutting down
expression in hepatoma cells.

Methods
Drug treatments
5-aza-dC (Sigma, St. Louis, MO) and TSA (Sigma) were
prepared in dimethyl sulfoxide (DMSO) (Sigma). HepG2
cells (HB-8065; ATCC, Manassas, VA) (5 × 105 cells) were
plated on 100 mm culture dishes and grown in minimum
essential medium (Sigma) with 10% fetal bovine serum
(Life Technologies, Rockville, MD) and 2 mM glutamine
in a 5% CO2 atmosphere. A 2 × 2 experimental design was

used: cells were treated with 2.5 μM 5-aza-dC, 500 nM
TSA, both 2.5 μM 5-aza-dC and 500 nM TSA, or DMSO
(untreated). Plates were seeded and harvested at the same
time; appropriate dishes were treated with 5-aza-dC 48 h
after cell seeding and their media and drugs were replaced
every 24 h. TSA was incubated with appropriate dishes for
the last 24 h before harvesting. DNA and RNA were
extracted 4 days after the initial 5-aza-dC treatment using
TRIzol® (Invitrogen, Carlsbad, CA).

DNA methylation analysis
Methylation-sensitive PCR was modified from a protocol
[68] and quantitation of PCR products were previously
described by Dannenberg et al. [38]. This assay is based on
the fact that Hpa II cannot digest a methylated CCGG site;
thus fragments containing methylated CCGG sites remain
intact and can be amplified by PCR, whereas unmethyl-
ated CCGG sites are cut and cannot be amplified. The
region upstream of ADH1B from bp -2956 to -2638 was
analyzed using primers HE1741/1742 (Table 5).

Microarray analysis
Total RNA prepared from HepG2 cells was treated with 1
U of DNase I, RNase-Free (Roche, Indianapolis, IN) per
microgram of RNA. An RNeasy® Mini Kit (Qiagen, Valen-
cia, CA) was used to purify RNA. RNA quality was then
tested using a Bioanalyzer (Agilent Technologies, Palo
Alto, CA) and by measuring absorbance from 210 to 350
nm. RNA preparations from four independent dishes
from each experimental condition (5-aza-dC, TSA, both 5-
aza-dC and TSA, and untreated) were separately processed
and analyzed. Ten micrograms of total RNA was synthe-
sized into cDNA for each sample, and then biotinylated
cRNA was generated by in vitro transcription, following
the standard Affymetrix protocols [69]. Biotinylated
cRNAs were fragmented, and each sample was hybridized

Table 4: Validation of fold-changes from microarray analyses by real-time RT-PCR

5-aza-dC TSA 5-aza-dC and TSA
Control Array1 RT-PCR1 Array RT-PCR Array RT-PCR

CDK103 300* 3.5 (.00013) 8.3 (.00000) NT2 NT 3.8 (.00001) 7.2 (.00000)
CEBPA3 3106 NT NT 1.43 (.0038) 4.16 (.004) 1.7 (.00049) 10.4 (.00000)
CEBPB3 28789 -2.0 (.019) -2.6 (.0008) NT NT -2.0 (.019) -3.5 (.00009)
CYP3A73 515* 4.0 (.0043) 11 (.00000) NT NT 4.3 (.0043) 8.0 (.00000)
GSTP13 367** 8.5 (.00014) 18200 (.00000) NT NT 12 (.00005) 107000 (.00000)
H193 255 156 (.00000) 5080 (.00000) NT NT 141 (.00000) 330 (.00000)
NNAT 205* 8.0 (.0073) 38 (.00000) NT NT 10.8 (.0053) 33 (.00000)
PKIB 464* 7.4 (.0029) 70 (.00000) NT NT 6.6 (.0013) 35 (.00000)
S100A43 281* 8.8 (.0012) 27 (.00000) 3.0 (.00039) 4.9 (.00000) 8.2 (.00018) 11 (.00000)
TSPY1 11* 96 (.00002) 532 (.00000) NT NT 153 (.00000) 1290 (.00000)

*: Called "Absent" on all 4 control arrays; **: called "Absent" on 3 of 4 control arrays
1The fold-change for either the microarray analyses or real-time RT-PCR assays (relative fold-change). P-values (Welch's t-test) are shown in 
parentheses.
2NT = not tested, because it was not significantly affected in the microarray analyses.
3Expression is observed in the fetal liver.
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to an Affymetrix® HG-U133 Plus 2.0 gene chip (54,675
probe sets) at 42°C for 17 h. Chips were washed, stained,
and scanned following the standard Affymetrix protocol
[69].

Statistical analysis
Expression data generated by the Affymetrix Microarray
Suite®, version 5.0, were exported and analyzed using
Microarray Data Portal (MDP) [70]. Data have been
deposited into GEO [71] under Series accession number
GSE5230. Probe sets that were not called present on at
least 50% of the arrays in at least one-treatment group
were eliminated before further analysis; these primarily
represent noise [72,73]. Log-transformed signals were
then compared using Welch's approximate t-test, which
allows for unequal variance. False discovery rate (FDR)
was calculated according to Benjamini and Hochberg
[74]. Genes were considered turned from "off to on" or
"on to off" if the difference of the fraction present was +/-
1; that is, if genes went from "Absent" (according to the
MAS5 algorithm) in all 4 arrays to "Present" in all four
arrays, or vice versa and the log signal differed significantly
(p ≤ 0.05). Genes turned on by the combination of 5-aza-
dC plus TSA (as defined above) but not by 5-aza-dC alone
were also selected, based on a p value for both vs. 5-aza-
dC <0.05 and difference in fraction present ≥ 0.5. Gene
groupings were created using Gene Ontology on MDP; the

CCAAT-binding protein genes were grouped manually.
Fetal liver expression was determined by using the Expres-
sion Profile Viewer (NCBI). Genes are considered as
expressed in the fetal liver if they are expressed in the liver
and also expressed in the embryo.

Putative CpG islands were identified using the CpG Island
Finder [43,44]. We selected a random 10% of the genes
that were re-expressed [see Additional file 2] and exam-
ined their promoters from -1500 to +500 bp. We also
examined 10 genes that were confirmed by RT-PCR (Table
4). CpG Island Finder uses a sliding window 201 bp in
length to calculate the CpG dinucleotide percentage for
each window where it defines the maximum of these CpG
percentages as the CpG score and the corresponding win-
dow as the CpG window [43]. Assuming a bimodal nor-
mal distribution and an overlap of 10% (5% from each
group), 6.5 as a cutoff value is often used because it satis-
fies the condition μ+2σ < 6.5 < μ-2σ [43]. However, we
used the default value of 6%, set by the CpG Island Finder
[44], to identify promoter CpG islands.

Hierarchical clustering
A set of 355 genes that varied across the experiment (with-
out consideration of whether variation was within or
between conditions, to avoid bias) was selected based
upon a coefficient of variation (CV; ratio of standard devi-
ation to mean) of 0.6 or greater. Hierarchical clustering of
the microarrays [75] was performed using MDP.

Real-time quantitative RT-PCR
The following human mRNA sequences: CDK10, CEBPA,
CEBPB, CHGA, CYP3A7, GSTP1, H19, NNAT, PKIB,
S100A4, and TSPY1 were used to design gene-specific
primers for real-time RT-PCR using MacVector (Accelrys,
San Diego, CA). Primer sequences were tested for unique-
ness by aligning them against the human genome using
NCBI BLAST [76]. The RT-PCR products and Accession
numbers (GenBank) for each mRNA sequence are listed
in Table 6; the sequences of the primers used are listed in
Table 5.

Four 500 ng aliquots of TSA-treated and untreated RNA
preparations used in the microarray analyses and three
500 ng aliquots of 5-aza-dC-treated and 5-aza-dC and
TSA-treated (only three used for these conditions due to
little or no total RNA available after microarray analyses)
were reverse transcribed using the SuperScript First Strand
Synthesis System (Invitrogen). Resulting cDNAs were
diluted 1:25, then amplified using SYBR Green PCR Mas-
ter Mix (Applied Biosystems, Foster City, CA). GAPDH
(glyceraldehyde-3-phosphate dehydrogenase) expression
was quantified using TaqMan® GAPDH Control Reagents
(Applied Biosystems) as an internal control to normalize
each gene against (note: GAPDH amplification not run in

Table 5: Primer sequences

Primers Sequences

HE1741 CCAGGGATTAGGAGTGGACC
HE1742 GGAGGGGAAGAGCAGTTGTC
HE2251 GATTGGACCTCATTACATAAGGG
HE2252 TCTTTTGGGGTTAGCAAGTTG
HE2261 AGGGTTGTGTGAAGACAGCG
HE2262 TTGTTGCGGTGGTGGGGAAAG
HE2245 GGACCCTCAGCCTTGTTTG
HE2246 AACCCCCCTCACCTCATTGG
HE2255 TGTCCAAACCAACCGCAC
HE2256 AACAGCAACAAGCCCGTAG
HE2253 CCTGATGTCCAGCAGAAAGTGC
HE2254 GTTAGAAGAAGTCCTCCAAAGCG
HE2219 TACCAGTCCAATACCATCCTGCG
HE2220 TGCCTTCACATAGTCATCCTTGC
HE2241 ACTGGTTGGAGTTGTGGAGACG
HE2242 TGGAATGCTTGAAGGCTGCTC
HE2369 AATCAAAACACCGCACCAG
HE2370 ATCAGTGAGGGGCAAGGGGGGTTC
HE2243 CAGACGGAACCTCAGATTTGCC
HE2244 CAGTGCGATTTGGAAGTAACCTG
HE2265 GCAAAGAGGGTGACAAGTTCAAGC
HE2266 GCCAGGGTGGAAAAAAAAAAGTGC
HE2249 CTCTGACCACAACTTCGCAG
HE2250 CCACATTTACCCCCTCTTCC
HE3106 CTACCCCGAGGAGAAGAAAGAG
HE3107 CTGTGTTCAGAGAAGGAATCGTC
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parallel with each gene due to limiting amounts of
cDNA). PCR products were quantified in real-time using
an ABI PRISM® 7700 Sequence Detection System (Applied
Biosystems). PCR conditions were 50°C for 2 min, 95°C
for 10 min, 40 cycles of 95°C for 15 sec and 51–60°C for
20 sec. Ct values for each gene and condition were normal-
ized against GAPDH and then each condition was nor-
malized against the untreated cells to obtain a fold-
change. Welch's t-tests were performed to analyze the real-
time RT-PCR data. We did not determine the amplifica-
tion efficiency of each assay; the fold-changes are calcu-
lated based on 100% efficiency.
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