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Simple Summary: In the process of breeding geese, manually recording data causes the problems
of missing and confusing characterization data; furthermore, manual intervention can lead to the
stress response of breeding geese and affect the laying efficiency of breeding geese. In this study, we
tried to combine the Internet of things and computer image technology to improve the accuracy of
data recording, so as to achieve an accurate correspondence between breeding goose individual data
and egg-laying data. Therefore, we developed and tested a breeding egg identification and coding
system to realize the selection of high-quality breeding geese. The test results showed that the system
realized a correspondence of 97.8% between breeding goose individual data and egg-laying data.
The system realized the information recording of breeding geese under nonmanual intervention,
realized the correspondence between individual data and egg-laying data, and improved the health
and welfare of breeding geese.

Abstract: The selection of breeding geese requires the recording of egg production information
to correspond to the identity of the breeding geese. However, due to the special physiological
characteristics of breeding geese, manual recording in practice can affect the egg-laying performance
of breeding geese and can also lead to problems of missing and confusing individual breeding goose
data with the number of eggs laid by the geese. For contactless recording of breeding goose identity
and egg production information for high-quality breeding, this paper proposes an Internet of things
(IoT)-based breeding egg identification and coding method for the selection of high-quality breeding
geese. At the sensing level, we deployed a radiofrequency identification (RFID)-based sensor. Each
breeding goose wore a foot ring RFID tag on its leg, and the individual information was read by
foot ring RFID readers placed at the bottom of the devices. Individual information was uploaded
to the cloud server for database management through structured query language (MySQL). The
target detection modules were mounted on top of the devices, and the breeding geese and eggs were
detected in the delivery rooms by an improved single-shot multi-box detector (SSD) target detection
algorithm. The egg body limit transmission device and contactless coding device were activated only
in the case of breeding eggs, and the breeding goose information was printed on the egg bodies in the
form of quick response codes (QR codes), which enabled the breeding egg information to correspond
with the breeding goose information. An evaluative experiment was performed using a system for
the selection of high-quality breeding geese, with web cameras and a cloud monitoring platform.
The breeding geese were allowed 14 days to become accustomed to the experimental environment
before monitoring began. The evaluative experiment results showed that the pass rate of egg body
coding reached 98.25%, the improved SSD algorithm was 8.65% more accurate and 62.6 ms faster than
traditional SSD, and the accuracy rate corresponding to the individual information of the breeding
geese and the surface information of the goose eggs was 97.8%. The experimental results met the
requirements of accurate marking of individual information of breeding geese, which can provide
technical support for the selection of high-quality breeding geese.
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1. Introduction

Goose breeding has a long history in China [1]. Unlike other poultries, breeding
geese have a stress response. The breeding method is based on manual selection and
breeding, which is labor-intensive for the staff, and the manual recording of individual
data for breeding geese is prone to problems such as omission and confusion regarding the
number of eggs laid and the characterization data [2,3]. This particular habit also limits the
selection of breeding geese to free range or flat rearing, making it more difficult to collect
egg production data [4,5]. In order to advance the process of intelligent goose breeding,
contactless data collection on breeding geese becomes a key prerequisite which allows for
the selection of high-quality breeding geese. Therefore, it is especially important to propose
an efficient and accurate contactless data collection device for breeding geese.

With the introduction of RFID technology to study the individual identification and
traceability of animals, as proposed by Luis et al. [6], RFID has become one of the most pop-
ular technologies for identifying individual animals and has been used in farming research
on animals such as pigs, chickens, cattle, and sheep [7–13]. Siegford et al. [14] suggested
RFID and radio signal strength (RSSI) technology to achieve individual identification in
large-scale poultry farming processes. Egg collection is an important link in egg production
monitoring and breeding. Burel et al. [15] and Icken et al. [16] designed egg-laying crates
with funnels to collect eggs, increasing buffering and reducing egg bruising; they used RFID
identification systems to achieve a unique correspondence between data and individual
chicken tags, accurately collecting individual egg-laying data from chickens. However, the
presence of chickens entering the laying box without laying eggs makes the egg-laying
monitoring data inaccurate, which leads to incorrect chicken–egg pairing. Chien et al. [17]
also designed a smart egg-laying box for hens on this basis, with a special sloping surface
located at the bottom of the box allowing eggs to roll through an inclined tray into an
egg collection tube at the back of the box. A pressure measuring element was installed
under the egg collection tube as an egg detection sensor and an egg weight sensor, whereby
RFID identification technology and photoelectric sensing technology were combined to
determine whether the hens have left the laying room; however, collection by tilting and
rolling inevitably caused eggs to break. At the same time, the device could only count the
number of eggs laid, and the correspondence between poultry individual information and
egg-laying information could not be realized.

The disadvantage of RFID for quality selection is the inability to work on traceability.
With the development of IoT, there have been several applications of IoT in agriculture, such
as agricultural environmental monitoring, livestock breeding, and poultry farming [18,19].
In the case of the poultry farming industry, the IoT has enabled the effective collection of
egg production numbers and characterization data from caged poultry such as chickens
and ducks. Voulodimos et al. [20] used RFID technology to achieve livestock tracking and
management by establishing a data repository through which, in addition to RFID tag
numbers associated with animal data records, the use of rewritable tags was introduced
for storing information to be used to identify animals in case of loss. Srbinovska et al. [21]
designed a greenhouse vegetable monitoring system, based on wireless sensor network
technology, to enable the monitoring of environmental parameters such as temperature,
humidity, and carbon dioxide concentration in vegetable greenhouses. Miso et al. [22]
proposed a combination of cloud computing and a wireless sensor network for environ-
mental monitoring by transmitting sensor data to the cloud for cloud computing through
the wireless sensor network; the experiment proved the operability of the wireless sensor
network. Rodrigo et al. [23] developed an integrated hardware and software automation
system for continuous seed monitoring and recording operations through ColoT as an
architecture developed for sensory processing of devices in the IoT to monitor and record
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data throughout the testing process. The IoT technologies mentioned above were only
used in agricultural monitoring and were not used for traceability work to enable the
correspondence between egg production data and characterization data.

In this paper, we designed an IoT-based breeding egg identification and coding system
for the selection of high-quality breeding geese combined with RFID, target detection, and
IoT technologies. The combination of the target detection module and RFID in the device
helped us to determine the identity of the breeding geese entering the delivery rooms and
the situation inside the rooms, as well as transmit the breeding goose identity information
to the cloud service. In the event that only eggs were present in the delivery rooms, the egg
limit transfer device and the contactless coding device were activated, and the information
stored in the cloud server was sprayed on the eggs in the form of QR codes. Our proposed
system enabled breeders of geese to use the egg yield of individual breeding geese as
a means of determining which breeding geese should be culled. This was used for the
purpose of selecting high-quality breeding geese.

2. Materials and Methods

As shown in Figure 1, the overall device was an open structure, with a length of
500 mm, a height of 800 mm, and a width of 470 mm, allowing geese to enter and leave
the delivery room freely. By adjusting the delivery room space, it was ensured that only
one goose could lay eggs comfortably, avoiding the identification error caused by multiple
geese occupying the nest. The RFID reader under the turf read the RFID signal on the foot
rings of the breeding geese to determine the identity of the breeding geese and the time
when the breeding goose entered and left the delivery room. The main controller stored the
data in the established MySQL database through communication with the cloud to store
the identity information of the breeding geese. A gap of 75 mm was left at the bottom of
the delivery room to transfer goose eggs from the delivery room area to the coding area.
At the same time, in order to meet the habit of geese laying eggs in quiet, dark, and dry
places [24–27], artificial turf was sewn on the surface of the induction conveyor belt and
the delivery room was wrapped with black cloth to create a real laying environment for
breeding geese and improve the comfort and laying efficiency of breeding geese. When the
target detection module detected that there were only goose eggs in the delivery rooms,
the egg body limit transmission devices and contactless coding devices were started, and
the breeding geese identity information was printed on the corresponding egg bodies in
the form of QR codes to realize one-to-one correspondence between the laying information
and the breeding geese identity information.

We constructed the breeding egg identification and coding system for high-quality
breeding geese, and we conducted experiments in the goose breeding base of Yangzhou
University, Jiangsu, China. The main controller had a Celeron J1800 CPU, graphics620 core
graphics card, and 8 GB of memory. The prototype of the goose breeding egg identification
and coding system is shown in Figure 2.
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Figure 1. Operation mechanism of breeding egg identification and coding system. 
Figure 1. Operation mechanism of breeding egg identification and coding system.
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2.1. RFID Module

The RFID module was used in the whole system to identify the breeding goose and
upload the identity information to the cloud. The RFID module consisted of an RFID reader
(operating frequency: 134.2 MHz; label format: FDX-B; standard: ISO11784/85; reading
time: <100 ms; read distance: >25 cm) and RFID foot rings which were worn by breeding
geese. The RFID readers obtained the RFID tag values, uploaded the tag information to
the cloud, and identified and recorded the individual identity information of the breeding
goose. The system combined the time sequence before and after the RFID tag value was
read by the card reader to judge whether the breeding goose entered the delivery room
or the delivery room. When the breeding geese entered the breeding room to lay eggs,
the RFID tags worn on the breeding geese’s feet entered the antenna magnetic field of
the readers. The readers transmitted energy to the RFID tags through inductive coupling.
After the RFID tags obtained the energy, the breeding goose identity information in the tag
was transmitted to the readers, which decoded and uploaded it to the cloud to obtain the
breeding goose identity information.

2.2. Target Detection Module

In the breeding process, in order to avoid the stress response of breeding geese caused
by the egg body conveyors, it was very necessary to detect the targets in the delivery rooms
before the operation of the conveyor. Current mainstream target detection algorithms are
mainly divided into two categories. The first category is based on the candidate region.
Firstly, the recognition region is generated by the region of interest (ROI). Then, the convo-
lutional neural network is used for feature extraction and classification. Finally, the size and
position of the recognition region frame are adjusted by linear regression. Region-based
convolutional neural network (R-CNN) [28] and fast region-based convolutional neural
network (fast R-CNN) [29] are representative algorithms. The second category is based on
regression. This algorithm directly regresses the position of the object to be tested from
the image and completes the classification with a fast recognition speed. Representative
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algorithms are You Only Look Once (YOLO) [30,31] and SSD [32]. Since this research was
aimed at detecting a dynamic video, and since the goose egg distribution position in the
video was not fixed, thus influencing the setting of ROI areas, a target detection algorithm
based on the candidate region was not suitable for this study. Compared with YOLO, SSD
combines not only the regression idea in YOLO, but also the anchor mechanism in fast
R-CNN, which takes into account both speed and accuracy. Therefore, this paper improved
the SSD to meet the target detection requirements of this study. The specific structure is
shown in Figure 3.
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As shown in Figure 3, we used the ResNet101 residual network to replace the original
VGG-16 basic network. In order to improve the operation accuracy and reduce the com-
plexity of the model, this paper adopted the cross-layer connection method, as shown in
Figure 4. The specific number of layers was calculated as conv_2x, conv_3, conv_4, and
conv_5. The residual units were added and multiplied by three layers of connection, plus
two full connection layers to realize classification and regression.
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At the same time, in order to realize the fusion of high-level image features and low-
level image features, the feature pyramid could realize prediction on any feature layer of
the image. The network structure of the feature pyramid is shown in Figure 5. The blue box
represents the feature map, and the thickness of the box represents the semantic strength.
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A thicker box denotes stronger semantics. The feature pyramid network first performs a
bottom-up feature convolution operation on the image, and then performs a top-down
up sampling process to enrich the feature information of the low-level image, making
predictions for each feature layer. As this study aimed to detect two different scales of
target objects, breeding geese and goose eggs, as shown in Figure 6, the network structure
was built after the additional feature extraction layer according to the feature pyramid
network, which was divided into four parts: bottom-up, top-down, horizontal connection,
and prediction output. Firstly, the bottom-up part was the feedforward calculation of the
convolution network, which calculated the feature level composed of different proportions
of mappings. The convolution layers used in this study were conv3_x, conv6, conv7,
and conv8, and the feature output was {C3, C6, C7, C8} after bottom-up convolution.
Secondly, the top-down part was an up-sampling process, which transferred the stronger
semantic features of breeding geese and goose eggs in the high-level image to the low-level
high-resolution feature images, and then horizontally connected the bottom-up process to
enhance the feature information of the high-level images. The third part was the horizontal
connection between the top-down process feature image and the bottom-up feature image
through a 1 × 1 convolution kernel to reduce the number of feature images. In the fourth
part, at the beginning of the iteration, a 1 × 1 convolution kernel needed to be added to
C8 to generate a low-resolution image P8. In order to reduce the aliasing effect caused
by up-sampling, the combined feature images of each layer needed to pass through the
convolution kernel to generate the final prediction feature output {P3, P6, P7, P8}.
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In order to evaluate the constructed model, this paper used the accuracy rate (Pi),
recall rate (Rn), average precision (AP), and mean average precision (MAP) as evaluation
indicators, and their specific expressions are presented in Equations (1)–(4).

Pi =
Rsi

Rsi + Fsi

, (1)
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Rn =
Rsn

Rsn + FNn

, (2)

where RSi is the case of a correctly detected breeding goose and goose egg, FSi is the case of
no breeding goose and goose egg being detected, S is the number of categories, and FNn is
the number of samples incorrectly divided into negative samples.

AP =
1
T

N

∑
K=i

P(k) R(k), (3)

where T is the total number of images in the dataset, and K is the threshold number.

MAP =

H
∑

i=1
AP

S
. (4)

2.3. Transmission Coding Module

When the target detection module detected that there was only a breeding egg in the
delivery room, it started the egg body limit transmission device to transmit the breeding egg
to the coding place. The contactless coding device printed the breeding goose information
on the egg surface in the form of a QR code without contacting the egg surface. The goose
breeders got the matching breeding goose information by scanning the QR codes on the
eggs, so as to realize the breeding of high-quality breeding geese. In the process of goose
egg production, goose eggs can be displayed in the delivery rooms at different attitudes,
which has a certain randomness. In order to realize the integrity of goose egg surface
coding, it was necessary to ensure that the long axis direction of the egg body was basically
parallel to the conveying direction of the induction conveyor belt. Therefore, in the process
of goose egg transmission, it was necessary to limit and adjust the attitude of goose eggs, so
as to achieve the best inkjet effect on the goose egg surface. The egg body limit transmission
device was symmetrically installed above the induction conveyor belt to avoid damage
to the turf caused by contact with the induction conveyor belt. The criterion of correct
attitude adjustment was the deviation between the long axis direction of goose egg body
and the conveying direction of the induction conveyor belt, which was set as ±5◦ in this
study. The total length of the limit device, the width of the limit pipe, and the deflection
angle of the goose egg can affect the accuracy of the final posture adjustment of the goose
egg. Therefore, a quadratic polynomial regression model was established for the success
rate of goose egg attitude adjustment to determine the specific size of the limit conveyor.
The specific equation is shown in Equation (5).

η = 98 − 0.75A + 1.25B + C + AB − 0.5AC − 0.5BC − 3B2 + 0.5C2, (5)

where A is the deflection angle of the goose egg, B is the width of the limit pipe, C is the
total length of the limit device, and η is the success rate of goose egg attitude adjustment.

The breeding eggs arrived at the contactless coding device through the egg limit
transmission device, and the photoelectric sensor transmitted the electrical signal to the
main controller. The main controllers used the RS485 serial port communication to transmit
the label information and egg-laying date of the breeding goose to the coder. The coders
compiled the information and applied it via inkjet onto the surfaces of the goose eggs in the
form of QR codes. The QR codes were marked on the surfaces of goose eggs through the
nozzle to provide data support for identifying and screening high-quality and high-yield
goose individuals. The mass of the printer nozzle was 2.4 kg, and the weight of the printer
was 2.1 kg. Due to the low overall load, a stepper motor was selected for driving. In this
study, a two-phase DC 42 mm stepper motor and PMC006B4 small stepper motor driver
were selected. The movement of the printer sent pulse signals to the motor driver through
the main controllers, and the guide rail was driven to move through the rotation of the
motor, so as to realize the lateral movement of the printer.
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3. Results and Discussion
3.1. Characterization Test of Transmission Coding Module

The egg body limit transmission device was the premise to realize the complete coding
of goose eggs. A smaller deviation between the long axis direction of goose eggs and
the conveying direction of induction conveyor belt results in a higher coding success rate.
Therefore, in order to determine the optimal scheme of the limit scheme, 50 goose eggs
were randomly selected for attitude adjustment through an orthogonal rotation test. The
test results are shown in Table 1. The variance analysis of the success rate model of attitude
adjustment was carried out. The 3D response surface diagram of the interaction effect of
various factors is shown in Figure 7. The success rate of attitude adjustment decreased
with the increase in deflection angle. The goose egg posture adjustment was correct and
increased with the increase in limit width. After reaching the extreme point, the goose
egg posture adjustment was successful and decreased with the increase in limit width;
The successful attitude adjustment increased with the increase in the total length of the
limit device.

Table 1. Attitude adjustment results of limit devices with different sizes.

Experience Group A (◦) B (mm) C (mm) η(%)

1 60 75 600 96
2 30 90 550 96
3 60 75 500 92
4 60 82.5 550 98
5 60 82.5 550 98
6 60 82.5 550 98
7 90 75 550 92
8 60 90 600 98
9 90 82.5 500 98
10 30 75 550 96
11 30 82.5 600 100
12 60 90 500 96
13 60 82.5 550 98
14 30 82.5 500 98
15 60 82.5 550 98
16 90 90 550 96
17 90 82.5 600 98

Note: A, the deflection angle of the goose egg; B, the width of the limit pipe; C, the total limit length.
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Animals 2022, 12, 1545 10 of 15

In this study, a maximum deflection angle of goose egg of 90◦ was selected as the
condition, and the regression model of goose egg attitude adjustment success rate was
solved. The following optimal parameters were obtained: limit width of 82.5 mm, total
length of the limit device of 600 mm, and attitude adjustment success rate of 98.25%.

3.2. Comparison of Target Detection Algorithms

The target detection module in this study used HIKVISION DS-IPC-T12H2-I/POE
cameras, which were installed on the top of the delivery rooms for shooting. The videos
taken in the delivery rooms were sampled and divided into frames, and the divided images
were used as the datasets required for the experiment. A total of 5600 images were divided
into a training set (4800 images), verification set (300 images), and test set (500 images).
Labimg was used to label the breeding geese and goose eggs in the images, and the labeling
information was saved in “.XML” format. The computer configuration was as follows: Intel
i7-8750 CPU, Ubuntu 16.04 operating system, and NVIDIA GTX1060ti. The experimental
framework adopted Pytoch deep learning frame. The datasets were imported into the
traditional SSD model and improved SSD for training. In the training process, the weight
parameters were updated by random gradient descent. The momentum term was set to
0.9, the initial learning rate was set to 0.001, the decay parameter was set to 0.0005, and
the number of iterations was 8000. Figure 8 shows the loss rate of the two algorithms.
It can be seen from Figure 8 that the loss value of the model under the two algorithms
dropped rapidly after several iterations, and then the convergence of the loss value slowed
down and gradually tended to be flat. Although the overall oscillation amplitude of the
traditional SSD algorithm and the improved SSD algorithm was small, the convergence
speed of the improved SSD target monitoring algorithm was faster, and the loss value was
lower than that of the traditional SSD target detection algorithm.
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At the same time, in order to verify the detection effect of the two models, after the
model training, the test dataset was imported into the traditional SSD model and the
improved SSD model for test and comparison. The IOU value was set to 0.5, and the
accuracy–recall curves of breeding geese and goose eggs is shown in Figure 9. It can
be seen from Figure 9a that, with the improvement of recall rate, the detection accuracy
of breeding geese was slightly higher than that of the traditional SSD target detection
algorithm. As can be seen from Figure 9b, the goose egg detection accuracy was higher than
the traditional SSD target detection algorithm as a whole. Compared with the traditional
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SSD, the improved SSD in this study had a higher recognition rate for small target objects
such as goose eggs, which was more suitable for the needs of target detection in this study.
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egg: (a) breeding geese; (b) goose eggs.

Some effects of the two algorithms on target recognition are shown in Figure 10.
In Figure 10, it can be seen that, compared with the traditional SSD, the improved SSD
proposed in this paper could successfully recognize the targets in the delivery rooms,
especially for small target objects such as goose eggs. We digitized the test results, and
the accuracy results are shown in Table 2. It can be seen from Table 2 that there was little
difference in the target detection accuracy between the SSD target detection algorithm and
the MAP value of the improved SSD. This was because breeding geese accounted for a
large proportion in the video and were easier to detect. The goose egg target detection
accuracy in the improved SSD target detection algorithm was greater than that in the SSD
target detection algorithm, 8.65% higher, and the detection speed was also improved by
62.6 ms. Therefore, the improved SSD target detection algorithm proposed in this study
was better than the traditional SSD model in the real-time detection of geese and goose
eggs in the delivery rooms, meeting the detection needs of the delivery rooms.
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Table 2. Detection results of breeding geese and goose eggs.

Models
AP (%)

MAP (%) Speed (ms)
Breeding Geese Goose Eggs

Traditional SSD 87.41% 75.81% 81.61% 10.2
Improved SSD 92.58% 87.94% 90.26% 72.8

3.3. Device Coding Experiment

In order to adapt the breeding goose to the goose breeding egg identification and
coding system, we placed the prototype of the identification and coding system in the
breeding goose breeding base for 14 days, during which only the target detection module
was opened to collect the images of breeding geese and goose eggs. Then, we turned on the
system for the goose egg coding experiment. The test results are shown in Table 3. A group
of six breeding geese and 127 breeding eggs were analyzed. The success rate of egg laying
and coding of breeding geese 1, 3, and 5 was 100%, realizing the one-to-one correspondence
between the identity of breeding eggs and breeding geese. The goose eggs of other geese
failed to code. Overall, the average success rate of goose egg coding was 97.8%. The reason
for the failure of inkjet marking was that the size of individual goose eggs was relatively
small, resulting in a poor inkjet effect. In addition to the unusual size of goose eggs, the
success rate of inkjet coding of the system is high, which met the requirements of goose
egg coding identification and individual traceability function.

Table 3. The results of goose eggs coding.

ID
Number of
Collected

Goose Eggs

Number of
Coded Goose

Eggs

Number of
Qualified Eggs

Coding Success
Rate

1 21 21 21 100%
2 23 23 22 95.7%
3 22 22 21 95.5%
4 18 18 18 100%
5 19 19 19 100%
6 24 24 23 95.8%

Average 21.1 21.1 20.7 97.8%

At the same time, in order to verify whether the actual egg-laying information of
breeding geese corresponded to the information on goose eggs, we performed video
playback calibration on the egg-laying records of breeding geese, and the results are shown
in Figure 11. It can be seen from Figure 11 that the egg production observed by video
playback of breeding geese 1, 2, 5, and 6 was consistent with the egg production data
monitored by the system. The egg production data of breeding geese 3 and 4 were recorded
incorrectly. The reason was that breeding geese No. 4 immediately entered the production
room to lay eggs after finishing the egg production operation. After breeding goose 3 left,
the system detected two goose eggs and triggered an alarm. The integrated production
room device stopped operation, and the egg production data were not recorded on the
goose eggs. As a result, some goose eggs did not form a corresponding relationship with
breeding geese.



Animals 2022, 12, 1545 13 of 15

Animals 2022, 12, x  13 of 15 
 

Table 3. The results of goose eggs coding. 

ID 
Number of Collected 

Goose Eggs 

Number of Coded Goose 

Eggs 

Number of Qualified 

Eggs 

Coding Success 

Rate 

1 21 21 21 100% 

2 23 23 22 95.7% 

3 22 22 21 95.5% 

4 18 18 18 100% 

5 19 19 19 100% 

6 24 24 23 95.8% 

Average 21.1 21.1 20.7 97.8% 

At the same time, in order to verify whether the actual egg-laying information of 

breeding geese corresponded to the information on goose eggs, we performed video play-

back calibration on the egg-laying records of breeding geese, and the results are shown in 

Figure 11. It can be seen from Figure 11 that the egg production observed by video play-

back of breeding geese 1, 2, 5, and 6 was consistent with the egg production data moni-

tored by the system. The egg production data of breeding geese 3 and 4 were recorded 

incorrectly. The reason was that breeding geese No. 4 immediately entered the production 

room to lay eggs after finishing the egg production operation. After breeding goose 3 left, 

the system detected two goose eggs and triggered an alarm. The integrated production 

room device stopped operation, and the egg production data were not recorded on the 

goose eggs. As a result, some goose eggs did not form a corresponding relationship with 

breeding geese. 

 

Figure 11. Comparison of egg production in different recording methods. 

4. Conclusions 

In this study, a goose breeding egg identification and coding system for selection of 

high-quality breeding geese was developed. The system could identify and code the 

breeding eggs in time and help the breeders get the correspondence between breeding 

goose individual information and egg-laying information through the QR codes on the 

eggs. The evaluative experiment results showed that the pass rate of egg body coding 

reached 98.25%, the proposed improved SSD algorithm was 8.65% more accurate and 62.6 

ms faster than the traditional SSD, and the accuracy rate corresponding to the individual 

information of the breeding goose and the surface information of the goose egg was 97.8%. 

The system we developed still has some defects; when the egg-laying interval between 

Figure 11. Comparison of egg production in different recording methods.

4. Conclusions

In this study, a goose breeding egg identification and coding system for selection
of high-quality breeding geese was developed. The system could identify and code the
breeding eggs in time and help the breeders get the correspondence between breeding
goose individual information and egg-laying information through the QR codes on the eggs.
The evaluative experiment results showed that the pass rate of egg body coding reached
98.25%, the proposed improved SSD algorithm was 8.65% more accurate and 62.6 ms faster
than the traditional SSD, and the accuracy rate corresponding to the individual information
of the breeding goose and the surface information of the goose egg was 97.8%. The system
we developed still has some defects; when the egg-laying interval between two geese is too
small, the system cannot judge the breeding goose information corresponding to the two
kinds of eggs in the delivery room, resulting in a recording error.

In a future study, we will focus on optimizing of the device structure to automatically
adapt to different goose egg sizes and improving the adaptive ability of the system to
possible abnormal conditions.
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