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Abstract

Background: Chronic metabolic overload results in lipid accumulation and subsequent inflammation in white adipose
tissue (WAT), often accompanied by non-alcoholic fatty liver disease (NAFLD). In response to metabolic overload,
the expression of genes involved in lipid metabolism and inflammatory processes is adapted. However, it still remains
unknown how these adaptations in gene expression in expanding WAT and liver are orchestrated and whether they
are interrelated.
Methodology/Principal Findings: ApoE*3Leiden mice were fed HFD or chow for different periods up to 12 weeks.
Gene expression in WAT and liver over time was evaluated by micro-array analysis. WAT hypertrophy and
inflammation were analyzed histologically. Bayesian hierarchical cluster analysis of dynamic WAT gene expression
identified groups of genes (‘clusters’) with comparable expression patterns over time. HFD evoked an immediate
response of five clusters of ‘lipid metabolism’ genes in WAT, which did not further change thereafter. At a later time
point (>6 weeks), inflammatory clusters were induced. Promoter analysis of clustered genes resulted in specific key
regulators which may orchestrate the metabolic and inflammatory responses in WAT. Some master regulators played
a dual role in control of metabolism and inflammation. When WAT inflammation developed (>6 weeks), genes of lipid
metabolism and inflammation were also affected in corresponding livers. These hepatic gene expression changes
and the underlying transcriptional responses in particular, were remarkably similar to those detected in WAT.
Conclusion: In WAT, metabolic overload induced an immediate, stable response on clusters of lipid metabolism
genes and induced inflammatory genes later in time. Both processes may be controlled and interlinked by specific
transcriptional regulators. When WAT inflammation began, the hepatic response to HFD resembled that in WAT. In
all, WAT and liver respond to metabolic overload by adaptations in expression of gene clusters that control lipid
metabolism and inflammatory processes in an orchestrated and interrelated manner.
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Introduction

The obesity epidemic has become the most important
nutritional problem worldwide. The increasing prevalence of
obesity has been ascribed to excessive and unhealthy eating

and reduced physical activity [1] and carries with it increased
risks for type 2 diabetes (T2DM) and non-alcoholic fatty liver
disease (NAFLD) [2-4]. Notably, the existence of metabolic
pathways that allow excess energy to be stored as fat suggests
that obesity may realistically be viewed as a biological
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adaptation in times of energy surplus. However, in case of
prolonged excess energy supply white adipose tissue (WAT)
capacity may exceeded [5,6] and the liver may serve as an
alternative depot for free fatty acids [7,8]. The resulting
metabolic overload of the expanding WAT and subsequently
liver is accompanied by local metabolic stress and triggers
tissue inflammation [9].

Several studies in mice have demonstrated that the
expression of genes of lipid metabolism and inflammation is
adjusted in several organs in response to chronic high-fat diet
(HFD) feeding [10-12]. These studies are often static and focus
on a single organ which is analyzed at one particular time
point, typically at a later stage in the disease process when
histopathological effects of HFD can be detected (e.g. crown-
like structures in WAT, inflammatory gut, hepatic steatosis).
Accordingly, many gene expression studies and sophisticated
microarray analyses link late stage histological outcomes to
gene expression changes of the same (late) time point.
However, significant effects on gene expression are likely to
start early and change over time. Hence, there is limited
understanding of the early events in expanding WAT and in
what way lipid metabolism is related to the onset of
inflammation during obesity development. Some studies
investigated the expression changes of individual inflammatory
genes and pathways over time [13-15], but they did not explore
whether groups of genes (

‘gene clusters’) change in concert and thus do not provide
insight into the global adaptations and possible common
transcriptional regulation of clustered genes.

Bayesian hierarchical cluster analysis [16] allows global
analysis of dynamic gene expression data of thousands of
genes simultaneously to find patterns in the data that are not
predicted by the experimenter’s current knowledge or
preconceptions. For instance, complex gene expression time
series can be analyzed to identify genes with similar
expression patterns that group into clusters because of
common transcriptional regulation. Cluster analysis of the
expanding WAT requires dynamic high-quality microarray
datasets with multiple early time points, which are scarce [13].
In the present study we investigated two important processes
in WAT expansion using cluster analysis: the global adjustment
of genes of ‘lipid metabolism’ and the induction of ‘inflammatory
genes’, and their interrelationship. Because transcriptional
control mechanisms are instrumental for adjustment of lipid
metabolism as well as inflammatory gene expression [17], we
examined whether the genes of the identified clusters share
common transcriptional regulation, viz. via key master
regulators.

Metabolic overload of WAT upon HFD feeding is, at a later
stage, supposed to be accompanied by multiple metabolic and
inflammatory effects in the liver [7]. It is presently unknown
whether the effects on genes of metabolism and inflammation
are similar to WAT and, if so, whether the same master
regulators are involved.

WAT and liver tissues and corresponding dynamic genomics
datasets from a 12-week HFD feeding experiment [13] in
APOE*3Leiden transgenic mice were used. APOE*3Leiden
mice have a humanized lipoprotein metabolism and develop

obesity, insulin resistance and NAFLD during HFD feeding
[18-20]. Bayesian cluster analysis in conjunction with promoter
analysis and biochemical measurements showed that
adjustment of lipid metabolism and onset of inflammation in
WAT occurs sequentially and is orchestrated by specific master
regulators that also control comparable changes in lipid
metabolism and inflammation in the liver later in time.

Materials and Methods

Mouse study and micro-array data
Tissues and micro-array data from a larger time course study

in APOE*3Leiden mice in the context of HFD-induced insulin
resistance were used [13]. These micro-array datasets (liver
and WAT) are freely available on ArrayExpress at the following
URL http://www.ebi.ac.uk/arrayexpress/experiments/E-
TABM-1039/. Animal experiments were approved by the
Institutional Animal Care and Use Committee of The
Netherlands Organization for Applied Scientific Research
(TNO), and were in compliance with European Community
specifications regarding the use of laboratory animals as
reported [13]. Briefly, 12 weeks old mice were fed HFD
containing (all w/w) 24% fat from beef tallow (of which 12%
saturated fatty acids), 24% casein and 20% dextrose (diet
number 4031.05; Hope Farms, Woerden, The Netherlands;
metabolizable energy: 19.4 MJ/kg; exact diet composition is
provided in Table S1) for 12 weeks [13]. Mice were sacrificed
at t=0 and after 1, 6, 9 and 12 weeks of HFD feeding (n=15/
group). Epididymal adipose tissue and corresponding livers of
a subset of animals (n=8) per time point were used for
microarray analysis. Our present data are from this subset of
animals. A separate control group (n=6) was fed chow (sniff®
R/M-H; metabolizable energy: 12.8 MJ/kg; Sniff Spezialdiäten
GmbH, Soest, Germany) for the entire study period and served
as a reference for the effect of aging.

Histological analysis of tissues
Paraffine-embedded sections of adipose tissue and liver

were used for (immuno) histological examination [13]. Liver
tissue sections were 5 µm thick and stained with hematoxylin
phloxine saffron (HPS). Non-alcoholic fatty liver disease was
analyzed as described [21] and vacuolization (micro- and
macrovaculolization) and hepatocellular hypertrophy were
scored. Sections of epididymal adipose tissue were prepared
following a similar procedure [22] and stained with HPS for
computer-assisted morphological assessment of adipocyte size
and analysis of macrophage accumulation in crown-like
structures essentially as reported [20]. CCR2 positive cells
were detected using antibody (Abcam ab21667, Cambridge,
UK).

Microarray data analysis and Bayesian hierarchical
clustering

Quality control analyses and specific protocols for RNA
extraction, RNA integrity assessment, microarray data
processing were reported previously [13,23]. Briefly, quality
control of microarray data was performed using BioConductor
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packages including simpleaffy and affyplm, through the NuGO
pipeline that is available as a Genepattern procedure on http://
nbx2.nugo.org [24]. Thirty-eight adipose tissue samples passed
the quality control criteria and raw signal intensities (from CEL
files) were normalized using the GCRMA algorithm (gc-rma
slow). Probesets were remapped and annotated into Entrez
gene-ids using the custom MBNI CDF-file, version 9.0.1. The
final dataset contained the expression values of 12492 adipose
tissue genes represented by unique Entrez gene-ids [25].
Expression data were logtransformed for further analysis of
gene expression levels. Microarray gene expression data were
confirmed by quantitative real-time PCR for a selection of
genes using established protocols and primer/probe sets [13].

For this study, two sets of genes with either lipid metabolism
ontology (n=235) or inflammation ontology (n=216) were
defined. These genes were differentially expressed at one or
more time points (q<0.05ANOVA) and are listed in Table S2.
The time course expression data of these genes was subjected
to Bayesian hierarchical clustering to structure the data and
identify distinct clusters of genes with comparable expression
profiles [26].

Gene enrichment analysis
Changes in gene expression were visualized using

GeneSpring GX version 10.0 (Agilent Technologies, Santa
Clara, CA, USA) and this tool was also used to show the
identified gene clusters. An enrichment analysis was performed
for the gene lists of each cluster using the DAVID functional
enrichment tool [27]. Default settings for enrichment analysis in
DAVID were used. The total list of genes was used as input
and the most enriched functional gene sets (based on Gene
Ontology ‘protein domains and pathways’) are reported. These
functional gene sets contain at least three genes from a
particular gene cluster and are more enriched in the cluster
than in the input data set (% genes in cluster ≥ 1.3 x % genes
in input gene list).

To define the transcription factors that are responsible for
control of a particular cluster of genes, the genes of each
cluster were subsequently analyzed in Bibliosphere
(Genomatix GmbH, Munich, Germany) with respect to a)
shared transcription factor binding sites in their promoter
regions and b) co-citation analysis (level B2, co-citation
restricted to sentences with a function word). Promoters were
defined as 500 bp upstream and 100 bp downstream of the
Transcription Start Site of the gene transcript. Default settings
of the software were used to perform an overall analysis of the
promoters of the genes for common transcription factors. The
following criteria were used to define the key transcription
factors: a) the transcription factor binding sites have to be
present in at least three genes of a cluster and b) are more
frequently found in the genes belonging to the cluster of
interest than in the total list of input genes (%genes in cluster ≥
1.3 x % genes in input gene list).

Comparison of gene expression changes in adipose
tissue and liver

Liver and white adipose tissue (WAT) were compared with
respect to differentially expressed genes (DEGs relative to the

zero time point) and Venn diagrams were prepared to illustrate
overlapping genes. A cutoff of FDR P-value < 0.05 was used to
define DEGs in both tissues.

The upstream regulator analysis function of Ingenuity
Pathway Analysis (IPA) software and the Ingenuity knowledge
base were used to analyze the relationship between upstream
transcription factors and expression changes of target genes.
To test whether a particular transcription factor identified in
WAT was also involved in the liver, we analyzed the hepatic
transcriptome for differentially expressed target genes of this
transcription factor. A P-value P<0.05 indicated that more liver
target genes were differentially expressed than expected by
chance. Ingenuity Pathway Analysis was also used to test
whether a particular transcription factor is activated (positive Z-
score >2) or inhibited (negative Z-score <-2) based on the
direction of gene expression changes of its target genes.

Transcription factor analysis
Biochemical transcription factor activity was determined in

liver homogenates essentially as previously described [13,28],
using TransAM® kit Hnf4α (no. 46296, Active Motif, Europe,
Rixensart, Belgium). Briefly, liver homogenates were prepared
using the Nuclear Extract Kit (no. 40010, Active Motif,
Rixensart, Belgium). Equal amounts of protein (10 μg/well) of
the liver homogenates were used to determine the amount of
active transcription factor. Control tissues of reference mice on
chow were used to correct for the effect of aging.

Results

HFD feeding of APOE*3Leiden mice results in obesity
and onset of white adipose tissue inflammation

APOE*3Leiden mice had an average body weight of 29.2 ±
2.6 g at the start of the experiment (t=0). Animals became
obese during HFD feeding and gradually gained 8.30 ± 2.0 g of
weight during the experimental period of 12 weeks (Figure 1A)
while body weight of control mice on chow remained stable
(0.23 ± 0.63 g weight gain; not shown). The daily energy intake
per mouse was comparable between the groups fed HFD (15.0
± 0.9 kcal/day) and chow (14.6 ± 3.0 kcal/day). The HFD-
evoked increase in body weight was accompanied by an
increase in WAT mass as exemplified by epididymal fat mass
(Figure 1B). Histological analysis of epididymal WAT revealed
a significant increase in adipocyte size upon HFD feeding
relative to chow-fed controls (4431 ± 140 versus 1665 ± 310
µm2; P<0.005) demonstrating adipocyte hypertrophy during fat
accumulation and obesity development (Figure 1C/1D). In HFD
fed mice, immune cells accumulated in WAT at 12 weeks and
first crown-like structures were observed (Figure 1C/1E)
pointing to an onset of WAT inflammation. Immunochemical
analysis demonstrated that accumulating cells in HFD-treated
mice were Ccr2-positive (Figure 1E) while Ccr2-positive cells
were hardly found in age-matched chow control mice.
Together, these data demonstrate that 12 weeks of HFD
feeding in ApoE*3Leiden mice resulted in metabolic changes
(lipid storage and hypertrophy) as well as onset of WAT
inflammation.

Lipid Metabolism and Inflammation in WAT and Liver
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Figure 1.  HFD feeding leads to obesity and onset of adipose tissue inflammation.  APOE*3Leiden transgenic mice were fed a
HFD for 12 weeks and sacrificed at the time points indicated. The average body weight at the start (t=0) of HFD feeding was 29.2 g.
A, Body weight gain over time. B, Mass of the epididymal adipose tissue depot during obesity development. Data are presented as
mean ± SEM. C, Histological analysis of adipose tissue at start (t=0) and after 12 weeks of HFD or chow feeding (reference for the
effect of aging). D, HFD feeding results in adipocyte hypertrophy. Computer-assisted quantification of average adipocytes size
(P<0.05). E, Marked accumulation of CCR2 positive cells (arrows) in the HFD fed group.
doi: 10.1371/journal.pone.0075290.g001
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Identification of genes with a similar time profile during
HFD feeding

To gain insight into the global effects of HFD feeding on
metabolism and inflammation in WAT, two sets of genes (i.e.
235 genes with ‘lipid metabolism ontology’ and 216 genes with
‘inflammation ontology’ as defined in Table S2 and Methods)
were subjected to Bayesian hierarchical clustering analysis. In
this analysis, the individual genes were grouped into gene
clusters based on a concerted dynamical expression over time.
Genes with a comparable expression pattern across time
grouped into specific clusters: Six clusters of lipid metabolism
genes (Figure 2) and four clusters of inflammatory genes
(Figure 3) were defined. Each cluster showed a distinct and

specific time profile suggesting that genes within a cluster
share common transcriptional regulation.

Overall, HFD feeding had an early effect on the genes of lipid
metabolism and most gene expression changes already
occurred within the first week. The majority of the genes of
‘lipid metabolism’ clustered in cluster B and C (165 out of 235).
After a slight adjustment in gene expression in week 1, these
genes hardly changed over time (Figure 2). The expression
changes were somewhat more pronounced in other lipid gene
clusters (A, D, E and F), but the main effect also occurred in
the first week. It is striking that most ‘lipid metabolism’ genes
are rapidly adjusted in the first week and do not adapt to any
further extent at the later time points, even when WAT

Figure 2.  Cluster analysis of genes of lipid metabolism.  Bayesian cluster analysis of genes with ‘lipid metabolism’ gene
ontology resulted in 6 clusters (A, B, C, D, E, and F) with distinct time profiles. Individual gene expression profiles are shown as
dotted lines. The bold line represents the cluster average.
doi: 10.1371/journal.pone.0075290.g002
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hypertrophy and inflammation are developing. Table 1 shows
that the genes of clusters with somewhat more dynamic
expression patterns can be assigned to specific biological
processes (gene enrichment analysis). For instance, the genes
of cluster A were associated with sphingolipid and ceramide
metabolism.

In contrast to the genes involved in lipid metabolism, the
mRNA expression level of inflammatory genes increased
markedly after week 6 (inflammation clusters C and D in Figure
3). This suggests that factors encoded by these genes may
reflect or contribute to the observed onset of WAT
inflammation. Indeed, among the upregulated genes were the
complement factors C1qa, C1qb, C1qc, C3a receptor-1 and
C5a receptor-1, the cytokines Cxcl1/KC, Ccl5/Rantes, Ccl6,
Ccl7/Mcp3 and Ccl9/Mrp2, the inflammation markers
orosomucoid-1, orosomucoid-3, granzyme A and neutrophil
cytosolic factor 1 (Nrf1/p47/phox), the macrophage-associated

markers CD11b/Mac1, CD11c, CD18/integrin beta-2, the
inflammasome component ASC and the chemokine CXC
motive receptor-2 (Ccr2), which is consistent with the observed
accumulation of Ccr2-positive cells. Gene enrichment analysis
confirmed that these genes belong to processes that promote
WAT inflammation such as leukocyte mediated immune
response, cytokine activity, complement activation, acute
inflammatory response, and cell adhesion (Table 2). Some of
the genes encode for inflammatory factors that can be secreted
into plasma and may promote inflammation in other tissues.

Prediction of transcription factors that control the WAT
response to HFD feeding

To identify transcription factors that can orchestrate the
observed changes in gene expression profiles in WAT, we
analyzed the promoter regions of clustered genes to identify
putative common (shared) transcriptional regulators (last

Figure 3.  Cluster analysis of inflammatory genes.  Bayesian cluster analysis of genes with ‘inflammation’ gene ontology resulted
in 4 clusters A, B, C and D with distinct time profiles. Individual gene expression profiles are shown as dotted lines. The bold line
represents the cluster average.
doi: 10.1371/journal.pone.0075290.g003
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column of Tables 1 and 2). Transcriptional binding sites for
Jun, Sp1, Stat1, Nfĸb and Pparγ were frequently identified in
the promoter regions of the ‘lipid metabolism’ genes in cluster
A, i.e. the genes that are related to sphingolipid and ceramide
metabolism. Srebf1, Srebf2, Pparγ and Hnf4α were identified
as common regulators of the ‘lipid metabolism genes’ of cluster
F.

Transcriptional master regulators of the inflammatory genes
in cluster D are Pparγ, Sfpi1, Stat6 (cluster C), and Sp1, Fos,
Vdr, Esr1, Creb1, Gata1, Smad2 (Table 2). Of note, some
transcription factors like Pparγ, Esr1 and Sp1 have a dual role
and regulate the expression of genes involved in lipid
metabolism and inflammatory genes indicating that these
transcription factors operate at the interface of metabolism and

Table 1. Genes of lipid metabolism with dynamic changes
over time.

Cluster Pattern of time profile
Enrichment analysis of
biological processes TF

Cluster A: 20
genes

slight decrease in week
1;

Sphingolipid metabolic
process

Jun

 
slight increase > week
9

Ceramide metabolic process Sp1

   Stat1
   Nfĸb1
   Pparγ
Cluster D: 29
genes

slight increase in week
1

Steroid biosynthetic process Pparα

  
Cholesterol biosynthetic
process

Nfĸb1

  Cholesterol metabolic process Pparγ
  Isoprenoid metabolic process  
  Oxidoreductase activity  
Cluster E: 11
genes

Continuous decrease Steroid metabolic process Esr1

  Hormone metabolic process Stat5β
  Reproduction  
  Oxidoreductase activity  
Cluster F: 10
genes

pronounced increase in Cholesterol absorption Srebf2

 
week 1, then slight
increase

Cholesterol metabolic process Nr1h2

  PPAR signaling pathway Pparγ
  Lipid binding Srebf1
  Lipid transport Hnf4α
  Lipoprotein metabolic process Sp1
  Glucose metabolic process Nr1h3
   Nr5a1

Only the genes of cluster A, D, E and F show dynamic changes in expression
during the study period. The pattern of the expression changes is described in the
second column. Gene clusters are associated with specific biological processes
(obtained by gene enrichment analysis) and clustered genes share common
transcriptional regulators. These common transcription factors were predicted by
promoter analysis and are listed in the last column.
doi: 10.1371/journal.pone.0075290.t001

inflammation which are thus molecularly interlinked at the level
of transcription.

Key regulators predicted in WAT are also involved in
altered liver gene expression

The livers of the same mice used for the above WAT
analysis were examined histologically and using microarrays.
Figure 4 shows that HFD feeding but not chow feeding resulted
in pronounced micro- and macrovacuolization as well as
hepatocellular hypertrophy, demonstrating onset of NAFLD at
12 weeks. Analysis of hepatic gene expression revealed that
the genes of lipid metabolism and inflammatory genes were
hardly affected until week 6 but thereafter (Figure 5A/5B). To
evaluate whether this response to HFD feeding is related to the
effects observed in WAT, we compared the gene expression
changes in both tissues over time.

Until week 6, only a few differentially expressed genes were
found in both tissues, but the number and percentage of
common genes (see intersections of Figure 5A and 5B)
strongly increased in week 9 and 12, i.e. when WAT becomes
overloaded and expression of inflammatory genes of cluster C
is observed. Together, these data are in line with the concept
that WAT serves as a first buffer to cope with metabolic
overload and that the hepatic response is delayed and

Table 2. Inflammatory genes with dynamic changes over
time.

Cluster Description Enriched processes TF
Cluster C: 34
genes

slight decrease in first Inflammatory response; Pparγ

 week; pronounced Leukocyte mediated immune Sfpi1
 increase >week 8 response; Stat6
  Cytokine activity; Pax5
  Extracellular region; Etv6
  B cell mediated immunity; Pparα
  Complement activation  
Cluster D: 25
genes

slight increases early Inflammatory response; Sp1

 in time; pronounced
Acute inflammatory
response;

Fos

 increase >week 6 Extracellular space; Creb1
  Cytokine activity; Myc
  T cell proliferation; Vdr
  Cell adhesion Rarα
   Esr1
   Ar
   Gata1
   Smad2

The genes of cluster C and D are characterized by dynamic changes in expression
during HFD feeding. The pattern of the expression changes is described in the
second column. Gene clusters are associated with specific biological processes
(obtained by gene enrichment analysis) and clustered genes share common
transcriptional regulators. Common transcription factors (TF) predicted by promoter
analysis are provided in the last column.
doi: 10.1371/journal.pone.0075290.t002
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resembles that of WAT when the storage capacity of WAT is
exceeded [5,6]. At week 12, more than 50% of the liver genes
with ‘lipid metabolism’ or ‘inflammation’ ontology are also
affected in WAT. Analysis of all DEGs irrespective of their
ontology confirms the relationship between both tissues (245
genes in intersection, 484 liver-specific, 784 WAT-specific in
week 12; data not shown).

At the level of transcriptional regulators, the response of both
tissues was even more comparable as demonstrated by
Bayesian clustering analysis and, as an alternative approach,
analysis of target genes. Cluster analysis showed that the gene
expression changes until week 9 were modest in liver in
comparison with WAT (Figure S1). Similar to WAT, some
clusters showed an immediate response to HFD and gene

expression did not further change thereafter. Lipid metabolism
gene cluster D in the liver had a comparable profile to cluster F
of WAT and the predicted transcriptional regulators (Pparγ,
Nr1h2, Srebf2, Hnf4α, Nr1h3) were the same. The predicted
transcriptional regulators for the inflammatory genes of cluster
C in the liver (Ar, Creb1, Esr1, Fos, Myc, Pparγ, Rarα, Sfpi1,
Stat6) also overlapped with those predicted for inflammatory
genes in WAT. In addition to this, we analyzed the target genes
of the master regulators predicted in WAT and tested whether
they were differentially expressed in the liver. Statistical testing
of the effect on target gene expression showed that the
transcription factors Hnf4α, Esr1, Fos, Myc, Pparα, Pparγ,
Srebf1 and Srebf2 affected their target genes significantly (all
P<0.05), and Creb1 and Jun with borderline significance

Figure 4.  Histological analysis of livers.  Hallmarks of non-alcholic fatty liver disease were scored in the livers of the mice that
were used for WAT analysis. A, Representative photomicrographs of liver cross-sections after 12 weeks of HFD shows pronounced
liver steatosis characterized by micro- and macrovacuolization and hepatocellular hypertrophy. B, Quantitative analysis of total
vacuolization and hypertrophy. Data are presented as mean ± SEM (P<0.05).
doi: 10.1371/journal.pone.0075290.g004
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Figure 5.  Comparison of gene expression in liver and WAT over time and analysis of transcriptional regulators.  Venn
diagrams of genes with A, ‘lipid metabolism’ gene ontology or B, ‘inflammation’ gene ontology. Time course analysis of the genes
that were differentially expressed genes at a particular time point. The intersection represents the number of ‘overlapping genes’, ie.
genes that were affected in both tissues. C, Quantitative analysis of the transcriptional activity of HNF4α by TransAM analysis at t=0
and t=12 weeks of HFD feeding relative to reference mice on chow to correct for aging. *P<0.05. D, Differentially expressed target
genes of Srebf2 in WAT and liver. Srebf2 is significantly involved in the control of target genes (P<0.05 for both WAT and liver). In
both tissues, the calculated Z-score was positive (3.7 for liver and 4.3 for WAT) indicating that Srebf2 is activated. Genes colored in
red (green) are upregulated (downregulated).
doi: 10.1371/journal.pone.0075290.g005
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(P=0.07). Biochemical analysis of the transcriptional binding
activity of Hnf4α in liver protein homogenates confirmed its
activation (Figure 5C). Of note, a particular transcription factor
may affect a different set of genes in WAT and the liver as
illustrated in Figure 5D for Srebf2.

Overall, the gene expression effects evoked by HFD in WAT
and liver become increasingly comparable showing similar
transcriptional responses in both tissues. This indicates that the
factors that sense metabolic overload are highly conserved
among metabolically active tissues.

Discussion

The effect of metabolic overload on WAT and liver was
analyzed in a mouse model that responds to HFD feeding with
WAT expansion, metabolic stress, inflammation and
development of NAFLD. Using Bayesian hierarchical clustering
we showed that the expression of genes of lipid metabolism is
rapidly adjusted upon HFD feeding (already within one week).
Cluster analysis revealed that these genes hardly change in
expression later in time, despite the observed pronounced
WAT expansion and the onset of inflammation from week 6
onward. By contrast, many inflammatory genes strongly
increase in their expression at >6 weeks (e.g. inflammatory
clusters C and D), and these genes also encode for
inflammatory factors that can be secreted into the circulation.
This inflammatory response is observed when adipocytes
become hypertrophic suggesting that adipose tissue
expandability becomes inadequate and the storage capacity of
WAT reaches its limit [5,6]. Promoter analysis defined a rather
small set of about 25 transcriptional master regulators including
Pparγ, Hnf4α, Sp1, Jun/Fos, Esr1, Srebf2, Nr1h2, Sfpi1, Fos,
Smad2, Sp1, Gata1 that orchestrate the adaptation of lipid
metabolism and induce inflammation. Some of the identified
transcription factors (Pparγ, Esr1, Jun/Fos) control the
adjustment of lipid metabolism-related and inflammatory genes
supporting the view that metabolism and inflammation are
molecularly interlinked in WAT [29].

Notably in liver, only a small number of genes of lipid
metabolism and inflammation are affected up to week 6.
Thereafter, when WAT has become inflamed, a marked
increase in the number of differentially expressed genes
involved in hepatic lipid metabolism and inflammation was
observed. Comparison of liver and WAT revealed a remarkable
overlap in gene expression and transcriptional regulation at >6
weeks. Together this shows that HFD feeding results in rapid
adaption of WAT lipid metabolism which is not further adjusted
during fat storage. When WAT inflammation begins, the gene
expression and transcriptional responses of WAT and liver start
to resemble each other. This indicates that the fundamental
principles of how metabolically active organs cope with HFD
overload are conserved.

We found that Pparγ [30], Srebf1 and Srebf2 [31], and
Nr1h3/Nr1h2 (also referred to as Lxrα/Lxrβ) [32,33] may
explain the observed gene expression changes. Indeed, these
transcription factors are well-established regulators of lipid
metabolism and their identification confirms the validity of the
approach applied. The ‘lipid metabolism’ genes with the largest

changes grouped in lipid gene cluster F. Genes in this cluster
are not only involved in lipid metabolism but also in lipid
absorption and glucose metabolism and could reflect a
reprogramming of WAT from early time points onward to cope
with HFD overload. Potential transcription factors regulating
this reprogramming include Srebf1, Srebf2, Pparγ, Lxrα, Lxrβ
and Hnf4α. In a previous study, we indeed identified
transcription factor HNF4α as a regulator of energy metabolism
in human adipose tissue [34], and activation of LXRα and
LXRβ has been shown to affect lipid and glucose metabolism
as well as the inflammatory state simultaneously [28,35].

We also identified several transcription factors typically
associated with inflammation (Jun, Stat1, Stat5β) in the
promoter elements of genes associated with general
sphingolipid metabolism and, more specifically, ceramide
metabolism. This finding supports the notion that molecular
links exist between lipid metabolism and inflammatory signaling
cascades and that these processes are interlinked and hence,
may influence each other [23,29,36]. Boini and coworkers have
shown that HFD-treated mice have increased levels of
ceramide in WAT and in plasma [37,38]. In another study, the
ceramide concentrations in human WAT were positively
correlated with the inflammatory state of the tissue,
independent of obesity [39].

The inflammatory/immune response genes of the
inflammatory gene clusters C and D showed a pronounced
increase in expression from week 6 onward. One of the genes
encodes for Ccl5/Rantes which promotes macrophage
recruitment in adipose tissue [40]. Indeed, the gene expression
levels of CD11b/Mac1, a marker expressed on macrophages
and neutrophils, were also increased showing a similar time
pattern. Of note, the expression of another inflammatory gene,
Cxcl1/KC, intensified also from week 6 onwards. This coincides
with the development of insulin resistance in WAT of
APOE*3Leiden mice under the experimental conditions
employed herein [13]. Cxcl1/KC stimulates the infiltration of
neutrophils into WAT [41] and represents the mouse ortholog
of human interleukin-8, but the exact role of this factor in the
pathogenesis of insulin resistance remains to be established.
The observation that neutrophil cytosolic factor 1 (Nrf1/p47/
phox) expression levels also increase suggests that (infiltrating)
neutrophils may have a role early in the disease process. Of
note, also the expression levels of granzyme A, a protease
present in granules of cytotoxic T-cells and NK cells, increased
strongly from week 6 onwards. Because immune cells
accumulate in WAT during HFD feeding, it is thus likely that
changes in inflammatory gene expression may, at least partly,
be a reflection of the changes in cellular composition of the
tissue. Interestingly, we also found a gradual increase in
expression of the inflammasome adaptor ASC. ASC is
necessary for assembly of inflammasome complexes, which
activates the inflammatory cytokines IL1 and IL18 from their
propeptides in response to saturated fatty acid overload,
thereby linking lipid metabolism and inflammation and
promoting the development of insulin resistance in T2DM [42].
Promoter analyses of clustered inflammatory genes revealed
that a large number of these genes share Fos, Smad2, Stat6
and Pparα as transcriptional regulators, which is in accordance
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with their established roles in inflammatory signaling cascades
[43-46].

In several clusters, the transcriptional regulators Pparγ, Sp1,
estrogen receptor 1 (Esr1) and Jun/Fos were identified as
central underlying transcriptional regulators that may explain
the gene expression changes of both lipid metabolism genes
and inflammation-related genes. In accordance with their
suggested overarching role, Pparγ, Sp1 and Esr1 are indeed
involved in cell differentiation, cell cycle and growth and
immune response processes [23,30,47,48]: Pparγ is implicated
in adipogenesis and insulin signaling of adipocytes as well as
in the control of the inflammatory state of infiltrating monocytes/
macrophages [49]. Esr1 forms complexes with DNA-bound Sp1
to regulate the transcription of low density lipoprotein receptor
(LDLR) [50], retinoic acid receptor-alpha (Rarα) [51] and c-Fos
[52]. Another transcription factor that may constitute a link
between lipid metabolism and inflammation is c-Jun as
established previously for WAT and liver [23,36,53].

A limitation of the present study is that the transcriptional
regulator prediction method predicts the binding of the
transcription factors only from the existence of the binding
motifs in the regulatory elements of genes, i.e. it employs
available knowledge about the regulation of these genes.
Although the results of this bioinformatical approach are
certainly indicative, the involvement of many of these
transcription factors has not been experimentally proven under
the experimental conditions employed and there is a recent
recognition that only a small portion of the putative motif may
actually be occupied by the transcription factors based on
recent ChIP-seq studies.

Because WAT and liver tissue have evolved from common
ancestral structures (mesoderm) it has been proposed that
they may share similar functional units to control key metabolic
and immune processes [29,54]. Indeed, our results show that
the factors important for regulation of gene expression in WAT
were also affected in liver, suggesting a considerable
consistency between both responses to HFD-induced
metabolic overload. Some of the master regulators identified in
WAT in the present study (Jun, Fos, Rarα, Pparα, Stat1, Stat5,
Sp1) were also reported to control liver lipid metabolism and/or
the inflammatory responses of the liver in experimental diet-
induced cardiovascular disease [23]. A tight relationship
between WAT dysfunction and the pathogenesis of NAFLD has
been reported recently [55], suggesting comparable control of
inflammatory gene expression in metabolically active organs
[29]. This interrelationship could possibly be exploited in the
future to monitor the condition of the liver via biopsies taken
from WAT because they are more accessible. Our findings
correspond with the view that the control mechanisms of
metabolic and inflammatory homeostasis in WAT and liver
share similarities and that a distortion of the mechanisms that
control metabolic adaptation may also affect the inflammatory
tone of a tissue [9,29].

Collectively, this study demonstrates that high fat feeding
evokes an immediate, stable response of lipid metabolism
genes. Later in time, when the storage capacity of WAT
becomes limited, inflammatory genes are induced in WAT (>6
weeks). When WAT began, genes of lipid metabolism and
inflammation also became affected in corresponding livers. The
hepatic response to HFD, in particular the underlying
transcriptional responses, were remarkably similar to those
detected in WAT. In all, WAT and liver respond to metabolic
overload by adaptations in expression of (clusters of) genes
controlling lipid metabolism and inflammatory processes in an
orchestrated and interrelated manner.
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