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Abstract Neuronal nicotinic acetylcholine receptors (nAChRs) containing a4 and b2 subunits are

the principal receptors in the mammalian central nervous system that bind nicotine with high affin-

ity. These nAChRs are involved in nicotine dependence, mood disorders, neurodegeneration and

neuroprotection. However, our understanding of the interactions between a4b2-containing
(a4b2*) nAChRs and other proteins remains limited. In this study, we identified proteins that inter-

act with a4b2* nAChRs in a gene-dose dependent pattern by immunopurifying b2* nAChRs from

mice that differ in a4 and b2 subunit expression and performing proteomic analysis using isobaric

tags for relative and absolute quantitation (iTRAQ). Reduced expression of either the a4 or the b2
subunit results in a correlated decline in the expression of a number of putative interacting proteins.

We identified 208 proteins co-immunoprecipitated with these nAChRs. Furthermore, stratified lin-

ear regression analysis indicated that levels of 17 proteins was correlated significantly with expres-

sion of a4b2 nAChRs, including proteins involved in cytoskeletal rearrangement and calcium
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signaling. These findings represent the first application of quantitative proteomics to produce a b2*

nAChR interactome and describe a novel technique used to discover potential targets for pharma-

cological manipulation of a4b2 nAChRs and their downstream signaling mechanisms.
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Introduction

Neuronal nicotinic acetylcholine receptors (nAChRs) are in-
volved in a wide variety of functions in the central nervous sys-

tem (CNS) and are disrupted in several psychiatric and
neurological disorders. The most abundant high-affinity nAC-
hRs in the mammalian CNS contain the a4 and b2 subunits [1–
3] and this receptor subtype represents an important target for

studies of functionally relevant protein–protein interactions.
Heteromeric a4b2* nAChRs (where \ denotes other, poten-
tially unidentified, subunits) bind nicotine with high affinity

[4,5] and are targeted by pharmacotherapies for smoking ces-
sation [6], Alzheimer’s disease [7], Parkinson’s disease [8],
mood disorders [9] and attention deficit hyperactivity disorder

(ADHD) [10]. A better understanding of the nAChR signaling
complex could lead to a better drug design to achieve desired
therapeutic effects.

A number of studies have elucidated regulatory mechanisms
that modulate nAChR function and cellular trafficking. The
interaction of 14-3-3 adaptor proteins with a4 subunit affects
the stoichiometry and agonist sensitivity of a4b2 nAChRs

[11,12]. Interactions with the calcium-sensor protein VILIP-1 af-
fect the agonist sensitivity and assembly of a4* nAChRs [13].
Phosphorylation of a4 subunit by protein kinaseA (PKA) affects

association with 14-3-3 adaptor proteins and regulate a4b2
nAChR assembly [12,14]. Phosphorylation by protein kinase C
(PKC) and dephosphorylation by the phosphatase calcineurin al-

ter the transition of a4b2 nAChRs into and out of functionally
desensitized states following prolonged exposure to agonists
[15–17]. Although these studies, and others, have identified pro-
tein–protein interactions with a4b2 nAChRs, our knowledge of

the receptor interactome remains incomplete.
Mass spectrometry (MS)-based proteomic analysis allows

simultaneous identification of multiple proteins present in

varying quantities in complex mixtures. The ability of MS to
obtain accurate peptide sequences, and subsequently identify
proteins from these detected unique sequences using protein

databases, has been a significant technological advance provid-
ing high-throughput accurate protein profiling (see [18,19] for
review). A set of proteins that appear to be associated with b2*

nAChRs were identified previously by analyzing proteins iso-
lated from the mouse brain tissue using a b2-selective mono-
clonal antibody (mAb270) and MS with matrix-assisted laser
desorption and tandem time-of-flight (MALDI–ToF-ToF) fol-

lowed by comparison to complexes in b2 subunit null-mutant
mice [20]. This study demonstrated the utility of MS to detect
nAChR-interacting proteins from the brain tissue. However,

no quantitative methods have been employed to address spec-
ificity of the interaction between the identified proteins and the
b2* nAChRs, as well as their partner subunits.

Stable isotopic labeling in cell culture (SILAC) has been
used to identify highly specific protein–protein interactions.
Selective protein was knocked down via siRNA in cultured

cells grown in standard media, in comparison with cells grown
in media supplemented with ‘‘heavy’’ amino acids [21,22].
However, this technique is limited by its capacity to compare

only two samples, and stable isotopic labeling is not currently

feasible for tissue homogenates. In contrast, label-free based
quantitative MS is performed sequentially and thus introduces
run-to-run variations in peptide elution, preventing accurate

quantitation between sample sets. In order to facilitate identi-
fication of nAChR-interacting proteins with high confidence,
we performed quantitative proteomic analysis using isobaric
tags for relative and absolute quantitation (iTRAQ) [23].

iTRAQ reduces variation by labeling multiple protein samples
and mixing these samples together prior to liquid chromatog-
raphy–tandem MS (LC–MS/MS) analysis, enabling identifica-

tion and quantitation of multiple proteins from several
samples concurrently [24].

In this study, we combined the iTRAQ technique with the

use of a4 and b2 nAChR subunit null-mutant mouse lines
(these null-mutants express no functional a4b2 nAChRs
[4,25] and heterozygotes express intermediate levels [26]). A

b2 subunit specific monoclonal antibody was used to isolate
the receptors and quantify gene dose-dependent changes in
the a4b2* nAChR interactome. The ability of iTRAQ to mul-
tiplex all six genotypes in a single LC–MS/MS experiment is

essential for the quantitative identification and comparison
of interacting proteins across genotypes. This integrated strat-
egy recapitulates powerful cell-based techniques, but capital-

izes on the ability of iTRAQ to label multiple ex vivo tissue
samples. This technique identified a group of proteins that
are associated linearly with mature nAChRs expressed in the

mammalian brain and provided a platform for exploring func-
tional relevance of this interactome.

Results

Characterizing quantitative mAb295-M270 solid phase

immunodepletion of b2* nAChRs from mouse brain

We first generated mAb295-coupled M270 Dynabeads using

0.5, 1, 2 or 5 lg of mAb295/mg of M270 beads in order to
determine the optimal concentration of beads as well as the
optimal ratio of bead suspension to brain extracts for quanti-

tative immunoprecipitation of b2* nAChRs. Increasing vol-
umes (0, 1.56, 3.125, 6.25, 12.5, 25, 50, 100 ll) of bead
suspension from each concentration of mAb295 were used to
capture b2* nAChRs labeled with 1 nM [3H]-epibatidine. Brain

samples of three C57BL/6 mice were solubilized. After centri-
fugation, supernatants were pooled, and 100 ll aliquots were
used in triplicate for each concentration of mAb295 across

all eight bead volumes to measure the efficiency and extent
of [3H]-epibatidine binding site capture. Depletion of [3H]-epi-
batidine binding from mouse brain extracts by immobilized

mAb295 was saturable and nearly complete across all four
concentrations of mAb295 tested (Figure S1A). The ½ maxi-
mal bead volume for nAChR capture decreased with increas-
ing concentrations of mAb295 (R2 = 0.83; Figure S1B), but

the calculated maximal binding site capture was not signifi-
cantly different across the four mAb295-M270 bead ratios



(F(3, 11) = 1.23, P = 0.36). This suggests that the amount of
mAb295 coupled to the magnetic beads is more important
for efficient capture of b2* nAChRs than the total available

surface area of the beads themselves. Therefore, under the con-
ditions outlined in this experiment, steric hindrance of protein
complexes adhering to the nAChRs was not likely to affect the

ability of the mAb295-M270 beads to trap solubilized b2*

nAChRs and their associated protein complexes from brain ex-
tracts effectively. Calculated parameters for specific capture of

[3H]-epibatidine binding sites by mAb295-M270 beads are pre-
sented in Table S1.

Immunopurification of b2* nAChRs from brain tissue of a4 or b2
subunit transgenic mice

Using optimal conditions (5 lg mAb295/mg M270 beads; bead
volume 10% of total extracts), we extracted b2* nAChRs from

mouse brain extracts prepared from wild type (WT), heterozy-
gous (HET) and homozygous (KO) mice lacking either a4 or
b2 nAChR subunit. There was a gene dose-dependent effect

on the number of total [3H]-epibatidine binding sites in brain
detergent extracts (Table 1) across genotypes. There was no
significant binding site capture from brains of a4 KO or b2
KO mice. No significant difference was detected in the percent-
age of binding sites captured from tissue samples of WT and
HET a4 (79.6 ± 5.4 vs 83.1 ± 7.5%; n= 3, P= 0.72, t-test)
or b2 (79.3 ± 0.9 vs 78.8 ± 1.3%; n = 3, P = 0.78, t-test),

indicating that immobilized mAb295 performed similarly in
all samples regardless of nAChR protein content.

Measurement of relative expression of nAChR subunit proteins

by iTRAQ and LC–MS/MS

Quantitation of iTRAQ measured abundance is expressed as

the log2 of the ratio of mean reporter ion peak areas (log2MRI-
PA) of all proteins present in all samples relative to the average
WT abundance of the b2 nAChR subunit (the target of the IP).

Since a4 and b2 nAChR subunit levels vary with gene dose, we
evaluated their levels in each sample to judge the ability of
iTRAQ to quantify proteins in immunocaptured eluates.
Although [3H]-epibatidine binding sites varied with a4 and

b2 genotypes, total protein eluted following immunoprecipita-
tion (IP) did not differ significantly across genotypes
(F(5, 17) = 2.52, P = 0.09). However, log2MRIPA ratio of b2
nAChR subunit was significantly affected by nAChR subunit
knockout in a gene dose-dependent fashion (mean log2MRI-
PA ± SEM; a4 WT: 0.12 ± 0.17, HET: �0.31 ± 0.16, KO:

�0.94 ± 0.23; F(2, 8) = 7.39, P = 0.024; one-way ANOVA.
b2 WT: �0.19 ± 0.23, HET: �0.60 ± 0.31, KO:
�1.53 ± 0.19; F(2, 8) = 8.35, P = 0.018; one-way ANOVA).

However, although the log2MRIPA ratio for a4 subunit was

significantly affected by a4 subunit knockout in a gene
dose-dependent fashion (mean log2MRIPA ± SEM; WT:
0.09 ± 0.25, HET: �0.46 ± 0.39, KO: �1.44 ± 0.05;

F(2, 8) = 9.34, P = 0.014; one-way ANOVA), such alteration
was not obviously observed in b2 subunit knockout mice
(WT: �0.21 ± 0.33, HET: �0.42 ± 0.23, KO: �1.40 ± 0.43;

F(2, 8) = 3.27, P= 0.1; one-way ANOVA; Figure 1).
Log2MRIPA was correlated positively with [3H]-epibatidine
binding sites captured by immobilized mAb295 for both a4
(R2 = 0.80, P < 0.0009) and b2 subunit (R2 = 0.65,
P < 0.0009), indicating that log2MRIPA ratio for each sub-
unit is a reliable measure of the assembled nAChRs in each
sample. The data for a4 and b2 WT, HET and KO mice

appear as three distinct groupings along the regression line
(Figure 2).

It should be noted that the log2MRIPA ratio measures the

relative abundance of labeled peptides using a control sample
as a reference. In fact, peptides that uniquely identify b2 and
a4 nAChR subunits were detected in the subunit KO brain tis-

sue, despite the lack of [3H]-epibatidine binding. These data
are consistent with the fact that neither b2 nor a4 knockout
completely abolishes the entire extracellular domain of the

b2 nAChR subunit that is specifically recognized by mAb295
[4,25]. Thus, although these nAChR subunit knockouts com-
pletely eliminate nicotinic agonist binding sites and functional
nAChRs, a small amount of a non-functional protein appears

to be produced that is able to form some complexes with inter-
acting proteins.

Defining and stratifying an a4b2* nAChR interactome by

multiple linear regression following iTRAQ LC–MS/MS

We performed multiple linear regression on the positively iden-

tified proteins in the three biological replicates to identify
highly specific interacting peptides whose relative abundance
changes proportionally with the amount of quantitated nAC-

hRs. Included proteins were identified by more than one signif-
icant and unique peptide (peptide expectation score <1.7,
corresponding to a confidence interval of 95%) in at least
one biological replicate. There were 208 proteins identified

by LC–MS/MS acquired, iTRAQ labeled peptides, with linear
correlation coefficients ranging from +1 for b2 nAChR sub-
unit to �0.847 for vesicle-associated membrane protein 2

(VAMP2) (Table S2).

Identification of significant a4b2* interacting proteins

We did not fractionate tissue prior to processing, which max-
imized b2* nAChR content, but also introduced proteins from
irrelevant cellular compartments that formed complexes with

the immunopurified nAChRs. Some proteins appeared to be

Table 1 Gene dose-dependent effect on the number of [3H]-epibatidine binding sites of nAChRs

Number of [
3
H]-epibatidine binding sites (fmol) Genotype F(2, 8) score P value

nAChR subunit WT HET KO

Total in brain extracts (mean ± SEM) a4 609.3 ± 101.5 514.0 ± 109.0 51.9 ± 4.5 12.00 0.008

b2 633.6 ± 124.0 463.6 ± 2.6 38.9 ± 9.7 18.17 0.003

Captured by immobilized mAb295 (mean ± SEM) a4 522.7 ± 120.3 420.3 ± 116.8 �1.0 ± 12.2 8.18 0.019

b2 505.6 ± 103.5 365.2 ± 6.5 �5.0 ± 10.5 19.21 0.002
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associated quite strongly (r > 0.5 using Pearson’s product mo-
ment correlation coefficient since the relationship between

nAChR subunit gene dose and receptor expression is linear)
with b2* nAChRs (such as certain histone isoforms), despite
the fact that nAChRs would not be expected to localize to

the nucleus or mitochondria. The UniProt Knowledgebase
(UniProtKB) [27] was therefore used to cull proteins from
the list when the assigned cellular compartment did not corre-

spond to sites of known nAChR localization. Exceptions were
made in the case of two transcription factors: Pur-a, which has
the capacity to translocate from the cytosol to the nucleus [28],

and thyroid hormone receptor-associated protein 3
(THRAP3), which we previously identified in an additional
unpublished nAChR interactome study. Additional analysis

focused only on 91 proteins in these compartments, with 62
identified as cytoplasmic, 26 associated with the plasma mem-
brane and the remaining 3 proteins associated with the Golgi
apparatus/endomembrane system (Table 2). Of these, only 17

proteins (11 cytoplasmic and 6 associated with the plasma
membrane) showed statistically significant correlation with
levels of the b2 nAChR subunit (Table 3). Classification of

these 17 proteins with PANTHER Gene Ontology (GO) of
molecular function [29] revealed distinct biological activity
profiles (Table 3).

In the primary (unfiltered) dataset, distribution of correla-
tion coefficients for b2 log2MRIPA was distinctly bimodal,
with a major mode occurring between 0 and �0.5, and a minor

mode occurring between 0.25 and 0.75 (Figure 3A). These data
suggest that this dataset represents two sets of events: proteins
that likely interacted with the antibody complex when it was
not occupied by nAChRs (r< 0) and proteins that interacted

selectively with the immunoprecipitated nAChRs (r > 0.25).
In the secondary dataset, adjustment for cellular compartment
eliminated the events with r< 0 and resulted in a unimodal

distribution approximately equivalent to the minor mode with
r> 0.25 (Figure 3B). These data suggest that eliminating the
group of proteins that are not co-localized with the nAChRs

in these cellular compartments also screens out the majority
of proteins that interact non-specifically with the antibody
complex. The tertiary dataset (selected for significant positive

correlation with b2 nAChR subunit expression; P < 0.05)
was also unimodal, with the majority of the distribution cen-
tered between 0.5 and 0.75 (Figure 3C). Eliminating proteins
based on cellular compartments favored identification of more

positive correlations with b2 nAChR subunit abundance. Such
result is consistent with the observation that calculated kurto-
sis for the frequency distribution increased from an estimate of

�0.513 to 1.211 when moving from the primary to secondary
dataset, an indication that the selected datasets deviated signif-
icantly from chance. Indeed, all three frequency distributions

were significantly different from a normal distribution accord-
ing to Shapiro–Wilk test (P = 0.006, 0.021 and 0.022 for pri-
mary, secondary and tertiary dataset, respectively), indicating
that the samples were substantially enriched for a particular

target protein and the associated proteins identified were lar-
gely non-random.

Discussion

This study used quantitative protein identification with

iTRAQ and LC–MS/MS to identify protein–protein interac-
tions for a4b2 nAChRs. A highly specific monoclonal anti-
body was used to capture b2* nAChRs reliably and
efficiently from detergent extracts of mouse brain homoge-

nates, facilitating the identification of a set of putative
nAChR-interacting proteins. Proteins of particular interest

Figure 1 Gene dose-dependent effects of nAChR subunit gene

deletion on the relative protein abundance of a4 and b2 subunits

The relative abundance of a4 and b2 nAChR subunits determined

by iTRAQ quantitation of the log2 mean reporter ion peak areas

(log2MRIPA) is significantly altered as measured by an overall

ANOVA by the full or partial gene deletion of either subunit (a4:
n= 9, F(2, 8) = 7.39, P = 0.024; b2: n= 9, F(2, 8) = 8.35,

P = 0.018). Gene dose-dependent decreases in abundance dem-

onstrate the interdependence of a4 and b2 nAChR subunits in

mouse brain. MRIPA stands for mean reporter ion peak area.

Figure 2 Correlation of nAChR abundance measured by iTRAQ

and ligand binding

Correlation between fmol of [3H]-epibatidine binding and mea-

sured log2MRIPA of a4 and b2 was plotted. The relative

abundance of a4 (black circles) and b2 (white circles) nAChR

subunits measured by iTRAQ follow a gene-dose dependent

decrease and is significantly correlated with [3H]-epibatidine

binding across the six genotypes examined (WT, HET and KO;

a4: r = 0.894, P < 0.0009; b2: r = 0.804, P < 0.0009).
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Table 2 Proteins specifically associated with nAChRs based on cellular compartments

Correlation

coefficient

N F score P value Protein UniProtKB

accession No.

Cellular compartment Previously

identified?

0.185 18 0.568 0.462 14-3-3 protein f/d P63101 Cytoplasm Yes

0.117 18 0.221 0.645 20,30-cyclic-nucleotide 30-phosp hodiesterase P16330 Cell membrane Yes

0.326 18 1.909 0.186 Actin, alpha cardiac muscle 1 P68033 Cytoplasm No

0.375 18 2.623 0.125 Actin, cytoplasmic 2 P63260 Cytoplasm Yes

0.645 18 11.404 0.004 Actin-related protein 3 Q99JY9 Cytoplasm No

0.37 18 2.536 0.131 a-actinin-1 Q7TPR4 Cytoplasm No

0.104 12 0.11 0.747 a-actinin-2 Q9JI91 Cytoplasm No

0.162 12 0.271 0.614 a-enolase P17182 Cytoplasm No

0.464 18 4.4 0.052 a-internexin P46660 Cytoplasm No

0.227 18 0.866 0.366 Ankyrin-2 Q8C8R3 Cytoplasm No

0.021 12 0.005 0.948 Brain acid soluble protein 1 Q91XV3 Cell membrane No

0.637 18 10.904 0.004 Calcium/calmodulin-dependent protein

kinase type II subunit a
P11798 Cytoplasm No

0.172 6 0.49 0.494 Calcium/calmodulin-dependent protein

kinase type II subunit b
P28652 Cytoplasm No

0.456 6 1.048 0.364 Calcium/calmodulin-dependent protein

kinase type II subunit d
Q6PHZ2 Cell membrane No

0.917 18 21.235 0.01 Calcium/calmodulin-dependent protein

kinase type II subunit c
Q923T9 Sarcoplasmic reticulum

membrane

No

0.235 18 0.938 0.347 Coronin-2B Q8BH44 Cytoplasm No

0.598 6 2.221 0.21 Dihydropyrimidinase-related protein 2 O08553 Cytoplasm No

0.186 18 0.143 0.724 Disks large homolog 4 Q62108 Cell membrane Yes

0.468 18 4.495 0.05 Drebrin Q9QXS6 Cytoplasm No

0.327 18 1.911 0.186 Dynein light chain 2, cytoplasmic Q9D0M5 Cytoplasm No

0.539 18 6.563 0.021 Ectonucleotide pyrophosphatase/

phosphodiesterase family member 6

Q8BGN3 Cell membrane No

0.386 6 2.807 0.113 EF-hand domain-containing protein D2 Q9D8Y0 Membrane raft No

0.57 18 7.681 0.014 F-actin-capping protein subunit a2 P47754 Cytoplasm No

0.46 6 4.286 0.055 F-actin-capping protein subunit b P47757 Cytoplasm No

0.337 18 2.052 0.171 Gelsolin P13020 Cytoplasm No

0.748 12 20.268 0 Glial fibrillary acidic protein P03995 Cytoplasm No

0.476 18 2.937 0.117 Glutamine synthetase P15105 Cytoplasm No

0.417 18 3.371 0.085 Glyceraldehyde-3-phosphate dehydrogenase P16858 Cytoplasm Yes

0.045 18 0.033 0.859 Guanine nucleotide-binding protein G(o)

subunit a
P18872 Heterotrimeric G-protein

complex

Yes

0.193 18 0.622 0.442 Heat shock cognate 71 kDa protein P63017 Cytoplasm No

0.46 18 4.29 0.055 Heterogeneous nuclear ribonucleoprotein D0 Q60668 Nucleus No

0.486 12 1.237 0.328 Heterogeneous nuclear ribonucleoprotein U Q8VEK3 Nucleus No

0.243 6 1.957 0.192 L-Lactate dehydrogenase A chain P16125 Cytoplasm No

0.332 18 1.984 0.178 Myelin basic protein P04370 Myelin membrane Yes

0.332 18 1.984 0.178 Myelin basic protein P04370 Myelin membrane Yes

0.506 18 5.496 0.032 Myelin proteolipid protein P60202 Cell membrane No

0.262 18 1.183 0.293 Myosin light polypeptide 6 Q60605 Cytoplasm No

0.512 18 5.695 0.03 Myosin-10 Q61879 Cytoplasm No

0.085 18 0.117 0.737 Myosin-9 Q8VDD5 Cytoplasm No

0.652 18 11.844 0.003 Neurofilament light polypeptide P08551 Growth cone No

0.379 18 2.683 0.121 Neurofilament medium polypeptide P08553 Growth cone No

0.858 18 44.542 0 Neuronal acetylcholine receptor subunit a4 O70174 Cell junction No

1 18 – 0 Neuronal acetylcholine receptor subunit b2 Q9ERK7 Cell junction No

0.02 18 0.006 0.938 Peptidyl-prolyl cis–trans isomerase A P17742 Cytoplasm No

0.431 6 2.279 0.162 Peroxiredoxin-1 P35700 Cytoplasm No

0.484 12 3.061 0.111 Pyruvate kinase isozymes M1/M2 P52480 Cytoplasm No

0.287 12 0.901 0.365 Ras-related protein Rab-11B P46638 Cell membrane No

0.397 6 1.867 0.202 Ras-related protein Rab-7a P51150 Late endosome No

0.31 12 1.063 0.327 Ras-related protein Ral-A P63321 Cell membrane No

0.856 6 11.009 0.029 Ras-related protein Rap-1A P62835 Cell membrane No

0.171 6 0.302 0.595 Ras-related protein Rap-1b Q99JI6 Cell membrane No

0.443 12 2.44 0.149 Serine/threonine-protein phosphatase PP1b
catalytic subunit

P62141 Cytoplasm No

0.69 6 3.633 0.129 Serine/threonine-protein phosphatase PP1c
catalytic subunit

P63087 Cytoplasm No

0.224 12 0.529 0.484 Sodium/potassium-transporting ATPase

subunit a2
Q6PIE5 Cell membrane No
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were identified, amounts of which tend to follow a linear trend
with respect to the measured quantity of a4b2* nAChRs that

are present in the samples from WT, HET and KO mice trans-
genic for the a4 or b2 subunit. The log2MRIPA ratios (trans-
formed representation of average protein abundance measured

by iTRAQ) of the individual a4 and b2 nAChR subunit
proteins were significantly correlated with the measured [3H]-
epibatidine binding sites, supporting the accuracy and repro-

ducibility of iTRAQ-coupled LC–MS/MS. Previous studies
have shown that expression of a4 nAChR subunits is largely
dependent on that of b2 subunit; however, low levels of b2*

nAChRs remain in the absence of a4 [26,30]. Additional a sub-

units (a2, a3 and a6) are expressed in the CNS and can form
functional nAChRs together with b2 subunits [31]. Although
the non-a4 nAChRs are not sufficiently abundant to allow

identification of these complexes from the whole brain lysate
by iTRAQ. Our measurements of a4 and b2 nAChR subunit
peptides across the six genotypes using iTRAQ are consistent

with published studies on the effect of subunit null-mutation
on mature b2* nAChR subtype expression. Importantly, our
measures indicate that in the absence of a partner subunit,
individual nAChR subunit monomers contributing to hetero-

meric a4b2* nAChRs are not apparent, and that multi-subunit
complexes are required to prevent rapid degradation of free
subunits.

nAChR peptides have been recognized previously by mAbs
in knockout mouse tissue [30]. The genomic DNA encoding
the majority of the extracellular domain of the b2 nAChR sub-

unit (recognized by mAb295) is not removed by exon deletion,

through which the a4 and b2 nAChR subunit knockout mice
were generated [4,25], so identification of low levels of a4
and b2 nAChR subunit peptides in their respective KO mice
is not surprising. It is also possible that some of the peptides
recovered in the a4 and b2 KO samples are incorrectly identi-

fied as a result of chimeric spectra in MS/MS that do not actu-
ally represent nAChR subunit peptides; however, chimeric
spectra generally result in uncertainty of protein identification,

rather than positive identification of peptides that are not actu-
ally present in the sample [32].

It is possible that truncated nAChR subunit peptides in KO
tissue cannot form binding sites but retain some features of

nascent nAChR assembly intermediates, since measurable
[3H]-epibatidine binding sites decreased in gene-dose-depen-
dent fashion following nAChR subunit deletion, while the

amount of total eluted protein following mAb295 affinity puri-
fication did not change. In addition, when comparing func-
tions of proteins identified in the dataset adjusted for

improper cellular compartment to those in the dataset adjusted
for correlation with b2 nAChR subunit expression, proteins
serving chaperone isomerase, and ER-Golgi transport func-
tions are lost. Therefore, proteins captured from detergent ex-

tracts of KO brain homogenates that do not follow the
regression trend likely represent proteins that are associated
with incomplete/immature b2* nAChRs, while the more

strongly and significantly correlated proteins potentially inter-
act with mature receptors. Proteins negatively correlated with
nAChR subunit levels may be involved in degradation and/or

compartmentalization of non-functional nAChR proteins, or

Table 2 continued

Correlation

coefficient

N F score P value Protein UniProtKB

accession No.

Cellular compartment Previously

identified?

0.261 18 1.169 0.296 Sodium/potassium-transporting ATPase

subunit a3
Q6PIC6 Cell membrane No

0.266 18 1.217 0.286 Sodium/potassium-transporting ATPase

subunit b1
P14094 Cell membrane No

0.502 18 5.378 0.034 Spectrin a chain, brain P16546 Cytoplasm Yes

0.519 18 5.884 0.027 Spectrin b chain, brain 1 Q62261 Cytoplasm No

0.299 18 1.566 0.229 Synaptopodin Q8CC35 Cytoplasm No

0.547 12 4.265 0.066 Synaptotagmin-1 P46096 Cytoplasmic vesicle No

0.536 12 4.026 0.073 Syntaxin-1B P61264 Cell membrane No

0.086 18 0.119 0.734 Syntaxin-binding protein 1 O08599 Cell membrane No

0.562 18 7.386 0.015 Thyroid hormone receptor-associated

protein 3

Q569Z6 Nucleus No

0.665 12 7.933 0.018 Transcriptional activator protein Pur-a P42669 Nucleus No

0.491 6 1.272 0.322 Triosephosphate isomerase P17751 Cytoplasm No

0.334 18 2.011 0.175 Tropomodulin-2 Q9JKK7 Cytoplasm No

0.451 18 4.087 0.06 Tubulin a-1A chain P68369 Cytoplasm Yes

0.431 18 3.652 0.074 Tubulin a-4A chain P68368 Cytoplasm No

0.422 18 3.466 0.081 Tubulin b-2A chain Q7TM M 9 Cytoplasm No

0.493 18 5.149 0.037 Tubulin b-3 chain Q9ERD7 Cytoplasm No

0.379 18 2.688 0.121 Tubulin b-4A chain Q9D6F9 Cytoplasm No

0.432 12 2.298 0.16 Tubulin b-5 chain P99024 Cytoplasm No

0.434 18 3.717 0.072 Unconventional myosin-Va Q99104 Cytoplasm No

0.295 18 1.52 0.235 Unconventional myosin-VI Q64331 Golgi apparatus No

0.01 12 0.001 0.975 Unconventional myosin-XVIIIa Q9JMH9 ER-Golgi intermediate compartment No

0.18 6 0.537 0.474 Vesicle-fusing ATPase P46460 Cytoplasm No

0.195 18 0.158 0.712 Vimentin P20152 Cytoplasm No

0.179 6 0.527 0.478 V-type proton ATPase catalytic subunit A P50516 Cell membrane No

Note: Correlation coefficient was calculated using Pearson’s product moment; N indicates the number of samples contributing to analysis; F score

was generated by one-way ANOVA.
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Table 3 Proteins with their abundances significantly positively correlated with that of b2 nAChR subunit across genotypes

Correlation coefficient N F score P value Protein UniProtKB

accession No.

Cellular

compartment

Previously

identified?

Molecular

function

0.748 12 20.268 0 Glial fibrillary acidic protein P03995 Cytoplasm No Protein binding, structural molecule

0.858 18 44.542 0 nAChR subunit a4 O70174 Cell junction No Neuro-transmitter receptor

1 18 – 0 nAChR subunit b2 Q9ERK7 Cell junction No Neuro-transmitter receptor

0.652 18 11.844 0.003 Neurofilament light poly peptide P08551 Growth cone No Protein binding, structural molecule

0.645 18 11.404 0.004 Actin-related protein 3 Q99JY9 Cytoplasm No Nucleotide binding, protein binding

0.637 18 10.904 0.004 Calcium/calmodulin-dependent protein

kinase type II subunit a
P11798 Cytoplasm No Transferase, nucleotide binding, protein binding

0.917 18 21.235 0.01 Calcium/calmodulin-dependent protein

kinase type II subunit c
Q923T9 Sarcoplasmic

reticulum membrane

No Transferase, nucleotide binding, protein binding

0.57 18 7.681 0.014 F-actin-capping protein subunit a2 P47754 Cytoplasm No Protein binding

0.562 18 7.386 0.015 Thyroid hormone

receptor- associated protein 3

Q569Z6 Nucleus No Nucleotide binding, protein binding

0.665 12 7.933 0.018 Transcriptional activator protein Pur-a P42669 Nucleus No Nucleic acid binding, translation

regulator, protein binding

0.539 18 6.563 0.021 Ectonucleotide

pyrophosphatase/phosphodiesterase

family member 6

Q8BGN3 Cell membrane No Catalytic activity, hydrolase activity

0.519 18 5.884 0.027 Spectrin b chain, brain 1 Q62261 Cytoplasm No Protein binding, lipid binding,

structural molecule activity

0.856 6 11.009 0.029 Ras-related protein Rap-1A P62835 Cell membrane No Hydrolase activity, protein binding, nucleotide binding

0.512 18 5.695 0.03 Myosin-10 Q61879 Cytoplasm No Protein binding, nucleotide binding, hydrolase

0.506 18 5.496 0.032 Myelin proteolipid protein P60202 Cell membrane No Structural molecular, protein binding

0.502 18 5.378 0.034 Spectrin a chain, brain P16546 Cytoplasm Yes Hydrolase, protein binding, nucleotide binding

0.493 18 5.149 0.037 Tubulin b-3 chain Q9ERD7 Cytoplasm No Hydrolase, nucleotide binding, structural

molecular, protein binding, peptide
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may bind to mAb295 and accumulate in the absence of bound
nAChRs.

The use of iTRAQ coupled with a4 and b2 nAChR subunit

transgenic mouse tissue provides a significant technical ad-
vance over previous proteomic methods used to identify spe-
cific nAChR-interacting proteins. Separating samples with

difference in gel electrophoresis (DIGE) and eliminating
bands/spots that appear in the KO control condition prior to
LC–MS/MS pose the risk of missing significantly-associated

proteins that are expressed in low abundance and may co-mi-
grate with non-specifically captured proteins [33]. Mulitplexing
with iTRAQ and identifying as many proteins as possible in
the post-IP eluent reduce the risk of missing proteins of interest

due to preprocessing steps like DIGE, but increase the risk of
identifying proteins that are not necessarily associated with
assembled a4b2* nAChRs. Combining SILAC with siRNA-

mediated knockdown reduces identification of false interacting
proteins, which is not suited to tissue samples and is limited to
a direct comparison of two samples [22]. To address this issue,

we took advantage of quantitation using iTRAQ to generate
linear regression of the apparent abundance of each identified
protein together with that of the b2 nAChR subunit across the
six genotypes examined in each sample set, allowing us to iden-

tify a continuum of protein associations, ranging from highly
positive to highly negative correlations.

Previously suggested nAChR-interacting proteins were lost

from the dataset as our analysis became more stringent. Eight
(out of 17 in total) of a4b2 nAChR-interacting proteins iden-
tified by MALDI–ToF-ToF [20] are retained when identified

proteins are restricted by cellular compartments, and 1 (out
of 17) is identified when only proteins whose expression were
significantly correlated with b2 nAChR subunit expression lev-

els were considered, suggesting that these previous analyses
may have suffered from missed identification and potentially
false positive interactions. The current method, in contrast to
MALDI–ToF-ToF [20], identified a significant correlation be-

tween the relative abundance of a4 nAChR subunit and the
abundance of its primary partner b2 (r = 0.858). It is impor-
tant to note that proteins listed in a recent comprehensive re-

view (2011) [34] include those whose interactions are inferred
from modulatory interactions (as with protein kinases and

phosphatases which are known to phosphorylate or dephos-
phorylate the nAChRs). Such interactions are transient and
may be cell-type specific. Therefore, future studies using en-

riched samples from a particular brain region and/or neuronal
phenotype will be required to validate such associations.

Interpretation of interacting proteins that are not likely to

interact in functionally relevant ways with target proteins is
a caveat in current proteomic methods. This highlights the
need to curate results of these analyses carefully and is part

of the tradeoff for enhanced discovery and unbiased identifica-
tion of novel interacting proteins. Examining the relative sub-
cellular distribution of identified proteins in each of the lists
generated by increasingly stringent criteria provided some

interesting insights. Culling proteins by cellular compartment
resulted in a dataset of 91 identified proteins in which 68%
were cytoplasmic. Some Golgi/ER membrane resident proteins

were also identified, indicating that the list of 91 interacting
proteins likely includes proteins that interact with b2* nAChRs
during assembly or maturation. The relative subcellular distri-

bution of nAChRs in neurons in vivo is unknown, but cell sur-
face expression of a4b2* nAChRs varies both by brain region
and model organism [35,36]. The list of 17 proteins whose
expression is correlated significantly with that of b2 nAChR

subunit eliminates the Golgi/ER resident proteins, suggesting
that this group represents proteins that largely interact with
mature nAChRs present in the plasma membrane. Interactions

with other plasma-membrane resident proteins are likely dis-
rupted following solubilization. This is reflected in the list of
91 interacting proteins, where the majority (65%) are cytoplas-

mic proteins, indicating that in the mature state, the large
cytoplasmic loop of each subunit that resides between trans-
membrane domains 3 and 4 represents the primary site for

intracellular protein–protein interactions.
Establishing molecular function classifications with PAN-

THER pathway analysis [29] reveals that the primary interac-
tions of mature b2* nAChRs occur with structural proteins

that are part of, and regulate the growth and assembly of,
the cytoskeleton. These data are consistent with studies show-
ing that b2* nAChRs are involved in production and mainte-

nance of dendritic spines during development [37]. Of
particular interest are the cytoskeletal proteins that appear to

Figure 3 Frequency distribution of correlations for proteins associated with b2 subunit

Frequency distribution of calculated correlations between relative abundances of putative interacting proteins and b2 nAChR log2MRIPA

was shown. A. The primary dataset (no protein exclusion) is bimodal, indicating the presence of a substantial number of proteins identified

with no significant correlation or a negative correlation. B. The major (negative correlation) mode is lost when identified proteins in

cellular compartments that do not normally contain nAChRs are removed (secondary dataset), resulting in a skewed distribution. C. The

tertiary dataset (significantly correlated proteins) is also predictably skewed, indicating that the edited dataset favors proteins that are

enriched for the b2 nAChR subunit.
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play functional roles in the growth and reorganization of syn-
aptic processes, such as actin-related protein 3 (Arp3) and F-
actin capping protein subunit a2. Arp3 contributes directly

to axon branching [38] and is implicated in strain differences
in hippocampal information processing [39]. Activity-depen-
dent accumulation of F-actin capping proteins occurs in den-

dritic spines [40], supporting the idea that b2* nAChRs play
a role in dynamic neuronal cytoarchitecture remodeling and
providing a potential molecular mechanism for future

evaluation.
Two isoforms of calcium/calmodulin-dependent protein

kinase II (CaMKII), a and c, were identified in the current
experiment. CamKII is involved in nAChR recycling [41]

and a-kinase-anchoring protein (aKAP, a CaMKII anchor-
ing protein) inhibits proteasomal degradation of muscle-type
nAChRs [42]. CaMKII is also a critical mediator of long-

term potentiation (LTP) (see [43] for review), a molecular
mechanism underlying memory storage. CaMKIIa is specif-
ically associated with the postsynaptic density in excitatory

neurons (see [44] for review) and previous studies have dem-
onstrated that acute nicotine exposure in mice activates
CaMKII in the spinal cord and brain, which requires activa-

tion of b2* nAChRs [45,46]. In addition, b2* nAChR-medi-
ated activation of CaMKII is an essential component of the
antinociceptive effects of nicotine [47] and affective signs of
nicotine withdrawal [48]. Chronic nicotine exposure results

in an increase in CaMKIIa expression and function in nu-
cleus accumbens of mice and this effect is attenuated follow-
ing administration of a b2 nAChR selective antagonist [49].

Nicotine also influences several aspects of hippocampal-
dependent learning [50]. Identification here of a direct asso-
ciation between a4b2* nAChRs and CaMKIIa provides

rationale for future studies of its role in hippocampal
plasticity.

It should be noted that glial fibrillary acidic protein

(GFAP) is one of the most highly correlated proteins identi-
fied in the curated list of proteins. Homomeric a7 nAChRs
have been reported to be expressed on astrocytes [51]. How-
ever evidence of a4b2 nAChR expression on non-neuronal

CNS cells is lacking. Identification of GFAP in this study
may imply that a4b2* nAChRs could participate in neu-
ron–glia interactions.

In conclusion, we have identified a novel set of nAChR-
interacting proteins that are consistent with known nAChR-
mediated functions, as well as previously identified interactors

such as spectrin-a, validating our methodology. In addition
to these biological findings, development of the iTRAQ tech-
nique in combination with evaluation in knockout mouse
lines will be important for identifying protein–protein interac-

tion without prior knowledge of the complex and for identi-
fying interactions that cannot be detected using traditional
protein identification techniques. Identification of an

nAChR-associated proteome also provides a set of novel tar-
gets for drug discovery of therapeutics for smoking cessation
and psychiatric or neurological disorders associated with nic-

otinic dysfunction. Ultimately, generation of small molecules
that are capable of disrupting or facilitating interactions be-
tween nAChRs and specific associated proteins holds the

promise of providing more targeted therapies with higher
selectivity for particular nAChR-mediated behavioral func-
tions and fewer side effects.

Materials and methods

Chemicals

Unless stated otherwise, all reagents were obtained from Sigma
Aldrich (St. Louis, MO). [3H]-epibatidine (62.2 Ci/mmol) was

purchased from PerkinElmer, Sheldon, CT. iTRAQ reagents
were obtained from AB Sciex (Framingham, MA).

Animals

Homozygous wild type (WT), heterozygous (HET) and homo-
zygous (KO) mice lacking either a4 or b2 nAChR subunit were
used in the study. b2 nAChR subunit [4] and a4 nAChR sub-

unit [25] knockout (KO) mice were backcrossed at least 30 gen-
erations to a C57 BL/6 background. Mice were bred at the
University of Colorado, Boulder, housed in groups of no more

than 5 individuals per cage, maintained on a 12:12 h light:dark
cycle and given ad libitum access to food and water. All proto-
cols involving animals were approved by the Institutional Ani-

mal Care and Use Committee (IACUC) of Yale University
and the University of Colorado and conformed to the stan-
dards for animal care and use set by the National Institutes
of Health.

Preparation of brain tissue extracts for immunoprecipitation

Animals were sacrificed by cervical dislocation and brains were

rapidly placed on an ice-cold surface. After rinsed in chilled
phosphate buffer solution (PBS, pH 7.4; containing
136.9 mM NaCl, 2.68 mM KCl, 10.14 mM Na2HPO4 and

1.76 mM KH2PO4) to carefully wash off any debris, brains
were then snap frozen by immersion in �35 �C isopentane
and kept frozen at �80 �C until use. On the day of tissue prep-

aration, brains were thawed on a chilled surface and cerebel-
lum was removed and discarded. The resulting tissue (whole
forebrain) was homogenized by hand with 37 strokes in a glass
tissue grinder in 10 volumes of extraction buffer (EB) (0.6%

Triton X-100, 121.9 mM NaCl, 2.68 mM KCl, 10.14 mM
Na2HPO4, 1.76 mM KH2PO4, 5 mM EDTA, 5 mM EGTA,
5 mM NaF, 0.1 mM Na3VO4, 1.0 mM PMSF and 10 lg/ml

each of aprotonin, prepstatin A and leupeptin; pH 7.4). The
resulting homogenate was incubated at 23 �C with gentle rota-
tion for 30 min to facilitate protein solubilization, then sub-

jected to centrifugation for 20 min at 5000 g, 4 �C. The
resulting supernatant was used for all subsequent experiments.

[3H]-Epibatidine binding from mouse brain extracts

Measurement of the amount of high-affinity nAChRs in brain
extracts was performed essentially as described previously [52],
except that 1 nM [3H]-epibatidine was used as the radioligand

instead of 200 pM [125I]-epibatidine. [3H]-epibatidine labeled
nAChRs were captured by filtration through a Packard Filter-
mate 196 Cell Harvester (Meriden, CT) onto Pall type A/D fil-

ters pre-soaked in 0.5% polyethylinimine. After washing three
times with ice-cold wash buffer (140 mM NaCl, 1.5 mM KCl,
2.0 mM CaCl2, 1.0 mM MgSO4

.7H2O, 25 mM HEPES, pH

7.5), radioactivity on individual filters was measured by liquid
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scintillation counting on a Beckmann LS6000LL (Indianapo-
lis, IN) at 55% efficiency.

Immunoprecipitation

mAb295 has been previously characterized as an antibody spe-
cific to b2* nAChRs [1]. A solid phase mAb295 immunopurifi-

cation matrix was prepared using M270 Dynabeads
(Invitrogen) according to the manufacturer’s instructions and
stored in PBS containing 0.5% Triton X-100 and 0.02%

NaN3 at 4 �C until use. On the day of IP, bead suspensions
were aliquoted, separated on a magnetic stand, and rinsed
once with PBS prior to the addition of brain supernatant. IP

took place overnight at 4 �C with gentle rotation. Following
IP, beads were separated with a magnetic stand and the super-
natant was aspirated and discarded. Beads were then rinsed
twice with PBS containing 0.01% Tween-20, then again in

PBS only. Proteins were eluted from rinsed beads with 500 ll
elution buffer (0.5 M NH4OH and 0.5 mM EDTA) by incuba-
tion at 23 �C for 20 min with gentle rotation. Elution was re-

peated one more time. The resulting eluate was then
combined and lyophilized in a Speedvac DNA120 overnight.
The lyophilized proteins were used for subsequent proteomic

analysis.

iTRAQ labeling and protein identification by LC–MS/MS

All samples were prepared for iTRAQ analysis using a CHCl3/

MeOH precipitation after diluting each to 100 ll with water.
400 ll of MeoH was then added and vortexed extensively prior
to the addition of 100 ll CHCl3. An additional 300 ll of water
was added prior to vortexing and centrifuging at 14,000g for
1 min. The top aqueous layer was removed and discarded
and an additional 400 ll MeOH was added. After a 2 min cen-

trifugation at 14,000 g, the MeOH was removed without dis-
turbing the pellet. The pellet was dried in a Speedvac and
dissolved in 50 ll of 0.5 M tetraethylammonium bicarbonate

(TEAB) with 0.2% SDS. Table S3 lists the amount of each
sample used per sample set for labeling which was determined
based on a nanodrop measurement at A280versus a buffer
blank. Disulfide reduction was performed by incubating with

5 mM tris(2-carboxyethyl)phosphine (TCEP) at 60 �C for
1 h. Alkylation was then performed by incubating with
20 mM methylmethanethiolsulfonate (MMTS) at room tem-

perature for 10 min. Samples were digested using a 1:10
weight/weight ratio protein/trypsin and incubating at 37 �C
for 16 h. Each dried iTRAQ label was dissolved in 50 ll of
100% isopropanol. Reporter ion tags and sample identifica-
tions are listed in Table S3. After vortexing, each reconstituted
iTRAQ reagent was transferred to the appropriate vial and

incubated at room temperature for 2 h. At this point, the
tagged sample digests were mixed together in each indicated
set. 100 lg of sample mixture was then passed over a cation ex-
change cartridge (AB Sciex) to remove unreacted reagent. The

sample was diluted with 2 mL of 10 mM KH2PO4/25% aceto-
nitrile (ACN) (pH 3.0) prior to passing over the cation ex-
change cartridge (conditioned with 10 mM KH2PO4/ 25%

ACN, pH 3.0). The cartridge was then washed with 1 mL of
the same buffer prior to eluting the peptides with 500 ll
10 mM KH2PO4, 25% ACN, 350 mM KCl (pH 3.0). The sam-

ples were dried, dissolved in 20 ll 70% formic acid (FA) and

diluted with 300 ll 0.1% trifluoroacetic acid (TFA), prior to
desalting using a Macrospin C18 (The Nest Group, # SMM
SS18V). The bound peptides were eluted with 360 ll of 80%
ACN containing 0.1% TFA and the elution was repeated by
washing with an additional 180 ll of same solution. Samples
were dried in a Speedvac and dissolved in 3 ll FA mixed with

8 ll 0.1% TFA.
Mass spectrometric analysis was performed on an AB Sciex

TripleTOF 5600 which is equipped with a Waters nanoAcquity

UPLC system, and uses a Waters Symmetry C18
180 lm · 20 mm trap column and a 1.7 lm, 75 lm · 150 mm
nanoAcquity UPLC column (45 �C) for peptide separation
with the following multiplexed groups: Set 1 with 6 plex con-

taining a4WT1, a4HET1, a4KO1, b2WT1, b2HET1 and
b2KO1; Set 2 with 6 plex containing a4WT2, a4HET2,
a4KO2, b2WT2, b2HET2 and b2KO2, and Set 3 with 6 plex

containing a4WT3, a4HET3, a4KO3, b2WT3, b2HET3 and
b2KO3.

Trapping was done at 15 ll/min, 99% Buffer A (99.9%

water and 0.1% FA) for 1 min. Peptide separation was per-
formed at 500 nl/min with Buffer A and Buffer B (99.925%
and 0.075% FA). The gradient was 99% A at initial conditions

with a linear gradient to 35% B at 160 min, and 95% B at
160.3 min. Protein identification and iTRAQ quantitation
was performed using AB SCIEX ProteinPilot ver 4.2, which
employs a Paragon algorithm with hybrid sequence tag and

feature probability database searches [53]. Hence, specific de-
tails such as mass tolerances, specific modifications, etc. are
not used. All iTRAQ results were uploaded into the Yale pro-

tein expression database (YPED; http://yped.med.yale.edu/
repository/) [54].

Data analysis

Ligand binding and immunoprecipitation

Ligand binding results were transformed from counts per min-
ute (CPM) to fmol of bound ligand for all quantitations. To
determine the maximally effective ratio of mAb bead volume
for quantitative immunoprecipitation, the average depletion

of nicotinic binding sites relative to the input was calculated
using a 3-component hyperbolic equation y= y0 + a(x)/
[b + (x)], where ‘‘y’’ is bound ligand captured with residual

binding ‘‘y0’’, maximal depletion ‘‘a’’ at ½ maximal [bead]
‘‘b’’ and [mAb] ‘‘x’’. Curve fits were performed with the above-
mentioned equation in SigmaPlot 2001. Statistical significance

of the influence of genotype and/or antibody capture efficiency
was determined by Student’s t-test or a one-way ANOVA
(when comparing two or more groups, respectively) conducted
with SPSS19 with a confidence interval set at 95%.

iTRAQ data analysis

For relative quantitation of proteins identified by LC–MS/MS,

the quantified proteins should have a confidence interval for
positive identification greater than 95% with at least two un-
ique peptides contributing to the identification. The reporter
ion peak areas for each peptide measured were averaged for

each protein identified in every group to provide an MRIPA.
A control mean for every identified protein was generated by
averaging the MRIPA for the two nAChR wild type control

animals (a4WT and b2WT). All samples within a set were di-
vided by these control means in order to calculate the ratios of
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MRIPA in relative to an averaged control set. The ratio of
each identified protein to the level of nAChR proteins was then
log2 transformed and used to measure the relative quantitative

expression. Except where indicated, log2MRIPA was used in
all statistical analyses of iTRAQ data within this study. For
regression analysis across biological replicates, log2MRIPA

of each protein was correlated with that of the b2 nAChR sub-
unit. Regression and correlation analysis was conducted using
SPSS 19 with a confidence interval set at 95%. The frequency

distribution of identified proteins was interrogated using the
Shapiro–Wilk test of normality with a confidence interval set
at 95%.
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