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Abstract

Introduction: Human beta-defensins are key components of human innate immunity to a variety of pathogens, including
Staphylococcus aureus. The aim of the present study was to investigate a potential association between gene variations in
DEFB1 and DEFB103/DEFB4 and the development of S. aureus bacteremia (SAB) employing a case-control design.

Methods: Cases were unique patients with documented SAB, identified with the National S. aureus Bacteremia Register, a
comprehensive dataset of all episodes of community associated-SABs (CA-SAB) occurring in children (#20 yrs) in Denmark
from 1990 to 2006. Controls were age-matched healthy individuals with no history of SAB. DNA obtained from cases and
controls using the Danish Newborn Screening Biobank were genotyped for functional polymorphisms of DEFB1 by Sanger
sequencing and copy number variation of the DEFB103 and DEFB4 genes using Pyrosequencing-based Paralogue Ratio Test
(P-PRT).

Results: 193 ethnic Danish SAB cases with 382 age-matched controls were used for this study. S. aureus isolates represented
a variety of bacterial (i.e., different spa types) types similar to SAB isolates in general. DEFB1 minor allele frequencies of
rs11362 (cases vs. controls 0.47/0.44), rs1800972 (0.21/0.24), and rs1799946 (0.32/0.33) were not significantly different in
cases compared with controls. Also, DEFB4/DEFB103 gene copy numbers (means 4.83/4.92) were not significantly different in
cases compared with controls.

Conclusions: Using a large, unique cohort of pediatric CA-SAB, we found no significant association between DEFB1 genetic
variation or DEFB4/DEFB103 gene copy number and susceptibility for SAB.
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Introduction

Staphylococcus aureus is a leading cause of bacteremia and

endocarditis in the industrialized world. In 2008, the incidence

of S. aureus bacteremia (SAB) in Denmark was 25.6 cases per

100,000 inhabitants [1]. Approximately 20% of these cases had a

fatal outcome [1].

A growing body of evidence indicates that host genetic factors

are involved in susceptibility to a variety of bacterial pathogens,

including meningococci [2], Mycobacterium tuberculosis [3], and

leprosy [4,5]. Similar evidence also exists for genetic susceptibility

to S. aureus. For example, higher rates of invasive S. aureus infection

have been described in ethnically distinct populations, including

Australian Aborigines, New Zealand Maori, and Canadian Native

Americans [6]. Using a murine S. aureus sepsis model, Ahn et al.

recently demonstrated that inbred A/J mice were highly

susceptible to S. aureus infection as compared to C57BL6, and

that this susceptibility was associated with regions on A/J

chromosomes 8, 11, and 18, chromosomes that included defensin

genes and several other innate immune genes [7]. Additionally,

investigators at Erasmus University recently suggested that

variability within key innate immunity genes were associated with

persistent S. aureus carriage [8]. Despite these findings, however,

the precise genetic determinants for susceptibility to S. aureus

infection in humans are unknown.

Defensins are small cationic peptides with antimicrobial activity

[9–12] and shown to be important players in the innate immune

system. The majority of the defensin genes including DEFB1,

DEFB4 and DEFB103 encoding human beta-defensins 1, 2 and

23, respectively [13], are located on chromosome 8p23.1, a

region of great complexity with both functional SNPs (DEFB1) and

copy number variation (CNV) of a wide range of beta-defensin

genes including DEFB4 and DEFB103. DEFB1 is apparently

constitutively expressed [14], but functional single nucleotide
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polymorphisms (SNPs) in DEFB1 have been associated with

susceptibility to severe sepsis [15]. Furthermore, human beta-

defensin 3 (HBD3) has a strong activity against S. aureus [16]. The

genomic copy number (GCN) for DEFB4/DEFB103 varies from 2

to 12 copies per diploid genome [13]. Interestingly, an increased

GCN of DEFB4/DEFB103 is associated with exacerbations of

psoriasis, an inflammatory skin disease characterized by a notable

absence of S. aureus colonization [17].

The combination of strong activity against S. aureus, functional

DEFB1 SNPs and high variability in DEFB4/DEFB103 GCN

makes these genes promising candidates for human susceptibility to

S. aureus infections. In the present study we used a unique cohort of

all pediatric patients with SAB in Denmark over a 16-year period to

evaluate potential associations between either functional SNPs of

DEFB1 or low GCN of DEFB4/DEFB103 and pediatric SAB.

Materials and Methods

Ethics Statement
The present study was approved by the Regional Science Ethics

Committee of Copenhagen (2007-0104), the Danish Data

Protection Agency (2008-54-0458), and The Danish Newborn

Screening Biobank’s review board a similar, but more independent

review board than an Institutional Review Board. The parents are

informed verbally and by homepage (www.ssi.dk/nyfoedte) about

the use of The Danish Newborn Screening Biobank and can opt

out at any time [18].

Identification of cases and controls
The present study included all Danish SAB pediatric patients in the

period 1990–2006. For the purposes of this study, pediatric patients

were defined as #20 years of age at the time of their SAB episode.

SAB acquisition was classified as Hospital associated (HA)-SAB,

Community associated (CA)-SAB or unknown, based on the time of

positive SAB sampling after hospital admission. A SAB episode was

registered as CA-SAB if diagnosed in less than 48 h after hospital

admission based on information retrieved prospectively from

discharge summaries. These data were retrieved from The Danish

S. aureus Bacteremia Database at SSI, containing all Danish SAB

isolates and corresponding bacteriological and patient data since 1958.

Patients were included if they were born after 1982, were of Danish

origin, and had CA-SAB. Danish origin was defined as individuals

where both of the individual’s parents were born in Denmark.

For each case two Danish individuals (same definition as for

cases) from The Danish Newborn Screening Biobank who

according to the Danish National Patient Registry had not been

diagnosed with SAB or other severe bacterial infections served as

controls. Samples for these control samples were adjacent to the

case samples in the biobank regardless of gender. Two controls

suffered from diabetes and two had died from cancer.

Bacteriological data
All S. aureus isolates were retrieved from The Danish S. aureus

Bacteremia Repository and were spa-typed according to standard

practise and assigned to clonal complexes (CC) [19].

DNA extraction
DNA was extracted from 3 mm filter paper blood samples using

Generation DNA Elution solution and DNA purification solution

(Qiagen, Valencia, CA) as described by Baker et al. [20]. Extraction

was performed in 96-well format with each well containing a dried

blood sample. Washing buffer (PBS, 0.5% Tween20) was added to

each well and the samples were shaken at 1000 rpm for 45 min at

room temperature before the supernatant was removed. The

washing procedure was repeated. Purification solution was added

and the supernatant was removed. The procedure was repeated. An

elution solution was then added and after 5 min the supernatant

was removed. Sterile water was added, and the plate was placed at

220uC for 15 min before being heated to 99uC for 15 min.

DEFB1 SNP analysis
Genotyping of three DEFB1 59UTR SNPs (rs11362 [220G/A];

rs1800972 [244 C/G] and rs1799946 [252 G/A]) was

performed using Sanger DNA sequencing after obtaining a

318 bp fragment (Forward primer: 59-CTC CCT TCA GTT

CCG T-39 and reverse primer 59-CTT GTT CCT CGT CCC

TT-39). Hardy-Weinberg equilibrium was seen in cases and

controls separately and combined for all three SNPs.

DEFB4/DEFB103 Copy number determination
Gene copy number was determined using the Pyrosequencing-

based Paralogue Ratio Test (P-PRT). The method is based on the

Paralogue Ratio Test (PRT) described previously [21,22]. In brief,

the DEFB103 region on chromosome 8 and an identified paralogue

gene (HSPD21 on chromosome 21) with only two copies per

genome were PCR amplified using one set of primers. The resulting

PCR amplicons differed at 10 positions. One of the positions where

the amplicons differed was used to quantify the two chromosome

regions against each other by pyrosequencing across it. The P-PRT

method used has recently been described [23].

Primers for the pyrosequencing assay were designed using the

PSQ assay design software version 1.0.6 (Qiagen, Hilden,

Germany). The following sequence was analysed with the position

that varied between chromosomes 8 and 21 marked in bold with

underline: KATGCYAT. For the PCR, 20 ng of template DNA in

a total volume of 50 ml using a forward primer (59-GAGGT-

CACTGTGATCAAAGAT-39) and a reverse primer (59-Biotin-

AACCTTCAGCACAGCTACTC-39) was used. Pyrosequencing

was carried out using 40 mL of the PCR product and a sequencing

primer (59-AGGTCACTGTGATCAAAGAT-39) on the PSQ 96

MA Pyrosequencer according to manufacturer’s recommendations

(Qiagen).

The relative percentages of the two variants were calculated by

the Pyrosequencing software (Qiagen) and used for the gene copy

number determination. Positive controls from Coriell Cell

Repositories with known copy number were included in each

run (NA07048: 4 copies; NA10846: 5 copies; NA10847: 7 copies

and NA10861 3 copies) and used to generate a correction curve by

linear regression. Corrected copy number estimates were calcu-

lated for each sample using this run-specific regression equation. A

‘‘No template control’’ was included in each run.

Statistical analysis
In the DEFB1 SNP analyses, we tested for association between

SNP genotype and case-control status using an additive genetic

model. We also tested for possible non-additive effects using

dominant, recessive, and full genotype models. Association tests

were performed using PLINK [24]. Mean gene copy numbers of

cases and controls were compared using unpaired t-test with the

Welch correction. If one of the groups did not have a Gaussian

distribution, a Mann–Whitney test was performed. Copy number

analyses were performed using R (http://www.r-project.org).

Power calculations
In the design phase of the study, we used published association

results between higher copy number for b–defensin genes and risk of

psoriasis [25] to estimate power for various sample sizes. The effect

Defensin Gene Variations in S. aureus Bacteremia
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sizes seen in the study by Hollox et al [25] ranged from 0.25 to 0.4 in

mean copy number difference between cases and controls, and the

standard deviations of copy numbers in cases and controls ranged

between 1.1 and 1.3. Using an unpaired t-test with an significance

level of a= 0.05 and assuming equal variances in cases and controls,

the power estimates based on these effect sizes ranged from 0.58

(true difference 0.25, standard deviation 1.3) to 0.98 (true difference

0.4, standard deviation 1.1) for 193 cases and 382 controls (see

Figure 1 for power curves). Using the largest observed standard

deviations in our study (1.17 in cases), the power was 0.67 for a true

effect size of 0.25, and for an effect size of 0.40 the power was 0.97.

Power calculations were performed using R.

Results

A total of 1,674 patients #20 years were diagnosed with SAB in

Denmark from 1990 to 2006. Of these patients, 464 had CA-SAB,

882 had HA-SAB, and for 328 patients the origin of infection

remained unknown. Among the CA-SAB pediatric cases, 193

patients met inclusion criteria being born after 1982 and had an

available blood sample in The Danish Newborn Screening

Biobank for DNA extraction. These 193 patients constitute the

cases for the present study.

Next, we identified control subjects. A total of two controls per

sample were selected for the study, but four had to be excluded

due to lack of DNA in the samples resulting in 382 controls. The

cases included 130 males (67%) and 63 females (33%). Among the

controls 229 (60%) were males and 153 (40%) were females. There

was no significant difference in gender distribution between cases

and controls (x2 = 2.69, P = 0.10). The gender distribution among

the included cases and controls was also similar to HA-SAB in

patients #20 years of age and to SAB patients in general.

Distribution of spa types and antibiogram
All isolates were susceptible to methicilin. The diversity of the

S. aureus isolates was determined by spa typing to elucidate if the

distribution was biased, e.g. whether specific types of S. aureus

were overrepresented in CA-SAB. We did, however, not find any

such bias as the distribution of phage groups were similar in both

the selected cases and other SAB patient cases both within the

same period and age group as well as among the total number of

cases retrieved from the SAB register (Table 1). A total of 113

different spa types were found among 192 isolates that were

assigned to 18 known CC groups. The remaining 31 isolates were

either missing (n = 7) or had atypical spa repeats that could not be

assigned. The most prevalent CC groups were: CC45 (26.3%),

CC30 (20.4%), CC15 (12.9%), CC509 (6.5%), CC121 (6.5%),

and CC8 (4.8%).

DEFB1 SNP analysis
Patients and controls were genotyped for three DEFB1

promoter SNPs, rs11362 [220G/A]; rs1800972 [244 C/G]

and rs1799946 [252 G/A]. Results of the genotyping are given in

Table 2. The minor allele frequencies of the three SNPs did not

differ between SAB cases and controls (P.0.05 for all three SNPs).

Analyses with dominant, recessive and full genotype models as well

as haplotype analyses also did not show any differences between

cases and controls (data not shown).

DEFB4/DEFB103 Copy number determination
Gene copy number for DEFB4/DEFB103 varied from 2 to 9 in

both CA-SAB cases and controls with comparable frequency

distributions for the two groups (Figure 2). Mean copy numbers

(and standard deviations) for cases and controls were 4.83 (1.17)

and 4.92 (1.12). There was no significant difference in copy

number between cases and controls (P = 0.33, t-test). However, a

Shapiro-Wilks test showed deviation from normality in the copy

number distribution for the controls (P = 0.002). We therefore

also applied a Mann-Whitney test, but again we found no

significant difference in copy number between cases and controls

(P = 0.37).

Figure 1. Power curves for an unpaired t-test with 193 cases and 382 controls, assuming equal variance in cases and controls and a
significance level of 0.05. True difference in mean copy number is shown on the x-axis, and the power to detect such differences is shown on the
y-axis. Curves are shown for three different copy number standard deviations: 1.1 (solid), 1.2 (dashed), and 1.3 (dotted).
doi:10.1371/journal.pone.0032315.g001
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Discussion

Using a large, Caucasian Danish, and clinically well-described

bacteremia registry of children with CA-SAB, we found no

association between the DEFB1 SNPs (rs11362 [220G/A];

rs1800972 [244 C/G] and rs1799946 [252 G/A]) or the

DEFB4/DEFB103 GCN and susceptibility to CA-SAB [23]. The

CA-SAB isolates in our registry were of diverse types indicating

that no specific type was dominant among CA-SABs.

We have established a large well-characterized nested CA-SAB

case-control study (193 cases and 382 controls), which has allowed

us to study genetic association in an ethnic homogenous

population. This is among the largest CA-SAB cohorts for genetic

association studies, and our study had good statistical power to

detect case-control differences in mean copy number larger than

0.25. It is, however, possible that weaker genetic associations exist

that will not be detected with a cohort of this size. The GCN was

determined by P-PRT, which we previously have shown to be a

reliable method [23], but like other GCN assays is associated with

errors. However, in the present study the relative differences

between cases and controls rather than exact GCN are the

principal aim where we assume similar error rates in cases and

controls.

Defensin genes have been the focus of the present susceptibility

study as the functional consequences of such mutations appear to

be associated with reduced expression and presumably reduced

activity of the resulting peptides. A promoter polymorphism

(rs11362) of DEFB1 has previously been shown to be associated

with sepsis [15]. However, we did not see any association between

either the DEFB1 polymorphism or other closely positioned

polymorphisms and SAB in a study population comparable in size

(193 vs. 211) to that of Chen and co-workers [15]. The genetic

association previously found could thus be the result of infection by

other types of bacteria than SAB or the difference could be due to

ethnic differences between the two studies or the fact that our

study is focused only on S. aureus bacteremia cases in contrast to

the broader study of Chen and co-workers who did not distinguish

between different bacterial infections.

It is intriguing that we now have the possibility to address the

issue of genetic association to a specific type of bacterial infection.

Addressing other candidate genes based on information from

Table 1. Phage distribution among SAB cases 1990–2006.

Phage pattern Phage type CA-SAB pts.#20 yrs. Other SAB#20 yrs. All SAB

No. (%) No. (%) No. (%)

80 Complex 80, 81+combination of 52 and/or 52A with 80 and/or 81 3 (1.6) 27 (1.6) 1547 (6.4)

Rest of phage group I 29, 52, 52A, 79, 80 30 (15.5) 248 (14.8) 4396 (18.1)

Phage group II 3A, 3C, 55, 71 39 (20.2) 357 (21.4) 4256 (17.6)

Phage group III 6, 42E, 47, 53, 54, 75, 77, (81), 83A, 84, 85, 89, 93 23 (11.9) 201 (12.0) 3561 (14.7)

83A Complex Combination of one or more of only 83A, 84, 85, 89, 93 9 (4.7) 74 (4.4) 966 (4.0)

94,96 Complex 94, 96 3 (1.6) 73 (4.4) 1596 (6.6)

Type 95 95 25 (13.0) 317 (18.9) 3864 (16.0)

NI (mixed phage group) Mixture of the reactions in the phage type pattern above 28 (14.5) 155 (9.3) 1695 (7.0)

NT(non typable Non typable at phage concentration 10006 Routine Test
Dilution (RTD)

33 (17.1) 222 (13.3) 2347 (9.7)

doi:10.1371/journal.pone.0032315.t001

Table 2. DEFB1 Genotype and minor allele frequencies in CA-
SAB cases and controls.

CA-SAB Controls P value

n (%) n (%)

[220G/A] (rs11362)

GG 60 (31) 123 (32)

GA 85 (44) 182 (48)

AA 48 (25) 76 (20)

Minor allele (A) 181(47) 334 (44) P = 0.32

[244 C/G] (rs1800972)

CC 119 (62) 224 (59)

CG 68 (35) 133 (35)

GG 7 (4) 23 (6)

Minor allele (G) 82 (21) 179 (24) P = 0.36

[252 G/A] (rs1799946)

GG 93 (48) 170 (45)

GA 78 (40) 171 (45)

AA 23 (12) 39 (10)

Minor allele (A) 124 (32) 249 (33) P = 0.78

doi:10.1371/journal.pone.0032315.t002

Figure 2. Frequency distribution of DEFB4/DEFB103 GCN for
SAB cases and controls.
doi:10.1371/journal.pone.0032315.g002
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murine studies and in silico mapping [7] may give further insight in

the genetic susceptibility to S. aureus bacteremia.
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