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Abstract
To access the reliability of a new dichotomous test and to capture the random vari-
ability of its results in the absence of a gold standard, two measures, the inconsistent
acceptance probability (IAP) and inconsistent rejection probability (IRP), were intro-
duced in the literature. In this paper, we first analyze the limiting behavior of both
measures as the number of test repetitions increases and derive the corresponding
accuracy estimates and rates of convergence. To overcome possible limitations of IRP
and IAP, we then introduce a one-parameter family of refined reliability measures,
�(k, s). Such measures characterize the consistency of the results of a dichotomous
test in the absence of a gold standard as the threshold for a positive aggregate test result
varies. Similar to IRP and IAP, we also derive corresponding accuracy estimates and
rates of convergence for �(k, s) as the number k of test repetitions increases.

Keywords Dichotomous test · Inconsistent acceptance probability · Inconsistent
rejection probability · Reliability measures · Testing without a gold standard

Mathematics Subject Classification 62J15 · 62F12

1 Introduction

Sensitivity and specificity, twomeasureswhich characterize the probabilities of correct
classification, are often used when accessing the performance of a given diagnostic
test. The estimation of both accuracy measures is straightforward when the true dis-
ease status is observable, for instance, through the availability of a gold standard
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(Yerushalmy 1947). On the other hand, a gold standard may become unavailable due
to a number of reasons such as cost constraints, practicability, disease prevalence,
or even ethical grounds. As examples one can consider a definite diagnosis of such
diseases as depression (Gelaye et al. 2014), childhood pulmonary tuberculosis (Wang
et al. 2017), Alzheimer’s disease aswell asmyocardial infarction (Hui andZhou 1988),
or the determination of the hydroxymethylation status of a given cytosine (Slynko and
Benner 2019).

There is a whole range of statistical procedures that can be used for assessing the
accuracy of a new diagnostic test in the absence of a gold standard. For instance, one
can either use one or several imperfect reference tests or apply a latent variables model
as proposed in Alonzo and Pepe (1999), Hui and Zhou (1988), Hui andWalter (1980),
Pepe and Janes (2007). Note that in many cases such procedures implement the idea
of assessing the reliability of a new test by means of additional reference tests.

In this paper we access the performance of a given test by means of its reliability
and introduce reliability measures which do not require any knowledge about the true
disease status of a patient, as those measures rely on the results of the given test’s
repetitions. The main assumption is that the disease status remains the same over the
time of test repetitions. Note that multiple repetitions of imperfect tests are common
in practice. Quick, inexpensive, and non-invasive tests such as HPV tests or rapid
SARS-CoV-2 tests (Guglielmi 2020) are just some prominent examples. Theoretical
results on the performance of the diagnostic tests under multiple test repetitions can
be found, among many others, in Albert (2007), Chiang (1951), Hui and Zhou (1988),
Lachenbruch (1988), Nissen-Meyer (1964), Politser (1982), Wang et al. (2017), Wang
and Hanson (2019).

The idea for the corresponding reliability measure comes from Akkerhuis et al.
(2019). The two reliabilitymeasures, IRP and IAP, introduced in that paper, are defined
as the probability to obtain a particular outcome that is different from themost frequent
result of the test sequence and are designed to describe a random measurement error
of a new test. Acknowledging the fact that it is impossible to capture the closeness
of the test outcomes to the true value if a gold standard is unavailable, IRP and IAP
measure the closeness of the repeated results to each other and thus characterize the
extent to which the new test produces reproducible results.

The first purpose of this paper is to analyze the asymptotic behavior of IRP(k) and
IAP(k) as the number k of test repetitions increases. In particular, we demonstrated
that in general the convergence of IRP(k) and IAP(k) to their limiting value is of the
order O(1/

√
k), with even a geometric decay in some specific cases. The limiting

values from our analysis already appear in Eq. (5) of Akkerhuis et al. (2019) and
were there taken to be equal to IRP(k) and IAP(k) for each finite value of k. While
we point out that such an identity does not hold in general, our analysis shows that
IRP(k) and IAP(k) at least approach those values asymptotically as the number k of
test repetitions increases.

A central limitation of the IRP and IAP measures is that both measures assume that
the test result can be derived symmetrically, based on the mode of the obtained k test
outcomes. Inmany situations, however, it might be desirable to place the cut-off for the
aggregate test result at a level different from the 50% level of the mode-based cut-off.
For instance, the test might be designed in a way that leads to skewed outcomes, or one
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of the outcomes might have more serious consequences than the other. For example,
one might wish to avoid false negatives in repeated rapid SARS-CoV-2 testing or
to have a high degree of certainty of a positive result before engaging in invasive
treatment. This leads us very naturally to a family of refined reliability measures
�(k, s), which allow for a flexible choice of the percentage at which the aggregate
test result is interpreted as positive.

Our proposed measures address the reliability of a given test and apply also to
situations in which we cannot expect to find reasonable estimates for sensitivity and
specificity, because the true disease status is unknown. Thus there is no direct way
to compare our approach with the approaches that estimate sensitivity and specificity
under multiple test repetitions, even though a high repeatability is obviously essential
for a test with high sensitivity and specificity (Nissen-Meyer 1964). In this sense, the
proposed reliability measures should complement the estimation of the sensitivity and
specificity.

The paper is organized as follows. In Sect. 2 we perform an extended analysis
of the limiting behavior of the reliability measures IRP and IAP as introduced in
Akkerhuis et al. (2019) when the number k of test repetitions becomes large, and
illustrate our findings by means of a numerical example. In that section, we also
discuss the limitations of the considered reliability measures. As a result, in Sect. 3
we then propose an improvement of themeasures IRP and IAP, a one-parameter family
of reliability measures �(k, s), and address the limiting behavior of �(k, s) as k goes
to infinity. Section 4 provides some crucial results on the rates of convergence of the
measures IRP, IAP and �(k, s) as the number k of test repetitions increases. Section 5
illustrates the obtained results by means of a real-data example. The proofs of our
mathematical results can be found in Supporting Information.

2 IRP and IAP: limiting behavior

Weconsider k ≥ 2 repetitions of a newdichotomous test, completed for a given patient.
Form = 1, 2, . . . , k, letYm ∈ {0, 1} denote the result of themth test repetition. Further,
letModek denote themode of a sequence Y1,Y2, . . . ,Yk . In cases in which the number
of test repetitions k is even and the number of ones equals the number of zeros, we set
Modek = 0.

To access the reliability of a new dichotomous test in the absence of a gold standard,
twomeasures, the inconsistent acceptance probability (IAP) and inconsistent rejection
probability (IRP) were introduced in Akkerhuis et al. (2019) as follows,

IRP(k) = P(Ym = 0|Modek = 1) and IAP(k) = P(Ym = 1|Modek = 0).

According to that paper, both measures quantify the probability of random errors
for a new test if a gold standard is unavailable. If IRP and IAP yield large values,
then the new test is considered to provide highly random results and therefore to be
uninformative. Otherwise, the test is considered to be capable to discriminate (at least)
between positive and negative states. In order to estimate IRP and IAP from real data,
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Akkerhuis et al. (2019) suggests to fit an adaptive polynomial model to the distribution
of the probability that Ym is equal to zero.

Let us address the limiting behavior of both measures IRP(k) and IAP(k) as the
number k of test repetitions becomes large. For the sake of consistency, in our notation
we will follow the conventions in Akkerhuis et al. (2019). In the following discus-
sion, let Y1,Y2, . . . and R be random variables on a probability space (�,F ,P), with
Y1,Y2, . . . independent and Bernoulli(1 − r)-distributed under the conditional distri-
bution P(·|R = r), so that R is the probability that Ym is equal to zero. Note that
Y1,Y2, . . . are exchangeable but not independent under the unconditional probability
P.

Let Sk = ∑k
j=1 Y j and denote by �·� the ceiling function. We first write

IRP(k) = P (Ym = 0|Modek = 1)

= P
(
Ym = 0, Sk ≥ � k

2�
)

P
(
Sk ≥ � k

2�
) = P

(
Yk = 0, Sk−1 ≥ � k

2�
)

P
(
Sk ≥ � k

2�
) (1)

Note that Yk and Sk−1 are not independent under P. Also, note that IRP(k) actually
does not depend on the index m in Ym since Y1,Y2, . . . ,Yk are exchangeable.

With F as the cumulative distribution function of R, and the corresponding density
f , we obtain the following result.

Proposition 1 As the number k of test repetitions tends to infinity, we get

IRP(k) −→
∫ 1/2
0 x f (x) dx
∫ 1/2
0 f (x) dx

= E[R|R ≤ 1/2] (2)

as well as

IAP(k) −→
∫ 1
1/2(1 − x) f (x) dx

∫ 1
1/2 f (x) dx

= E[1 − R|R ≥ 1/2]. (3)

The proof of this proposition is presented in Sect. 1.1 of Supporting Information.
Proposition 1 takes issue with Eq. (5) in Akkerhuis et al. (2019) where it is claimed

that IRP(k) = E[R|R ≤ 1/2] and IAP(k) = E[1 − R|R ≥ 1/2], for any given value
of k. While it is clear from (1), (2) and (3) that these identities cannot hold for all f
and k, as claimed in Akkerhuis et al. (2019), Proposition 1 shows that the claim does
hold (at least) asymptotically as k ↑ ∞.

The following example illustrates the limiting results (2) and (3).

Example 1 Following the ideas of Nissen-Meyer (1964), we assume that R follows a
beta distribution with the density

f (x; a, b) = xa−1(1 − x)b−1

B(a, b)
(4)
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and parameters a and b. As stated in Lachenbruch (1988), a beta distribution is themost
commonly used distribution for representation of variation among binomial probabil-
ities. Let us now consider the data presented in Table 1 of Chiang (1951), with k = 5
repetitions of a given test. Using that data and the maximum likelihood estimation
procedure described in that paper, we first estimate the parameters a and b in (4) and
get â = 0.0347 and b̂ = 0.5837. Under the assumption that f (·) remains unchanged
as the number k of test repetitions increases, we then calculate both measures IRP(k)
and IAP(k) for increasing values of k, together with their limiting values (2) and (3);
see Fig. 1 for an illustration.

Later in this paper we will analyze the rates of convergence in (2) and (3). But
before we start with that analysis, let us discuss possible limitations of the proposed
reliability measures, IRP(k) and IAP(k). In particular, both measures assume that the
test result can be derived symmetrically, based on the mode of the obtained k test
outcomes. This approach is clearly not optimal when either a positive or a negative
test result can carry significant consequences, e.g., when the positive test result may
lead to further invasive tests or treatment such as biopsy, an X-ray or CT scan or
even surgery. In such situations, a certain skewness of aggregate test results might be
desirable. Thus we might want to place the cut-off for the aggregate test result at a
level different from the 50% level of the mode-based cut-off. This leads us to a family
of refined reliability measures �(k, s) introduced in Sect. 3, with the percentages of
the positive test results as the corresponding cut-off. Note that such refined measures
also help to overcome the other limitation of the IRP(k) and IAP(k)measures, namely
that those reliability measures are based on central tendency of the obtained test results
and thus do not discriminate between two given sequences of test repetitions if those
sequences have the same mode.

3 Refined reliability measures

Let us start this section with the following definition.
Definition: For k independent test repetitions Y1,Y2, . . . ,Yk and Sk = ∑k

j=1 Y j , we

first define the relative score Srelk as Srelk = Sk
k . Let s denote the observed value of

Srelk . Then, if s ≥ 1
2 , we assess the reliability of a given test by means of a reliability

measure �(k, s), with

�(k, s):=
{
P(Ym = 0|Srelk ≥ s) for k ≥ 1

1−s ,

0 otherwise

If s < 1
2 , then we define

�(k, s):=
{
P(Ym = 1|Srelk < s) for k > 1

s

0 otherwise

Note that the bounds on s are introduced in order to ensure that the measure �(s, k)
is well-defined.

123



1000 A. Slynko

th
e

n
u
m

b
e
r

k
o
f
te

st
re

p
e
ti
ti
o
n
s

IR
P
(k
)

th
e

n
u
m

b
e
r

k
o
f
te

st
re

p
e
ti
ti
o
n
s

IA
P
(k
)

Fi
g.
1

T
he

lim
iti
ng

be
ha
vi
or

of
th
e
m
ea
su
re
s
IR

P(
k)

(l
ef
t-
ha
nd

pa
ne
l)
an
d
IA

P(
k)

(r
ig
ht
-h
an
d
pa
ne
l)
fo
r
in
cr
ea
si
ng

nu
m
be
r
k
of

te
st
re
pe
tit
io
ns
.B

lu
e
do
ts
re
pr
es
en
tv

al
ue
s

of
IR

P(
k)

an
d
IA

P(
k)

fo
r
ev
en

va
lu
es

of
k,

or
an
ge

do
ts
re
pr
es
en
tv

al
ue
s
of

IR
P(
k)

an
d
IA

P(
k)

fo
r
od

d
va
lu
es

of
k,

an
d
th
e
da
sh
ed

re
d
lin

es
sh
ow

th
e
co
rr
es
po

nd
in
g
lim

iti
ng

va
lu
es

E
[R

|R
≤

1/
2]

an
d
E

[1
−

R
|R

≥
1/
2]

as
de
ri
ve
d
in

Pr
op

os
iti
on

1

123



Asymptotic analysis of reliability measures… 1001

For k ↑ ∞, with arguments similar to those for IRP(k) and IAP(k), we further obtain

Proposition 2 As the number k of test repetitions tends to infinity, we get

P

(
Ym = 0|Srelk ≥ s

)
−→

∫ 1−s
0 x f (x) dx
∫ 1−s
0 f (x) dx

= E[R|R ≤ 1 − s]. (5)

as well as

P

(
Ym = 1|Srelk < s

)
→

∫ 1
1−s(1 − x) f (x) dx

∫ 1
1−s f (x) dx

= E[1 − R|R ≥ 1 − s]. (6)

We use the data from Example 1 to address the limiting behavior of the measure
�(k, s)when the number k of test repetitions increases; an illustration of that behavior
for different values of s is presented in Fig. 2 below.

4 Rates of convergence

The limiting results (2) and (3) suggest a convergence of IRP(k) and IAP(k) to a fixed
value as the number k of test repetitions increases. Theorem 1 provides upper bounds
and corresponding rates for this convergence. In what follows, let f be the density
function for the law of the randomvariable R as introduced above, F(x) = ∫ x

0 f (y) dy

be its cumulative distribution function, G(y) = ∫ y
0 x f (x) dx, ‖ f ‖qq :=

∫ 1
0 ( f (x))q dx

and ‖g‖qq := ∫ 1
0 (x f (x))q dx .

Theorem 1 (Convergence of the IRP and IAP measures)
Let k ≥ 2.

(a) If f vanishes in an open interval (u, v) containing 1
2 , with 0 ≤ u < 1

2 < v ≤ 1,
then

∣
∣IRP(k) − E[R|R ≤ 1/2]∣∣ ≤ 2

F(1/2)

(
G(1) + 4

)
(4θ(1 − θ))k/2 (7)

where θ = max{u, 1 − v}.
(b) If f does not vanish in any open interval containing 1

2 , but is bounded in a neigh-
borhood of 1

2 , i.e., there are u, v ∈ [0, 1] such that u < 1
2 < v and | f (x)| ≤ cu,v

for all x ∈ (u, v) and a constant cu,v > 0, then

∣
∣IRP(k) − E[R|R ≤ 1/2]∣∣

≤ 2

F(1/2)

(

2cu,v

√
2πe1/6

1√
k

+ 2−k + G(1)(4θ(1 − θ))k/2
)

(8)

where θ = max{u, 1 − v}.
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(c) If f is unbounded in every neighborhood of 1
2 , but satisfies ‖ f ‖qq < ∞ for some

q ≥ 1, then

∣
∣IRP(k) − E[R|R ≤ 1/2]∣∣

≤ 2

F(1/2)

(

‖ f ‖qq + ‖g‖qq
)

·
(

2πe1/(3p)
)1/(2p)

· (kp)−1/(2p) (9)

where p is such that 1
q + 1

p = 1.
(d) The upper bounds analogous to (7), (8) and (9) also hold for

∣
∣IAP(k) − E[1 − R| ≤ 1/2]∣∣.

For the proof of this theorem see Sect. 1.3 of Supporting Information.
Next, we present the following generalization of Theorem1 for the refinedmeasures

�(k, s).

Theorem 2 (Convergence of the reliability measure �(k, s))
For s ≥ 1

2 and k test repetitions satisfying k ≥ 1
1−s .

(a) Suppose that f is locally bounded in a neighborhood of 1 − s, i.e., there are
u, v ∈ [0, 1] so that u < 1 − s < v and | f (x)| ≤ cu,v for all x ∈ (u, v) and a
constant cu,v > 0. Then

∣
∣�(k, s) − E[R|R ≤ 1 − s]∣∣

≤ 2

1 − F(1/2)

[

Cuγ
k
u + Cvγ

k
v + 2cu,v

√
2πe1/(12s)

1√
k

]

(10)

with the constants

γx = exp
(
(1 − s) log

x

1 − s
+ s log

1 − x

s

)
,

Cu = G(u) + F(u)γu and Cv = G(1) − G(v) + (1 − F(v))γv (11)

(b) Suppose that f is unbounded in every neighborhood of 1 − s, but satisfies
‖ f ‖qq < ∞ for some q ≥ 1. Then

∣
∣�(k, s) − E[R|R ≤ 1 − s]∣∣

≤ 2

1 − F(1/2)
·
(
‖g‖qq + ‖ f ‖qq

)
·
(
2πe1/(6ps)

)1/(2p) · (kp)−1/2p (12)

where p is such that 1
q + 1

p = 1.

(c) The upper bounds (10) and (12) also hold for
∣
∣�(k, s) − E[1 − R|R ≥ 1 − s]∣∣,

with s < 1
2 and k > 1

s .
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For the proof of this theorem see Sect. 1.2 of Supporting Information.
Remark: Note that the function x �→ γx as defined in (11) has a strict global

maximum in x = 1 − s and satisfies γ1−s = 1. In particular, we have γu < 1 and
γv < 1 for u and v as in Theorem 2. It follows that the last term on the right-hand side
of (10) dominates the upper bound if cu,v > 0, and so the upper bound in (10) will be
of the order O(1/

√
k) in that case. If, however, cu,v = 0, then the fact that γu and γv

are strictly less than 1 implies geometric decay of the upper bound (10).

5 A numerical study

We start our numerical studies by considering a real data example on hydroxymethyl-
cytosine (5hmC) methylation as one of the well-known epigenetic marks involved
in gene regulation. In particular, Slynko and Benner (2019) considers the following
measure for the 5hmC detection at a single base resolution

�β = βBS − βox BS = MBS

MBS +UBS + 100
− MoxBS

MoxBS +UoxBS + 100
, (13)

with MBS (MoxBS) as the intensity of the methylated allele obtained from the BS-seq
(oxBS-seq) method, UBS (UoxBS) as the intensity of the unmethylated allele obtained
from the BS-seq (oxBS-seq) method, βBS as the methylation level obtained from the
BS-seqmethod, and βox BS as the methylation level derived by means of the oxBS-seq
method. In the context of our discussion, we can definitely interpret�β as a diagnostic
test that classifies all CpG sites into hydroxymethylated (with �β > 0) and non-
hydroxymethylated (with �β ≤ 0). Note that such classification is to be performed in
the absence of a gold standard what makes the application of our reliability measures
particularly relevant.

Let us apply the results obtained in Sects. 2 and 4 to �β by using the data from
Field et al. (2015) for an illustration. That data is 5hmC and 5mC data for a single,
commercially available, cerebellumDNA sample, with 4 replicates that we interpret as
4 different test repetitions. Originally, Field et al. (2015) provides the data for 438,016
probes. To eliminate possible dependencies among those probes, we selected 10,317
probes with absolute value of correlation less than 0.001 and interpreted those probes
as independent subjects. Then we calculated the number of probes with 0, 1, 2, 3 or 4
positive values of �β. The results are presented in Table 1.

Assuming that the randomvariable R follows a beta distributionBeta(a, b) as in (4),
we first estimate the parameters a and b of that distribution and get â = 0.186 and b̂ =
0.148. The corresponding density fβ(·) is presented in Fig. 3. For fβ(·) remaining
unchanged as the number k of test repetitions increases, we then use the results of Sect.
2 to calculate both measures IRP(k) and IAP(k), for increasing values of k, together
with their limiting values (2) and (3); see Fig. 4 for an illustration. To demonstrate the
usability of both reliability measures when k is relatively small, Table 2 provides the
values of those measures for fixed number k of test repetitions; the data points from
that table can also be found on Fig. 4 below.
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Table 1 Observed frequency distribution for k = 4 readings of n = 10, 317 probes

Number of positive �β readings, k Number of probes

0 3459

1 611

2 741

3 965

4 4541

Total number of probes 10,317

Fig. 3 Density fβ of Beta(0.186, 0.148) distribution, fitted to the data in Table 1

Table 2 Reliability measures IRP(k) and IAP(k) for �β and fixed (odd) number k of test repetitions

k 3 5 7 9 11 13 15 17 19 21 Limiting value

IRP(k) 0.069 0.081 0.085 0.088 0.090 0.091 0.092 0.092 0.093 0.093 0.097

IAP(k) 0.056 0.066 0.070 0.072 0.074 0.075 0.075 0.076 0.076 0.077 0.080

The results of Theorem 2, as applied for the 5hmC measure �β, are illustrated by
Fig. 5 below.
We can also use our results to compare two 5hmC measures with respect to their
reliability. To do so, we consider a different 5hmC measure, �m, earlier introduced
in Field et al. (2015) as

�m = logit(βBS) − logit(βox BS)

Following the lines of our analysis for �β, we first estimate the parameters c and d of
the corresponding beta distribution Beta(c, d) and obtain ĉ = 0.172 and d̂ = 0.139.
Then we estimates the values of both reliability measures, IRP(k) and IAP(k), for
increasing number k of test repetitions, together with their limiting values (2) and (3).
We also compare those values with the corresponding IRP(k) and IAP(k) values as
derived in case of the�β measure; see Tables 3 and 4 for more detail. After reviewing
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Table 3 Reliability measure IRP(k) for �β and �m, and fixed (odd) number k of test repetitions

k 3 5 7 9 11 13 15 17 19 21 Limiting value

IRP(k) for �β 0.069 0.081 0.085 0.088 0.090 0.091 0.092 0.092 0.093 0.093 0.097

IRP(k) for �m 0.065 0.076 0.081 0.083 0.085 0.086 0.086 0.087 0.087 0.088 0.091

Table 4 Reliability measure IAP(k) for �β and �m, and fixed (odd) number k of test repetitions

k 3 5 7 9 11 13 15 17 19 21 Limiting value

IAP(k) for �β 0.056 0.066 0.070 0.072 0.074 0.075 0.075 0.076 0.076 0.077 0.080

IAP(k) for �m 0.054 0.063 0.067 0.069 0.070 0.071 0.072 0.072 0.073 0.073 0.076

Table 5 The refined measure �(k, s) for �β and �m, s ≥ 1
2 , and the fixed number k of test repetitions

k 5 6 7 8 9 10 11 12 13 14 Limiting value

�(k, 0.5) for �β 0.081 0.105 0.085 0.103 0.088 0.102 0.090 0.101 0.091 0.100 0.097

�(k, 0.5) for �m 0.076 0.099 0.081 0.097 0.083 0.096 0.085 0.095 0.086 0.095 0.091

�(k, 0.7) for �β 0.036 0.030 0.053 0.045 0.040 0.055 0.049 0.044 0.041 0.051 0.053

�(k, 0.7) for �m 0.034 0.028 0.050 0.043 0.037 0.052 0.046 0.042 0.038 0.048 0.049

�(k, 0.8) for �β 0.037 0.030 0.025 0.022 0.019 0.035 0.032 0.029 0.026 0.024 0.034

�(k, 0.8) for �m 0.034 0.028 0.023 0.020 0.018 0.033 0.030 0.027 0.025 0.023 0.032

those tables we state that, with respect to both reliabilitymeasures, IRP(k) and IAP(k),
�β appears to be less reliable than �m.
Finally, we address the reliability of �β and �m by means of the refined measure
�(k, s) as in Sect. 3. In particular, Table 5 and Fig. 6 present the obtained estimates
for s ≥ 1

2 where as Fig. 7 shows the results for s < 1
2 . We observe that also in case

of the refined measure �(k, s) �β still appears to be less reliable compared to �m,
even if such a difference in reliability is not as substantial as in case of the IRP(k) and
IAP(k) measures.
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6 Conclusion

One of the most important characteristics of a new test is its reliability, interpreted
as the consistency of the test outcomes obtained, e.g., as a result of a number of test
repetitions. To address test reliability, the knowledge of the true disease status of the
patient is desired. In practice, that knowledge might become crucial, in particular,
when there is no gold standard available. In such cases, the true disease status of
the patient can be estimated by applying one or several imperfect reference tests as
proposed in Alonzo and Pepe (1999), Hui and Zhou (1988), Hui and Walter (1980),
Pepe and Janes (2007).

In this paper we suggest a method for approaching the reliability of a new test
that does not require any additional reference test. In the context of that method, the
reliability is evaluated based on the results of test repetitions. In particular, we first
analyze the reliability measures IRP and IAP as proposed in Akkerhuis et al. (2019).
Further, we introduce a one-parameter family of refined reliability measures �(k, s)
and investigate their limiting behavior as the number k of test repetitions increases.

By allowing for a variable threshold for the positive test result, the proposed reli-
ability measures allow to overcome several limitations of IRP and IAP which are
mode-based reliability measures. Also, using �(k, s), we can avoid some issues that
may arise when applying one or several reference tests for a new test’s reliability eval-
uation. Among those issues are, e.g., a possible reference bias caused by the choice of
the reference measure(s) or conditional dependence among the reference tests as well
as between any reference test and a new test Thibodeau (1981), Vacek (1985).
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