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Abstract Early in the SARS- CoV- 2 pandemic, we compared transcriptome data from hospitalized 
COVID- 19 patients and control patients without COVID- 19. We found changes in procoagulant and 
fibrinolytic gene expression in the lungs of COVID- 19 patients (Mast et al., 2021). These findings 
have been challenged based on issues with the samples (Fitzgerald and Jamieson, 2022). We have 
revisited our previous analyses in the light of this challenge and find that these new analyses support 
our original conclusions.

Introduction
As part of the global effort to address the pandemic caused by the SARS- CoV- 2 virus, we support a 
robust discussion on COVID- 19 to provide insight into the biological effect of the virus on humans. 
Previously, we compared transcriptome data from hospitalized COVID- 19 patients to control patients 
without COVID- 19 and found changes in procoagulant and fibrinolytic gene expression in the lungs 
of COVID- 19 patients (Mast et al., 2021). These findings were subsequently challenged based on 
issues with the samples, including library depth, library preparation, and control group meta- data 
(FitzGerald and Jamieson, 2022). We have revisited our previous analyses of these two data sets, 
and we find that they are comparable to one another and support our conclusions. We address each 
of the criticisms of FitzGerald and Jamieson, 2022 below.

Results
The designation of Michalovich et al. as a “Healthy Control” for 
differential expression analysis
Fitzgerald and Jamieson have criticized our results based on the fact that the control group is (1) not 
free of comorbidities, and (2) "not representative of the American population". In accordance with 
eLife’s transparent reporting procedures, we list group allocation as “Cases were those individuals 
diagnosed with COVID- 19, controls were from a separate study in which participants were not diag-
nosed with any viral infection”. Our goal of the analysis was to test for differences in the expression 
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of genes in the coagulation pathway in response to infection from the SARS- CoV- 2 virus. Most of the 
BALF samples in Michalovich et al. harbored comorbidities such as asthma, nicotine dependence, and 
obesity. Of the 40 control samples, three were reported to be free of these comorbidities (putatively 
'healthy'). We find the criticisms raised are not warranted for the following reasons:

1. Fitzgerald and Jamieson make the assumption that the patients displaying COVID- 19 from 
which the BALF samples were taken were healthy and had no comorbidities, however, comor-
bidities increase the risk of hospitalization with severe disease as well as mortality (King et al., 
2020). We made no assumptions about the case samples and used what we believe to be a 
conservative approach by using all 40 control samples. Statistical significance may be more 
difficult to achieve with greater variance, therefore, only the strongest signals due to infection 
of the virus would be discovered.

2. Sub- group analysis can be informative but is vulnerable to Simpson’s paradox, ascertainment 
bias, and statistical power variability (unequal representation for each sub category). We did not 
perform a sub- group analysis as this was beyond the scope of the paper and not related to the 
hypothesis, which as we note above was differences in gene expression due to infection with a 
virus.

3. The samples of Michalovich et al. are from Poland and Switzerland, not the United States of 
America.

Figure 1. Correlation between log- fold change with rRNA and the adjusted log- fold change without rRNA (R2 ~0.99954).

https://doi.org/10.7554/eLife.74951
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Dissimilar library preparation methods of Michalovich et al. 
(transcriptomic) and Zhou et al. (total RNA) are not comparable
Fitzgerald and Jamieson state that dissimilar library preparation methods of Michalovich et al. (Tran-
scriptomic) and Zhou et al. (Total RNA) are not comparable. Library preparation for the case and 
control samples was different for the two studies. Michalovich et al. used a polyA enrichment method, 
which removes most ribosomal RNA (rRNA), and for the 9 cases, total RNA that includes rRNA was 
prepared. However, the assumption that this makes the samples non- comparable is flawed. Previous 
work in the field of RNA- Seq analysis has developed tools and techniques to mitigate sources of 
technical variation, such as library preparation (Risso et  al., 2014). Our analysis leveraged TMM 
normalized counts for the differential analysis, implemented in edgeR. Fitzgerald and Jamieson raise 
concerns about our differential analysis based on the findings of Zhao et al., 2020. However, Zhao 
et al. focused on TPM and did not discuss more robust normalization protocols such as TMM or RLE, 
and thus may not be applicable in this case. To address the concerns of Fitzgerald and Jamieson, we 
re- calculated log- fold change of the differentially expressed genes from our analysis after removing 
rRNA counts from the CLC Genomics output. Furthermore, we accounted for factors (k = 1) of puta-
tive technical variation using the RUVSeq R package thereby producing an adjusted log- fold change 
(Risso et al., 2014). As one can see in Figure 1, the log- fold change with rRNA and the adjusted log- 
fold change without rRNA are highly correlated (R2 ~0.99954).

In addition, keeping all non- COVID- 19 controls helps to resolve the issue where a gene is observed 
in COVID- 19 samples but has few reads in the controls.

Insufficient read depth of samples from Zhou et al.
Fitzgerald and Jamieson state that COVID- 19 BALF samples contain insufficient read depth. We 
acknowledge that there exist “generally accepted rules” for read depth, etc. in the field of transcriptome 

Figure 2. Read mappings to the transcript NM_001993 for the F3 mRNA taken from one of the controls (top) and a case (bottom) used in Mast et al. 
Mapping settings were set to mismatch cost = 2, insertion cost = 3, deletion cost = 3, length fraction = 0.95, similarity fraction = 0.95. The Alu element 
in the 3’UTR (brick), promoter (green), and coding sequence (dark yellow) of the transcript are annotated. Blue read mappings are paired reads that 
mapped a single time and light yellow are read mappings that aligned to multiple places in the transcriptome (i.e. other genes besides F3).

https://doi.org/10.7554/eLife.74951
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analysis, and these guidelines are important to adhere to wherever possible. The nine BALF samples 
used in our analysis were taken from severely ill patients in Wuhan China in an attempt to identify 
the as- yet- unidentified pathogen causing their symptoms and were not prepared in conjunction with 
control samples. The low read- depth of the nine BALF samples resulted in high false- positive (off- 
target) counts due to the presence of Alu elements in some of the transcripts, which can be seen in 
the read mapping files (Figure 2). To account for this, and to reduce inflation or deflation of expres-
sion levels, we used highly stringent mapping parameters in CLC Genomics Workbench. The default 
parameters for this algorithm are to score a “match” for a read if at least 0.80 of the fragment matches 
the gene and if the similarity is 0.8 or greater. Instead, to reduce off- target mapping, we used the 
much more conservative approach of 0.95 length and 0.95 similarity match.

Given these highly stringent parameters, and the much larger read depth of the control samples, 
any genes that are expressed in COVID- 19 BALF samples, but are not present in controls, have a high 
probability of being true positives and the fold- increase is likely an underestimate. We report large 
increases in many cases because the denominator of the controls was zero and therefore fold- change 
would be infinite. To account for this, we used the lowest number in the matrix of gene counts as the 
denominator.

Discussion
Fitzgerald and Jamieson state “By far the most notable result reported in Mast et al. is the reported 
observation that tissue factor, the key initiator of the extrinsic coagulation cascade, is not significantly 
impacted by SARS- CoV- 2 infection”. As noted previously, the presence of Alu elements can provide 
spurious read mappings in the situation where there are low read counts, as is the case here. Indeed, 
not only does tissue factor (F3) contain an Alu element in the 3’UTR of the gene, the read mapping 
file in CLC Genomics Workbench clearly shows for both cases and controls, that the majority of the 
fragments map to multiple places in the transcriptome (yellow in Figure 2), and cannot be assigned 
to F3 with confidence. Regardless, in these BALF samples, F3 does not appear to be expressed at the 
mRNA level in cases or controls to any appreciable level. F3 may be upregulated in other tissues or 
cell types, or it may also be regulated at the protein and/or activity level, i.e., our analysis does not 
preclude a role of F3 in the complex pathology of COVID- 19. For example, increased tissue factor 
has been detected by flow cytometry in monocytes and platelet- monocyte aggregates (Hottz et al., 
2020) and by confocal microscopy and RT- qPCR in neutrophils (Skendros et al., 2020) from critically 
ill COVID- 19 patients. Interestingly, it has been reported that a SARS- CoV- 2 spike protein pseudovirus 
increases tissue factor activity in cells by converting it from an inactive to active form without altering 
protein expression (“decryption”) (Wang et al., 2021), which is consistent with our results.

In their Discussion the authors state that “the field has begun converging on tissue factor as a 
key player in the pathogenesis and coagulopathy complications of SARS- CoV- 2 infection”. As stated 
above, we applaud the scientific community for their continued focus on this pathway and we are 
proud to have contributed to it early in the pandemic. We trust that the community does not think 
that we claim to have provided a complete and final understanding of COVID- 19’s effects in the lungs. 
Solutions to complex problems are achieved from a consensus of researchers addressing them with 
multiple approaches, one of which is our study.
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