
Simultaneous multi-area recordings suggest that attention 
improves performance by reshaping stimulus representations

Douglas A. Ruff, Marlene R. Cohen
Department of Neuroscience and Center for the Neural Basis of Cognition, University of 
Pittsburgh, Pittsburgh, Pennsylvania 15260

Abstract

Visual attention dramatically improves subjects’ ability to see and also modulates the responses of 

neurons in every known visual and oculomotor area, but whether those modulations can account 

for perceptual improvements remains unclear. We measured the relationship between populations 

of visual neurons, oculomotor neurons, and behavior during detection and discrimination tasks. 

We found that neither of the two prominent hypothesized neuronal mechanisms underlying 

attention (which concern changes in information coding and the way sensory information is read 

out) provide a satisfying account of the observed behavioral improvements. Instead, our results are 

more consistent with the novel hypothesis that attention reshapes the representation of attended 

stimuli to more effectively influence behavior. Our results suggest a path toward understanding the 

neural underpinnings of perception and cognition in health and disease by analyzing neuronal 

responses in ways that are constrained by behavior and interactions between brain areas.

Keywords

attention; decoding; population analyses

Introduction

Each of the huge number of psychophysical and physiological studies of visual attention 

show that attention profoundly affects subjects’ perceptual abilities and also modulates the 

responses of populations of neurons at every stage of visual and oculomotor processing1-4, 

Despite these oft replicated observations, whether any of the observed neuronal modulations 

can account for the improvements in psychophysical performance remains unknown. Two, 
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non-mutually exclusive, hypotheses have dominated the literature (Figure 1A): that attention 

1) improves visual information coding5-7, or 2) improves the efficiency with which visual 

information is read out by the premotor neurons involved in decision-making 8-11. The 

studies used to support these hypotheses were limited by available data and analysis 

methods, which primarily involved the responses of single neurons or pairs of 

simultaneously recorded neurons in the same brain area. We evaluated these hypotheses 

using the responses of groups of simultaneously recorded neurons in multiple stages of 

visuomotor processing, psychophysics, and data analysis methods that leverage that unique 

combination. We recorded simultaneously from groups of neurons in area MT, which 

encodes motion information 12,13 and the superior colliculus (SC), where neuronal responses 

are either visual, oculomotor, or intermediate, contribute to gaze control 14-16 and are 

involved in computing perceptual decisions 17-19. When we analyzed the responses of single 

neurons or pairs of neurons, we replicated previous observations, including the results from 

two of our previous studies, which focus on visual area V4 in two different tasks with spatial 

attention components: an orientation change detection task 5 and a contrast discrimination 

task 6. However, constraining our analyses of our MT data set or of both V4 data sets by the 

animals’ behavior and the simultaneous recordings from both areas made it clear that neither 

prior hypothesis constitutes a satisfying account of the observed attention-related 

improvements in performance.

Our results suggest that on the timescale of perceptual decisions, across two visual areas and 

during both detection and discrimination tasks, spatial attention does not act primarily by 

improving information coding or by changing the way visual information is read out. 

Instead, the long-observed attention-related changes in the responses of visual cortical 

neurons account for perceptual improvements, but they do so by reshaping the representation 

of attended stimuli such that they more effectively drive downstream neurons and guide 

behavior (Figure 1B). Our study provides a framework for leveraging multi-neuron, multi-

area recordings and controlled psychophysics to study how neuronal networks mediate 

flexible behavior in many systems, timescales, and tasks.

Results

We compared evidence for and against two hypothesized attention mechanisms using 

neuronal responses collected while two rhesus monkeys performed the widely studied 

motion direction change-detection task in Figure 1C5,9,20-22, and then compared the results 

to recordings while monkeys performed a similar orientation change detection task 5 and a 

contrast discrimination task 6. As in the two previously published data sets, the animals’ 

performance in our new experiment was greatly affected (Figure 1D) by a cue instructing 

them to shift spatial attention between a stimulus within the same or opposite hemifield as 

the joint receptive fields of several dozen neurons that were recorded on multielectrode 

probes in MT (Figure 1E, red points) and the SC (blue points). MT and the SC represent 

different stages of perceptual decision-making and therefore provide the opportunity to 

evaluate each hypothesized attention mechanism. MT contributes to motion perception12,13. 

The SC is thought to play many roles in visually guided tasks including gaze control 14-16, 

decision-making 17-19 and attention 4.
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Population recordings replicate previously observed effects of attention

The two predominant attention hypotheses make different predictions about how attention 

should affect MT and the SC in our task. The first (information coding) hypothesis predicts 

that attention improves the motion direction information encoded in MT. The second 

(readout) hypothesis posits that attention changes the way that stimulus information is read 

out of MT to influence downstream responses and ultimately behavior. Our strategy was to 

show that our data are consistent with those in past studies by replicating the results that 

have been used as evidence to support each hypothesis and then to evaluate each hypothesis 

using analyses that leverage our simultaneous measurements from the subjects’ behavior and 

multi-neuron, multi-area recordings.

Past studies have evaluated these hypotheses by analyzing the responses of individual 

neurons or pairs of neurons, which typically lack the statistical power to reveal a strong link 

to behavior. Using our data set, we replicated the observations that have been used as 

evidence in favor of each hypothesis. Consistent with previous studies evaluating the 

information coding hypothesis 2,3,23, we found that attention increased the trial-averaged 

responses of neurons in both MT and the SC (Supplementary Figure 1A and B) and that 

attention decreased the extent to which the trial to trial fluctuations in neuronal responses to 

repeated presentations of the same stimulus are shared between pairs of MT neurons5,7,21 

(quantified as the average spike count or noise correlation, or rSC
24; Supplementary Figure 

1C). Consistent with studies evaluating the readout hypothesis, attention increases correlated 

variability between the two areas9,10,25 (Supplementary Figure 1C). This attention-related 

increase was weakly dependent on the visual responsivity of SC neurons (Supplementary 

Figure 2).

The observed increase in correlations between areas suggests that attention-related effects 

are not simply due to global reductions in slow fluctuations, which has recently been 

hypothesized to explain attention-related correlation decreases within a single brain area26,27 

(Supplementary Figure 3). On its face, this hypothesis seems unlikely to account for the 

spatially-specific effects of spatial attention (e.g. correlated variability increases in one 

hemisphere while decreasing in the other, even when neurons in the two hemispheres are 

simultaneously recorded5), meaning that reductions in the variability of global cognitive 

processes like arousal and motivation are unlikely to account for the attention-related 

changes in visual cortex. In addition to the observation that attention has opposite effects on 

noise correlations between pairs of neurons in the same than opposite areas, we found that 

attention has opposite effects on the local dynamics of the population responses within MT 

or the SC as it does on interactions between the two areas (Supplementary Figure 3C and 3D 

and Supplementary Figure 1C). These results are in conflict with the idea that the attention-

related decrease in covariability within each area is a byproduct of a decrease in 

uncontrolled fluctuations in internal states, because such a decrease should, presumably, be 

brain-wide.
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Neuronal population decoding methods provide incomplete support the information 
coding or readout hypotheses

We reasoned that analyzing the relationship between populations of simultaneously recorded 

neurons in multiple brain areas with the animals’ behavior would provide insight into the 

relative importance of each hypothesized mechanism. To this end, we determined whether 

attention affects the amount of stimulus information that can be decoded from the population 

of MT neurons using cross-validated linear decoders that are optimized to a) dissociate 

between the original and changed stimuli (Stimulus decoder in Figure 2), b) predict the 

animals’ choices (whether or not they made an eye movement in response to change stimuli; 

Choice decoder), or c) predict the activity of the population of SC neurons we recorded 

(using responses to the original stimulus; SC decoder). These decoders were always 

constructed using data from trials with the intermediate change amount (see Figure 1D).

The information coding hypothesis posits that attention improves the stimulus information 

that could be gleaned by an optimal Stimulus decoder, but our data provided only weak 

support for this idea. Attention did not significantly affect the performance of an optimal 

decoder in our data set, even when we used a decoder optimized separately for each 

attention condition (Figure 3A, left bars). Recent theoretical work has demonstrated that 

high-dimensional decoders can ignore pairwise correlations that are orthogonal to the 

decoding axis and that correlations are increasingly likely to be orthogonal to this axis in 

larger populations 28-30. This suggests that the effects of attention on the stimulus 

information that can be decoded from small neuronal populations like the ones we recorded 

are likely to be even more minimal for larger populations, making it seem unlikely that 

attention-related improvements in information coding account for the robust improvements 

in behavioral performance that we observed.

The readout hypothesis posits that attention changes the importance of the attended stimulus 

in guiding behavior by changing the way its representation is read out by the neurons 

involved in computing decisions. Therefore, this hypothesis posits that attention should 

change the weights relating MT responses to either behavior or SC responses. We found that 

attention had larger effects on the stimulus information that is related to the animals’ choices 

on individual trials (Figure 3A, middle bars) or that is shared with the SC (Figure 3A, right 

bars) than it did on the Stimulus decoder. However, this difference could arise from either a 

weight change (Figure 1A) or a change within MT that results in more stimulus-related 

visual information being projected onto a static readout dimension (Figure 1B).

A new hypothesis: attention reshapes sensory activity so that it more effectively guides 
decisions

Our data do not support the hypothesis that attention changes weights relating MT responses 

to SC responses or behavior. Because the responses of MT neurons are correlated and 

because the behavioral readout is binary, the weights obtained by each decoder are non-

unique, making it impossible to identify weight changes by analyzing the weights 

themselves 23,31. However, we can infer their stability by measuring the stimulus 

information gleaned by each decoder using weights from the opposite attention condition 

from which they were calculated (see Methods). Both the Choice and SC decoders gleaned 
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more stimulus information from MT responses in the attended than unattended condition 

when we used the weights computed in the opposite attention condition (Figures 3B and 

3C). Together, these neuronal population analyses that use the animals’ behavior and the 

activity of downstream neurons to assess the hypothesized attention mechanisms reveal that 

neither the information coding nor readout hypothesis provide a satisfactory account of the 

large observed attention-related behavioral improvement.

Our observations suggest that in MT neurons recorded while monkeys performing a change 

detection task, attention acts primarily by changing the visual information that is used to 

guide behavior using relatively fixed readout weights. To investigate the generality of these 

observations to different visual areas and different tasks, we tested these hypotheses using 

two additional datasets. In the first dataset, monkeys performed the same direction change 

detection described here while we recorded from populations of V4 neurons5. Similar to our 

results in MT, we found that attention had larger effects on the stimulus information that is 

related to the animals’ choices (Choice decoder; Figure 4A) than it did on the stimulus 

information that could be gleaned using an optimal (Stimulus) decoder (Figure 4B). As in 

our MT data set (Figure 3B), the results from this data set suggest that attention typically 

reshapes V4 responses to align with relatively fixed readout mechanisms: decoding 

performance was typically better using the V4 responses from the cued condition and the 

Choice decoder weights from the uncued condition (y-axis) than using the V4 responses 

from the uncued condition and the Choice decoder weights from the cued condition.

In the second new data set, we searched for attention-related changes in information coding 

in V4 neurons while monkeys performed a discrimination task6. These data provide a 

particularly important test of the information coding hypothesis because unlike in the change 

detection task in which attention has fairly uniform effects on V4 and MT neurons 

(increasing rates and decreasing noise correlations), we showed that in our discrimination 

task, attention can flexibly increase or decrease noise correlations in a way that is broadly 

consistent with improving information coding. Despite these findings, the results of our 

decoding analyses were similar for the detection and discrimination tasks, meaning that we 

did not find strong evidence that attention improves the amount of stimulus information that 

can be optimally extracted from a population of visual neurons in either task (Figure 4C). 

Together, these results provide evidence that in multiple visual areas and visually-guided 

tasks, attention acts primarily to reshape population activity so that more stimulus 

information is used to guide behavior using relatively fixed decision mechanisms.

Our data support the hypothesis that attention reshapes the representation of attended stimuli 

to more effectively guide behavior (Figure 1B). In this scenario, the critical changes are in 

visual cortex. However, this reshaping does not result in a large improvement in the stimulus 

information that can be gleaned by an optimal Stimulus decoder. Instead, the modulated 

neuronal activity in MT better aligns with the readout dimensions using relatively static 

weights.

How could a reshaping of the representation of an attended stimulus be implemented? The 

simplest mechanism would make use of the oft observed signatures of attention such as 

changes in firing rate gain2,3,23 or pairwise noise correlations5-7,9,20-22,32-37. We investigated 

Ruff and Cohen Page 5

Nat Neurosci. Author manuscript; available in PMC 2020 March 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the possibility that these simple response changes can account for the attention-related 

improvement in the stimulus information decoded using both the Choice and SC decoders in 

two stages. First, to verify the prediction of the weight-swapping analyses (Figures 3B and 

3C), we constructed a single Choice decoder for both attention conditions (Figure 5A) and 

determined that it captured the attention-related improvement in decoded stimulus 

information (compare the blue and yellow bars in Figure 5B). Second, we used those same 

weights to decode stimulus information from population responses constructed using the 

mean rates from the uncued condition and the residuals from the cued condition (green bar). 

We found that simply using residuals (which incorporate both response variability that is 

private to each neuron and that which is shared between neurons) from the cued condition 

was enough to completely account for the attention-related improvement in decoded 

stimulus information in both the Choice (Figure 5B) and SC decoders (Figure 5C). These 

common decoders captured the attention-related improvement in decoded stimulus 

information and using residuals from the cued condition completely accounted for the 

attention-related improvement in decoded stimulus information.

Discussion

We used multi-neuron, multi-area recordings and psychophysics in detection and 

discrimination tasks to test two previous hypotheses and one novel hypothesis about the 

relationship between attention-related changes in perception and in neuronal responses on 

the timescale of perceptual decisions. In contrast with the hypotheses motivating most of the 

extensive literature concerning the neuronal basis of attention, our data are most consistent 

with the novel hypothesis that attention reshapes population activity so that information 

about the attended stimulus is read out to guide behavior. Our conclusions are based on 

comparing the visual information that can be gleaned from decoders optimized for the 

stimulus, the animals’ choices, and the activity of groups of visuomotor neurons. These 

results support the idea that behavioral flexibility is mediated by reshaping the 

representation of visual stimuli rather than improvements in information coding (which may 

be impossible given the immense amount of sensory information encoded in the brains of 

even anesthetized animals30 or in the responses of single neurons13) or by changing read out, 

which may be difficult to flexibly alter on the comparatively rapid timescale on which 

subjects can behaviorally shift attention38.

The idea of reshaping sensory information to better align with static read out mechanisms 

seems like it would require much more exotic mechanisms than the other hypothesized 

attentional mechanisms. However, we showed that commonly observed effects of attention 

on neuronal response variability were sufficient to reshape the representation of attended 

stimuli so that they more effectively influence the activity of downstream neurons and 

behavior (Figure 5B and 5C). Changing covariability may require a simpler mechanism than 

changing information coding or synaptic weights: we showed recently in a model that the 

covariability of a population of neurons can be readily changed by altering the balance of 

inhibition to excitation 39,40.

Although many studies are based on the implicit assumption that one or both of the 

information coding and communication hypotheses are true, there have been several recent 
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studies that have failed to support the strongest versions of these hypotheses, and our 

reshaping hypothesis unifies these results. Mante and colleagues found the presence of both 

task-relevant and irrelevant information in prefrontal cortex, suggesting that the task, or 

attention-related gating of information does not occur in earlier stages of processing such as 

in visual cortex 41. This observation raises the question of why sensory responses are 

modulated if neurons near the end stages of processing in prefrontal cortex still encode task 

irrelevant information. To this point, Krauzlis and colleagues have suggested that attention-

related changes in sensory cortex may arise as a byproduct of the process that interprets 

these signals 42. Further, a variety of experimental conditions that involve changing reward 

value 43 or saccade planning 44 result in changes in sensory responses that suggest a 

dependence on how the animal will use the sensory information. The reshaping hypothesis 

that we propose here is consistent with all of these findings, suggesting that sensory 

responses are modulated by the task such that the relevant information affects behavior and 

the irrelevant information is retained, perhaps for future actions or memory. Our findings 

suggest that this reshaping is achieved by changes to correlated variability early in visual 

processing, not by changing readout weights.

The idea that changing correlated variability better aligns sensory responses to a fixed 

readout is also consistent with our recent observation that in the change detection task, 

monkeys’ choices are well-aligned with the axis in population space that explains the most 

correlated noise 21. One exciting possibility is that the correlated variability axis represents 

the fixed readout dimension, perhaps because it is well-positioned to decode the motion 

direction of the broad set of stimuli that animals encounter outside the limited environment 

of most laboratory tasks 23. If so, reducing noise correlations and increasing firing rate gains 

would improve the stimulus information projected along that readout axis (following the 

intuitions in 45).

While our results were broadly consistent across two tasks and two visual cortical areas, it 

remains possible that attention uses different mechanisms in different tasks, brain areas, or 

sensory modalities. In particular, it is possible that the mechanisms underlying change 

detection, which is an important component of natural vision, are different than other tasks 

or that the mechanisms differ by brain areas. Therefore, the observation that attention also 

does not change the amount of stimulus information that can be decoded from visual cortex 

during a contrast discrimination task provides strong independent support for the generality 

of our findings. However, even if we happened upon a special, albeit common, scenario 

using these two tasks, it is remarkable to observe a situation in which the large attention-

related change in behavioral performance can be accomplished without changing 

information coding or weights between areas. In contrast, theoretical models and machine 

learning techniques often accomplish flexibility in computation almost solely by changing 

weights 46-49. Our results constitute an existence proof: an example of a situation in which 

flexibility can be mediated by simple changes within sensory cortex.

In the future, it will be interesting to use the same approach to determine whether similar 

mechanisms can account for behavioral changes associated with other cognitive processes 

(e.g. task switching) that might seem more likely to change the weights relating stimulus 

information to downstream neurons or behavior. Further, many neuropsychiatric disorders 
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(including disorders of attention, Autism, and schizophrenia) are thought to involve changes 

in the same computations thought to underlie attention50. An exciting possibility is that these 

changes might be identified and potential therapies evaluated in animal models using the 

combination of behavioral evaluation and multi-neuron, multi-area recordings that we 

described here.

Online Methods

Materials and Methods

The subjects of the simultaneously recorded MT and SC experiments were two adult male 

rhesus monkeys (Macaca mulatta, 8 and 9 kg and 8 and 6 years old, respectively). All animal 

procedures were approved by the Institutional Animal Care and Use Committees of the 

University of Pittsburgh and Carnegie Mellon University.

We presented visual stimuli using custom software (written in MATLAB using the 

Psychophysics Toolbox 51,52 on a CRT monitor (calibrated to linearize intensity; 1024×768 

pixels; 120 Hz refresh rate) placed 54 cm from the animal. We monitored eye position using 

an infrared eye tracker (Eyelink 1000; SR Research) and recorded eye position and pupil 

diameter (1000 samples/s), neuronal responses (30,000 samples/s), and the signal from a 

photodiode to align neuronal responses to stimulus presentation times (30,000 samples/s) 

using hardware from Ripple.

Behavioral Task

As previously described5, a trial began when the monkey fixated a small, central spot within 

a 1.25° per side square fixation window in the center of a video display while two peripheral 

full contrast, drifting Gabor stimuli (one overlapping the receptive fields of the recorded 

neurons, the other in the opposite visual hemifield) synchronously flashed on (for 200 ms) 

and off (for a randomized period between 200-400 ms) until, at a random, unsignaled time, 

the direction of one of the stimuli changed from that of the preceding stimuli (Figure 1C). 

The monkey received a liquid reward for making a saccade to the stimulus that changed 

within 450 ms of its onset. Attention was cued (using instruction trials prior to each block) 

in blocks of 50-100 trials, and randomly alternated between blocks where attention was cued 

to either the left or the right stimulus. In each block, the direction change occurred at the 

cued stimulus on 80% of trials, and at the uncued stimulus in 20% of trials (all uncued 

changes used either the middle or largest direction change, Figure 1D). In order to encourage 

fixation on longer trials, catch trials, in which no stimulus changed direction and monkeys 

were rewarded for maintaining fixation, were randomly intermixed throughout each block 

and made up approximately 12% of total trials. Psychometric data were fit with Weibull 

functions. Before recording commenced, the monkeys were extensively trained to have 

stable thresholds across a range of spatial locations (3-6 months). Because we recorded from 

several dozen neurons simultaneously, we could not optimize the stimuli for all neurons. We 

made sure to position one Gabor stimulus in the joint receptive field of the recorded neurons 

in both areas and we made an effort to set the properties of the size (approximately 3-6 

degrees of visual angle), speed (approximately 3-12 degrees of visual angle per second) and 

direction of the stimuli so that they drove as many MT units as possible. The direction of all 

Ruff and Cohen Page 8

Nat Neurosci. Author manuscript; available in PMC 2020 March 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of the stimuli prior to the direction change (termed original stimulus) was constant 

throughout a recording session and this direction was typically either the median or mode of 

the distribution of MT preferred directions from that session. The range of direction changes 

differed from session to session, was selected based on the animals’ training history and 

depended on stimulus properties such as eccentricity and size. A typical range of change 

amounts for both animals was 1-35 degrees in log-spaced steps.

Electrophysiological Recordings

Using linear 24 channel moveable probes (Plexon), we simultaneously recorded extracellular 

activity from direction-selective neurons in area MT and neurons in the superior colliculus 

that responded either visually, prior to a saccade, or both. Before beginning the experiment, 

we searched for neurons in both areas that had overlapping spatial receptive fields (Figure 

1E) as determined by mapping with both drifting gratings and a delayed saccade task. The 

dataset consisted of a total of 306 responsive MT units and 345 responsive SC units total 

(36-58 units per session, mean 20 in MT, 24 in the SC for Monkey HO; 36-53 units per 

session, mean 21 in MT, 22 in SC for Monkey ST) in both MT and the SC in the right 

hemisphere using moveable, linear 24-channel V-probes (Plexon; inter-electrode spacing in 

MT = 50μm, SC = 100μm). We presented visual stimuli and tracked eye position as 

previously described9. The data presented are from 6 days of recording for Monkey HO and 

9 days of recording for Monkey ST. Each day consisted of multiple blocks of the attention 

task (Figure 1C; mean 1015 of trials for Monkey HO, 745 for Monkey ST) preceded by 

receptive field mapping using a delayed saccade task and direction tuning during passive 

fixation.

Data Analysis

All spike sorting was done offline manually using Offline Sorter (version 3.3.5; Plexon). We 

based our analyses on both single units and multiunit clusters and use the term “unit” to 

refer to either. Neuronal analyses in Supplemental Figure 1 and 2 used spike count responses 

between 50-250 ms after stimulus onset to account for visual latencies in the two areas. To 

remove response contamination from eye movements during change stimuli, data presented 

in the decoding analyses in Figure 3 and 4 used shorter response windows. Responses to 

both original and changed stimuli were measured from 50-185 ms after stimulus onset for 

monkey HO and 50-220 ms for monkey ST. These times were selected based on the 

distribution of each animal’s reaction times with the goal of maximizing the number of trials 

that could be included in the analyses. Trials with reaction times that began during those 

windows were excluded. Using these shorter response windows did not qualitatively affect 

the measures of attention described in Supplemental Figure 1. Attention still increased the 

firing rates of MT (mean attention index = 0.034, median attention index = 0.034; N = 306 

units, two-tailed Wilcoxon signed rank test, p=1.2X10−17) and SC neurons (mean attention 

index = 0.071, median attention index = 0.05; N = 345 units, two-tailed Wilcoxon signed 

rank test, p=4.2X10−44) and decreased noise correlations within MT (N= 3285 pairs, two-

tailed Wilcoxon signed rank test, p=7.7X10−17). To minimize the impact of adaptation on 

our results, we did not analyze the first stimulus presentation in each trial. We only analyzed 

a recorded MT unit if its stimulus-driven firing rate was 10% higher than its firing rate as 

measured in the 100 ms prior to the onset of the first stimulus. We only analyzed a recorded 
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SC unit if its stimulus-driven firing rate was 10% higher than its firing rate as measured in 

the 100 ms prior to the onset of the first stimulus or if its response during a 100 ms epoch 

prior to a saccade on hit (correct) trials to the contralateral side was 10% larger than that 

same baseline. Stimulus presentations during which a microsaccade was detected were 

excluded from analyses9,53).

For firing rate analyses in Supplementary Figure 1A and B, attention indices were calculated 

using average spike counts on the (original) stimulus presentation prior to correct detections 

of the intermediate change amount depending on whether attention was directed into or out 

of the receptive fields of the recorded neurons using the formula (attendin – attendout)/

(attendin + attendout). For illustrative purposes, significance of individual units was 

determined by a two-tailed paired t-test (p<0.05).

Noise correlations

We defined the correlated variability of each pair of simultaneously recorded units 

(quantified as spike count correlation or rSC
24) as the Pearson correlation coefficient 

between the responses of the two units to repeated presentations of the same stimulus. This 

measure of rSC represents noise correlations rather than signal correlations because the 

responses used in this analysis were always to an identical visual stimulus. For 

Supplementary Figure 1C, we included responses from stimulus presentations 2 though 10 

from trials that ended with either a hit, miss or correct catch trial and that were immediately 

followed by the maintenance of fixation and continuation of the trial (i.e., stimulus 

presentations where the behavioral response on the subsequent stimulus presentation was not 

a saccade). We z-scored responses as a function of the stimulus presentation number in each 

trial and then pooled data across stimulus presentations before calculating noise correlations. 

Results did not qualitatively change if we did not perform this z-score procedure. For 

Supplementary Figure 1D, we included data from all stimulus presentations prior to the 

change stimulus (except the first) and sorted them depending on what the behavioral 

outcome was on the subsequent stimulus presentation. Pairs of units that were recorded on 

the same electrode were not included in correlation analyses. The data presented in 

Supplementary Figures 1C consisted of 3,285 MT pairs, 3,948 SC pairs and 6,934 between 

area pairs.

Decoding

We focused our decoding analyses (Figures 2, 3 and 5) on trials in which the third largest 

(middle) direction change occurred, because changes of that magnitude occurred in both 

attention conditions. This approach also serves to linearize the problem by attempting to 

classify between one of two directions of motion. Therefore, we have restricted our decoding 

approach to using linear methods. We performed the decoding analyses using responses 

from trials that were either hits (correct detection) or misses (maintained fixation after 

change stimulus). All of the data sets contained at least 10 trials in each attention condition 

and at least three hits and three misses in each condition. We did not include false alarms in 

the analyses because there were too few (and they were too inconsistent across recording 

sessions) to handle appropriately.
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We used the decoding strategy schematized in Figure 2. We began by constructing a matrix 

of MT responses for each attention condition: ‘MT responses’ (a # MT neurons by 2*# trials 

matrix of MT responses to the stimuli before the direction change and the changed stimulus 

on the relevant trials). The stimulus decoder was performed using two matrices for each 

attention condition: all of ‘MT responses’ (a # MT neurons by 2*# trials matrix of MT 

responses to the stimuli before the direction change and the changed stimulus on the relevant 

trials) and ‘motion direction’ (a 1 by 2*# trials vector of zeros for the stimulus before the 

change, referred to as ‘original’, and ones for the changed stimulus, referred to as ‘change’). 

The Choice decoder was performed using two matrices for each attention condition: the 

responses during change stimulus presentations from ‘MT responses’ (a # MT neurons by 

1*# trials matrix of MT responses to the change stimulus on the relevant trials) and ‘choice’ 

(a 1 by 1*# trials vector of zeros for change stimulus presentations on which the animal did 

not make an eye movement, referred to as ‘no saccade’, and ones when the animal made an 

eye movement, referred to as ‘saccade’). The SC decoder was performed using two matrices 

for each attention condition: the responses during original stimulus presentations ‘MT 

responses’ (a # MT neurons by 1*# trials matrix of MT responses to the original stimulus on 

the relevant trials) and ‘SC responses’ (a # SC neurons by 1*# trials matrix of SC responses 

to the original stimuli on the relevant trials). We refer to this final decoder as an ‘SC 

decoder’ but the weights are defined with no directionality: we have simply identified the 

weights that best relate the activity between the two areas. We used only responses to the 

original stimulus for the SC decoder because of the strong presaccadic responses present 

during changed stimuli.

We cross validated by holding out the two stimulus presentations from ‘MT responses’ (for 

the original and changed stimuli) from one trial at a time to perform the classification of 

motion direction. To reduce the number of weights we needed to fit and therefore improve 

our confidence in the weights we did fit, we performed PCA on the MT and SC responses to 

find the first 10 PCs in each area. The choice of number of vectors did not qualitatively 

affect the results in the range of 4-15 vectors. We then performed linear regression to find 

the weight vectors (for the Stimulus and Choice decoders) or weight matrices (for the SC 

decoder) that related projections along the first ten MT PCs plus a vector of ones to ‘motion 

direction’, ‘choice’, or projections along the first 10 SC PCs in each attention condition.

We assessed the stimulus information in each decoder (Figure 3) by multiplying projections 

of MT responses to the original and changed stimuli from the held-out trial by the fitted 

weights and either determining whether those weighted sums correctly classified the stimuli 

as original or changed (Stimulus and Choice decoders) or whether a linear classifier 

correctly classified those stimulus presentations on the basis of the predicted SC responses 

(SC decoder). The performance of the decoder is defined as the area under the receiver 

operating characteristic curve comparing the distributions of weighted average responses to 

each stimulus using the weights constructed for each decoder.

The critical aspect of the decoding analysis is that we ask how much stimulus information is 

contained in each different subset of MT activity. The Stimulus (or optimal) decoder will 

perform best, because it was designed specifically to ask this question. The Choice and SC 

decoders identify different subspaces of MT activity and then ask how much stimulus 
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information is contained in those subspaces. These decoders, by definition, will perform 

worse than the Stimulus decoder, but they are asking the same question.

To assess the stability of the weights for each decoder in the two attention conditions, we 

assessed the stimulus information gleaned by each decoder using the sensory responses from 

one attention conditions and the weights calculated from the other (Figures 3 and 4). 

Because the responses of visual neurons are non-unique and because our behavioral 

response is binary, the weights found with our linear decoding methods are non-unique23,31. 

It is therefore not informative to make direct comparisons of the weights across conditions. 

Instead, we borrowed the spirit of the analyses in a recent study31 and compared the 

stimulus information that could be gleaned using each set of weights in each attention 

condition. In general, the choice and SC decoders performed better with weights computed 

from the same attention condition, even though we cross-validated these analyses (this effect 

could be attributed to non-stationarities in the recordings or the monkey’s behavior). The 

critical comparison is the performance of the decoders using sensory responses from one 

attention condition and weights from the other (Figures 3 and 4).

For the decoding analysis in Figure 5, we took a similar approach to the previously 

described Choice and SC decoders, except that we combined data from both the cued and 

uncued conditions to calculate decoding weights. We then decomposed the responses of the 

population responses to each stimulus in each attention conditions into mean responses and 

residuals (R=M+S, where R is the number of neurons by number of trials matrix of spike 

count responses to one stimulus in one attention condition, M is a matrix of mean responses 

for each neuron, and S is the matrix of residuals). We tested the hypothesis that attention-

related changes in the residuals account for the improvement in stimulus information used to 

guide behavior by decoding stimulus information from responses created by using the mean 

responses from the uncued condition and residuals from the cued condition.

The analyses of the V4 data from the change detection task (Figure 4A and 4B) were 

identical manner to the MT data described above. This dataset consisted of multineuron 

recordings using Utah arrays placed in both hemispheres of V4 during 37 experimental 

sessions in two animals, the details of which are described in5. Data from each hemisphere 

was treated separately in the decoding analyses, so each session contributes two data points 

for each analysis (gray lines in Figure 4A). The details of the contrast discrimination task 

used in Figure 4C required a different form of the Stimulus decoder. This dataset consisted 

of multineuron recordings using Utah arrays placed in both hemispheres of V4 during 17 

experimental sessions in two animals. The details of this experiment have been previously 

described6. Briefly, two monkeys judged which of two stimuli in a pair was higher contrast 

by making a saccade to a target representing its choice. Attention toward one pair of stimuli 

or the other was changed in blocks. The Stimulus decoder (Figure 4C) compares 

performance using V4 responses to distinguish between a given stimulus configuration and 

its opposite configuration in the attended and unattended conditions. As in the other V4 data 

set, data from each hemisphere was treated separately.
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Statistics

Paired tests, either two-tailed t-tests or non-parametric Wilcoxon tests, were employed for all 

statistical analyses. In cases where t-tests were used, the data distribution was assumed to be 

normal but this was not formally tested. No statistical methods were used to pre-determine 

sample sizes but our sample sizes are similar to those reported in previous publications 6,9. 

There was no way to perform data collection and analysis blind to the conditions of the 

experiments because our data were not grouped. Please see the Life Sciences Reporting 

Summary for additional information.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Hypotheses and methods. (A) Schematics describing predominant hypotheses about links 

between attention, visual cortical activity, and behavior. The left plot depicts MT population 

responses to two visual stimuli plotted along two dimensions in population response space 

(e.g. the first two principal components; see Methods) and a readout dimension which 

represents the visual information that is communicated to neuronal populations involved in 

planning behavior during the uncued condition. The insets depict projections of the 

population responses onto the readout dimension. Hypothesis 1 is that the MT 

representations of the two stimuli become more easily distinguishable (e.g. by separating the 

distributions of responses to the two stimuli). In this scenario, the distributions of projections 

along even a suboptimal readout axis may also be more separable. Hypothesis 2 suggests 

that attention changes the way visual information is read out from MT such that projections 

of MT population responses to the two stimuli onto the readout dimension are more 

separable. (B) Our new hypothesis: attention reshapes population responses so they are 

better aligned with relatively static readout dimensions. This alignment could be a direct 

result of widely observed attention-related changes in firing rates and response variability. 

(C) Direction change-detection task with cued attention. The drifting Gabor stimuli before 

the change were identical on every trial within an experimental session and can be thought 

of as stimulus A, while the changed stimulus can be thought of as stimulus B in the 

schematics in (A). (D) Psychometric curves from two example sessions (monkey ST, top, 

monkey HO, bottom) with best-fitting Weibull functions. Attention improved detection of 

median difficulty trials by 25% on average across all experiments (cued 76.5% detected 

across sessions, uncued 51.8% detected; N=15 sessions, two-tailed Wilcoxon signed-rank 

test, p=1.8X10−4). (E) Receptive field (RF) centers of recorded units from the same example 
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session as in the top plot in (D). Dots represent the RF center (red, MT; blue, SC). The circle 

represents the size and location of the median RF from each area.
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Figure 2. 
Schematic of our decoding procedure. We used linear regression to find the weights (second 

column) that best relate the first ten principal components of the MT population’s response 

(left) to both the original and change stimuli (Stimulus decoder; top row), the animal’s 

choice in response to change stimuli (Choice decoder; middle row), or the projections of the 

responses to the original stimulus of the population of simultaneously recorded SC neurons 

(SC decoder; bottom row). We assessed the performance of each decoder by decoding 

stimulus information from MT responses on a separate set of trials using each set of weights 

(right column) and responses to both the original and change stimuli. See methods for 

detailed decoding and cross validation procedures.
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Figure 3. 
Effects of attention on the stimulus information that can be decoded from small populations 

of MT neurons. (A) Ability of a cross-validated linear decoder to distinguish the original 

from changed stimuli (intermediate change amount) for each decoder. Error bars represent 

SEM, gray lines are individual sessions. The effect of attention was significant for the 

Choice and SC decoders (N= 15 sessions, two-tailed paired t-tests, p=0.019 and p=0.048, 

respectively) but not for the Stimulus decoder (N= 15 sessions, two-tailed paired t-test, 

p=0.42). The effects of attention on the Choice and SC decoders were greater than for the 

Stimulus decoder (N= 15 sessions, two-tailed paired t-tests, p=0.023 and p=0.030, 

respectively), but not significantly different from each other (N= 15 sessions, two-tailed 

paired t-test, p=0.21). (B) Weight swapping analysis demonstrates that decoding 

performance was typically better using the MT responses from the cued condition and the 

Choice decoder weights from the uncued condition (y-axis) than using the MT responses 
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from the uncued condition and the Choice decoder weights from the cued condition (x-axis; 

N= 15 sessions, two-tailed paired t-test, p=0.005). (C) Same, using the weights from the SC 

decoder (N= 15 sessions, two-tailed paired t-test, p=0.012).
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Figure 4. 
Similar attention-related effects on neuronal populations in two brain areas and two tasks. 

(A) In a change detection task, the effects of attention on the stimulus information that can 

be decoded from small populations of V4 neurons is similar to MT. The plot shows the 

ability of a cross-validated linear decoder to distinguish the original from changed stimuli 

(intermediate change amount) for both the Stimulus and Choice decoders (no SC data was 

available). Error bars represent SEM, gray lines are individual hemisphere-sessions (see 

methods). Attention significantly affected the performance of both the Stimulus and Choice 

decoders (N= 98 sessions, two-tailed paired t-tests, p=7.4×10−4 and p=1.1×10−15, 

respectively), but the attention-related improvement in the Choice decoder was greater than 

in the Stimulus decoder (N= 98 sessions, two-tailed paired paired t-test, p=2.1×10−8). (B) 

Decoding performance was typically better using the V4 responses from the cued condition 

and the Choice decoder weights from the uncued condition (y-axis) than using the V4 

responses from the uncued condition and the Choice decoder weights from the cued 

condition (x-axis; N= 98 sessions, two-tailed paired t-test, p=0.0029; compare to Figure 3B). 

(C) The ability of a cross-validated linear decoder using V4 population responses to 

distinguish between stimulus configurations during a contrast discrimination task6 reveals no 

significant effect of attention (N= 17 sessions, two-tailed paired t-test, p=0.31). Plotting 

conventions as in A. Because of the details of the discrimination task (which did not include 
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choices related to uncued stimuli), it was impossible to calculate a choice decoder using 

these data.
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Figure 5. 
Effects of attention on the stimulus information that can be decoded from small populations 

of MT neurons is explained by changes in response variability. (A) Schematic of our 

procedure to understand which attention-related changes could account for the improvement 

in the amount of stimulus information that could be gleaned using the Choice decoder. We 

separated the first ten principal components of the MT population response (left) to the 

original and changed stimulus in both attention conditions into mean responses (scale 

adjusted to account for smaller value range) and residuals. We assessed the extent to which 

decoder performance was affected by attention-related changes in means and residuals by 

decoding stimulus information from MT responses on a separate set of trials in each 

attention condition and also using the residuals from the cued condition and the mean 

responses from the uncued condition (third row). See methods for detailed decoding and 

cross validation procedures. (B) Using the procedure described in (A), we found that the 
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reshaping of the MT representation of the attended stimulus can be accomplished as a result 

of attention-related changes in response variability (e.g. noise correlations). The amount of 

stimulus information that can be decoded using a single Choice decoder whose weights are 

determined from data from both attention conditions is indistinguishable for the cued data 

and data constructed using the mean responses from the uncued condition and the residuals 

from the cued condition (N= 15 sessions, two-tailed paired t-test, p=0.84). Error bars 

represent SEM, gray lines are individual sessions. (C) Same as B, for the SC decoder. The 

amount of stimulus information that can be decoded using a single SC decoder whose 

weights are determined from data from both attention conditions is indistinguishable for the 

cued data and data constructed using the mean responses from the uncued condition and the 

residuals from the cued condition (N= 15 sessions, two-tailed paired t-test, p=0.48).
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