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Abstract

Multiple testing procedures defined by directed, weighted graphs have recently been proposed as 

an intuitive visual tool for constructing multiple testing strategies that reflect the often complex 

contextual relations between hypotheses in clinical trials. Many well-known sequentially rejective 

tests, such as (parallel) gatekeeping tests or hierarchical testing procedures are special cases of the 

graph based tests. We generalize these graph-based multiple testing procedures to adaptive trial 

designs with an interim analysis. These designs permit mid-trial design modifications based on 

unblinded interim data as well as external information, while providing strong family wise error 

rate control. To maintain the familywise error rate, it is not required to prespecify the adaption rule 

in detail. Because the adaptive test does not require knowledge of the multivariate distribution of 

test statistics, it is applicable in a wide range of scenarios including trials with multiple treatment 

comparisons, endpoints or subgroups, or combinations thereof. Examples of adaptations are 

dropping of treatment arms, selection of subpopulations, and sample size reassessment. If, in the 

interim analysis, it is decided to continue the trial as planned, the adaptive test reduces to the 

originally planned multiple testing procedure. Only if adaptations are actually implemented, an 

adjusted test needs to be applied. The procedure is illustrated with a case study and its operating 

characteristics are investigated by simulations.
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1. INTRODUCTION

Clinical trials often address several study objectives within a single confirmatory 

experiment, and multiple hypothesis tests are part of the confirmatory statistical analysis. 

For example, non-inferiority and superiority hypotheses [1,2], several doses or treatment 

regimens, multiple endpoints [3], or multiple (sub-)populations can be investigated 

simultaneously in one clinical trial. To prevent inflated false positive rates due to multiple 
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hypothesis testing, regulatory guidelines [4,5] require the control of the familywise error rate 

(FWER) in the strong sense. Accordingly, for a wide range of settings, specific multiple 

testing procedures have been developed [6]. In particular, testing strategies have been 

proposed that map the difference in importance and the logical relationships between 

hypotheses onto the multiple testing procedure. For example, in a clinical trial where high 

and low doses are compared with a control, the proof of superiority for the low dose may 

only be of interest if superiority for the high dose has been shown. More complex relations 

between hypotheses can occur if hypotheses corresponding to several treatment arms, 

endpoints, and subgroups are tested in a single experiment. O’Neill [7] notes, for example, 

that secondary endpoints shall not be tested before efficacy in the primary endpoint has been 

shown.

An intuitive tool to construct testing procedures that satisfy such requirements are directed, 

weighted graphs [8–10]. The graphs visually represent the testing strategy and implicitly 

define a sequentially rejective multiple testing procedure that controls the FWER. Many 

classical sequentially rejective tests, such as (parallel) gatekeeping tests [11,12], fixed 

sequence (‘hierarchical’) tests [13–15], or fall back procedures [16,17], are special cases of 

these graph-based tests. The graph-based tests belong to the general class of sequentially 

rejective weighted Bonferroni tests [18], which are based on the application of the closed 

testing principle [19] to weighted Bonferroni tests for intersection hypotheses.

In this manuscript, we extend the multiple testing procedures defined by weighted directed 

graphs to adaptive tests controlling the FWER in the strong sense. Boosted by the 

publication of regulatory guidance documents [20,21], adaptive designs have attracted much 

attention over the last decade. Although the most frequently studied type of adaptation is 

sample size reassessment [22–27], more substantial modifications have been considered in 

settings where multiple hypotheses are tested. Such adaptations include the selection of 

treatment arms, subgroups, or endpoints [28–38], see [39] for a review on confirmatory 

adaptive designs based on combination tests and conditional error functions. In a 

confirmatory setting, adaptive changes of the trial design based on unblinded interim data 

must not compromise the integrity of the trial and a minimal requirement is the control of 

the FWER.

The adaptive graph-based testing procedure proposed in this manuscript allows one to adapt 

the design of an ongoing trial for which a multiple hypothesis test has been prespecified 

using the graph-based approach. The procedure is applicable in a wide range of scenarios 

including trials with multiple treatment comparisons, endpoints, or subgroups and allows for 

the adaptation of sample sizes, selection of treatment arms, subgroups, or endpoints and the 

graph-based multiple testing strategy itself. The adaptations may be based on unblinded 

interim data as well as data from external sources, and the procedure controls the FWER in 

the strong sense without the need to prespecify the adaptation rule in detail.

The proposed adaptive test is based on a generalization of weighted Bonferroni intersection 

hypothesis tests to adaptive tests using partial conditional error rates. The procedure has the 

appealing property that in case no adaptations are performed at the interim analysis, the 

originally planned graph-based multiple testing procedure can be used. Only if the trial 
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design is actually modified, the adaptive test needs to be applied. In contrast, adaptive 

multiple testing procedures based on combination tests [28–32,39] require test statistics 

based on combination functions of stagewise multiplicity adjusted test statistics, even if no 

adaptations are performed. Furthermore, the proposed adaptive testing procedure uniformly 

improves a recently suggested adaptive graph-based partitioning test procedure based on 

combination tests of stagewise elementary test statistics [40].

The manuscript is organized as follows. In Section 2, we review sequentially rejective 

weighted Bonferroni tests and their construction via directed weighted graphs. In Section 3, 

these tests are generalized to adaptive tests. First, in Section 3.1, partial conditional error 

rates [41,42] are used to derive conditional—on observations from subjects recruited in the 

first stage—significance levels of general weighted Bonferroni tests. Then, in Section 3.2, 

we construct corresponding weighted adapted second stage tests. In Section 4, we illustrate 

the approach with a case study in the spirit of the multi-armed multiple sclerosis trial 

considered in [8], where a treatment arm is dropped in an interim analysis and the sample 

size of the dropped arm is re-allocated to the remaining arms. For the scenario of this case 

study, we investigate the operating characteristics of the adapted test with simulations in 

Section 5. Finally, in Section 6, we discuss limitations and potential generalizations.

2. GRAPH-BASED MULTIPLE TESTING PROCEDURES

In this section we review fixed sample (non-adaptive) graph-based multiple test procedures 

that will be generalized to adaptive tests in Section 3. Consider the problem of testing m 
elementary null hypotheses Hi, i ϵ I = {1, … m} controlling the FWER in the strong sense at 

level α such that the probability of at least one erroneous rejection is bounded by α under 

any configuration of true and false null hypotheses Hi, i ϵ I.

Multiple testing based on graphs formalizes the following heuristic approach. Initially, the m 
hypotheses are tested, each at their local significance level αi = wi,Iα, where the wi,I are 

weights, with 0 ⩽ wi,I and ΣiϵI wi,I ⩽ 1, that determine the initial allocation (i.e. for the 

global intersection hypothesis HI : ∩iϵI Hi) of the overall significance level across 

hypotheses. If a hypothesis Hi can be rejected, its level is reallocated to the remaining 

hypotheses according to a prespecified rule. The testing step is then repeated for the 

remaining, non-rejected hypotheses with the updated local significance level. If a further 

null hypothesis can be rejected, its local significance level is reallocated using an updated 

allocation rule. This procedure is repeated until no further hypothesis can be rejected. This 

heuristic approach can be easily described by weighted, directed graphs, where the nodes 

correspond to hypotheses and the weights of directed edges determine the fraction of the 

local level that is reallocated to each of the other nodes after a hypothesis has been rejected. 

For example, a hierarchical test of three hypotheses is defined by the graph in Figure 1. 

Bretz et al. [8] have shown that (after a suitable formalization) the graphs define a multiple 

testing procedure that controls the FWER in the strong sense at level α. For a related graph-

based approach, see [9].

To generalize the graph-based test to an adaptive test, we use the fact that the former is a 

sequentially rejective weighted Bonferroni test [8,43], which in turn is a shortcut of the 
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closed testing procedure applied to weighted Bonferroni tests for all intersection hypotheses 

[18]. To define this closed testing procedure, one needs to consider all non-empty subsets J 
of I and specify non-negative weights, wJ = (w1,J, …, wm,J), with wi,J = 0 for all i ∉ J and 

ΣjϵJ wj,J ⩽ 1 (hereafter, we write J, J ⊆ I to denote all non-empty subsets of I). Also, let p = 

(p1, …, pm) denote the marginal unadjusted p-values. The corresponding weighted 

Bonferroni test rejects intersection hypothesis HJ = ⋂jϵJ Hj if any of the unadjusted p-values 

pj, j ϵ J falls below the weighted critical boundary wj,Jα. This corresponds to a decision 

function φJ(p, α) = maxjϵJ 1{pj⩽wj,Jα} that takes the value of 1 if HJ is rejected and zero 

otherwise. The closure test rejects an elementary hypothesis Hi, i ϵ I, if Hi and all 

intersection hypotheses HJ = ⋂jϵJ Hj with J ⊆ I, i ϵ J can be rejected each at (local) level α. 

This procedure corresponds to a decision function ψi(p, α) = minJ⊆I, iϵJ φJ(p, α) for each 

elementary hypothesis Hi and controls the FWER at level α in the strong sense [19].

2.1. Defining weighted intersection hypothesis tests with graphs

Consider a weighted directed graph with m nodes where each node represents an elementary 

hypothesis Hj, j ϵ I. For each of the nodes, we define a node weight and denote the 

corresponding vector of node weights by wI = (w1,I, …, wm,I). The nodes are connected by 

directed edges with edge weights gij,I, 0 ⩽ gij,I, ΣjϵI gij,I ⩽ 1, and gii,I = 0 for all i,j ϵ I. Note 

that gij,I > 0 indicates a directed edge from Hi to Hj, i,j ϵ I, with positive weight. Let GI = 

(gij,I)i,j ϵ I denote the m × m matrix of edge weights.

For the global null hypothesis HI : ⋂iϵI Hi, the node weights wI define a weighted 

Bonferroni test. To compute the weights for all intersection hypotheses HJ, J ⊂ I, a stepwise 

algorithm specified by the edge weights GI is used (see Appendix A (available online as 

Supporting Information) for the technical details).

For example, to obtain the node weights wJ for some J ⊂ I, first, compute the weights wI\{ℓ} 

for an arbitrary ℓ ϵ I\J. To this end, allocate the weight wℓ,I proportional to the edge weights 

gℓj,I (of edges j leaving the node ℓ) to the remaining hypotheses Hj, j ϵ I \ {ℓ}. Now, remove 

node ℓ and all edges attached to it from the graph and update the remaining edge weights to 

obtain GI\{ℓ}. Repeat these steps (recursively allocating weights and updating the graph) for 

all further indices in I \ (J ∪ {ℓ}). The resulting weights are independent of the order in 

which the procedure is applied to the ℓ ϵ I \ J [8,43]. Because the graphical algorithm is 

uniquely specified by only m node weights and m2 – m edge weights, it covers only a 

subclass of all possible weighted-closed testing procedures.

The closure of the weighted Bonferroni intersection tests with weights defined by the 

aforementioned algorithm are equivalent to those of the corresponding graph-based 

sequentially rejective test that formalizes the heuristic approach to construct multiple tests 

discussed earlier. However, the formulation as a closed test allows one to generalize it to a 

multiple test procedure for adaptive study designs that controls the FWER in the strong 

sense. This is the topic of the next section.
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3. ADAPTIVE WEIGHTED BONFERRONI TESTS

To derive adaptive weighted Bonferroni tests, we apply the partial conditional error approach 

[41,42,44] to weighted Bonferroni tests. The procedure is based on the conditional error rate 

methodology [45,46] that is based on the probability of a type I error of a preplanned test 

conditional on the data that have been observed up to the point of an unblinded interim 

analysis. To achieve strict type I error control, if the preplanned design is adapted (e.g., the 

sample size is modified), it is replaced by a test with conditional type I error rate below the 

conditional error rate of the preplanned test. Theoretically, adaptations can be based on 

internal or external data, and even the timing of the interim analysis does not have to be 

scheduled a priori in order to achieve strict control of the type I error rate.

For multiple hypothesis tests, the computation of the conditional error rate requires 

knowledge of the joint conditional (on the first stage observations) null distribution of the p-

values corresponding to the investigated null hypotheses. Although in special cases, as 

many-to-one comparisons of normally distributed measurements, the conditional error rate 

can be computed directly [47], this approach fails if the correlation structure is unknown (for 

example, if multiple endpoints are tested). Therefore, we consider a test based on partial 

conditional error rates, which only requires that the marginal conditional null distributions 

are known at interim.

3.1. General adaptive weighted Bonferroni tests based on partial conditional error rates

We start out with a fixed sample closed test of weighted Bonferroni intersection hypothesis 

tests as defined in Section 2. Let pj denote the unadjusted marginal p-values of the 

preplanned tests of the elementary hypotheses Hj, j ϵ I such that for each non-empty subset J 
⊆ I, the decision function of the corresponding weighted Bonferroni test for HJ is given by

(1)

Now, assume that midway throughout the trial, an interim analysis is performed. During the 

interim analysis, the data may be unblinded and trial adaptations based on internal or 

external information performed. To control the FWER under adaptations, an adapted closed 

test is defined that preserves the overall FWER. To this end we define adaptive tests for each 

intersection hypothesis HJ, J ⊆ I. Let J ⊆ I be fixed and define for all j ϵ J

(2)

where  denotes the first stage data comprised of the observations from subjects recruited 

in the first stage of the trial. Equation (2) is the conditional probability that the p-value of the 

preplanned test of the elementary hypothesis Hj falls below its level wj,J α, given the 

observed first stage data . We refer to Aj,J (wj,Jα) as the partial conditional error rate of 

the elementary hypothesis Hj as part of intersection hypothesis HJ.
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Let

(3)

denote the sum of partial conditional error rates of those elementary hypotheses Hj, j ϵ J 
whose intersection yields intersection hypothesis HJ. As shown in Appendix B (available 

online as Supporting Information), any test of intersection null hypothesis HJ, which may be 

chosen based on unblinded interim data  or external information, with a decision function 

 that satisfies

(4)

controls the unconditional type I error rate at level α, that is, , assuming that 

the conditional expectation is uniquely defined for all  and . Condition (4) requires that 

the conditional level of the adapted test, conditional on the information used in the interim 

analysis assuming HJ, does not exceed BJ. Note that if no mid-trial adaptations are 

performed, condition (4) will be satisfied by the preplanned test. Therefore, in this case, the 

originally planned test may be performed. Furthermore, any test of hypothesis HJ at level 

min.(BJ, 1) whose test statistic is based on independent second stage observations 

(independent of the data of patients recruited in the first stage and independent of the choice 

of second stage test statistics) satisfies condition (4).

If J includes more than one element, in general, BJ is not a probability and can take values 

larger than one. If BJ ≥ 1, the corresponding intersection hypothesis HJ can already be 

rejected based on the interim data, that is, . This results in an improvement of the 

preplanned closed test in terms of power [41].

Finally, having defined decision functions  of adaptive tests for all intersection null 

hypotheses HJ, J ⊆ I, let

(5)

denote the decision function of the adaptive multiple test of the elementary hypothesis Hi, i ϵ 

I. By the closure principle, this test controls the FWER in the strong sense. In the remainder 

of this manuscript we will refer to this test as adaptive graph-based multiple testing 

procedure (agMTP).

3.2. Weighted Bonferroni tests as second stage tests

One possibility to define second stage tests is to use second stage weighted Bonferroni tests 

that satisfy (4). Assume that at the interim analysis, some hypotheses may be dropped, the 

Klinglmueller et al. Page 6

Pharm Stat. Author manuscript; available in PMC 2016 March 14.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



sample sizes for each of the elementary hypothesis tests may be adapted or the preplanned 

testing strategy modified. In principle, every second stage test satisfying (4) provides the 

desired FWER control. The choice of the second stage tests will, in general, depend on the 

adaptations performed. For example, if a dose is dropped at an interim analysis, no second 

stage data for the test of some of the hypotheses Hi, i ϵ I will be available and this has to be 

accounted for when choosing intersection hypothesis tests involving such elementary 

hypotheses.

To construct the second stage tests define, at the interim analysis, for all elementary 

hypotheses Hi, i ϵ I second stage hypothesis tests with corresponding second stage p-values 

q = (q1, …, qm). Because these tests are defined at the interim analysis, they may be based, 

for example, on adapted sample sizes. For notational simplicity, we also define second stage 

p-values for hypotheses where no second stage data are available, setting qi ≡ 1 in this case. 

We assume that under the null hypothesis, the distribution of the qi, i ϵ I conditional on the 

first stage data  is larger than or equal to the uniform distribution [0, 1] [48,49].

Define vJ = (v1, J, …, vm,J) for all J ⊆ I with vi,J = 0 for all i ∉ J and Σj ϵ J vj,J ⩽ 1. Then an 

adapted test of intersection hypothesis HJ with decision function:

(6)

satisfies (4) and, therefore, provides a level α test of HJ regardless of mid-trial adaptations. 

Consequently, the corresponding closed test procedure that rejects elementary hypothesis Hi, 

i ϵ I according to decision function

(7)

strongly controls the FWER at level α. Note that for BJ < 1 in Equation (6), HJ is rejected if 

any p-value qj, j ϵ J is equal to or smaller than a fraction vj,J of the sum of partial conditional 

error rates BJ. Therefore, it may be interpreted as a weighted Bonferroni procedure with 

weights vJ and level BJ, the latter of which depends on the observed first stage data. To 

control the FWER, the vJ may be chosen arbitrarily for each non-empty J ⊆ I but the choice 

of weights will have an impact on the power of the procedure. For example, hypotheses for 

which no second stage data are available such that qi ≡ 1 will be assigned weight zero in an 

efficient test.

3.2.1. Proposals for graph-based choices of second stage weighted 
Bonferroni tests—An efficient and transparent way to choose the vi, J, i ϵ I, for all J ⊆ I 

can be based again on graphs. Let  denote an adapted second stage graph that is 

chosen based on the unblinded first stage data. This graph defines second stage weights 

 for all intersection hypotheses J ⊂ I according to the algorithm in 

Appendix A. Especially, hypotheses Hi that are dropped in the interim analysis, as, for 
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example, hypotheses corresponding to dropped treatments or sub-populations, are assigned 

node weight and edge weight equal to zero. Thus, no weight is assigned to these hypotheses 

in the second stage tests (i.e.,  for all J ⊆ I).

A simple (and valid, in terms of FWER control) choice of the weights vj, J in (6) is to set 

directly  for all intersection hypotheses. However, even if we chose the original 

weights, that is, setting vj, J = wj, J, the partial conditional error rates vj, J BJ applied to the 

second stage elementary p-values in general will not correspond to the original test (i.e., 

vj,JBJ ≠ Aj,J(wj,Jα)). Therefore, we propose to use the weights

(8)

where γJ is a constant that solves

(9)

Conditional on the first stage data and given the modifications to the weighting strategy, γJ 

provides an adjusted significance level that ensures for the adapted test of HJ to satisfy (4). 

Consequently, the corresponding closed test procedure provides strong FWER control. If the 

weights are not modified at interim (i.e., ), the solution to Equation (9) is γJ = α such 

that the resulting adapted intersection hypothesis tests use the same conditional levels for 

each elementary hypothesis as the preplanned test (i.e., vj, J BJ = Aj, J(wj, J α)). A second 

stage weight  results in vj, J = 0 permitting, for example, to set the conditional levels 

applied to dropped hypotheses to zero. If the test statistics have a discrete distribution such 

that Aj, J is not continuous, (9) may not have a solution. In this case, we choose γJ satisfying 

. To distinguish between the weights  and vj,J, we will refer to 

the latter as conditional error allocation fractions in the following.

Example 1: Consider the hierarchical test of two hypotheses H1 and H2. The corresponding 

graph is depicted in Figure 2a. For illustrative purposes, assume that in the interim analysis, 

all hypotheses are continued to the second stage but it is decided to reverse the order of 

hypotheses in the testing strategy, resulting in the second stage graph as shown in Figure 2b. 

Then,

There are three (intersection) null hypotheses H{1,2}, H{1}, and H{2}. The original graph 

results in weights w{1,2} = (1, 0), w{1} = (1, 0), and w{2} = (0, 1) and the modified graph in 
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adapted weights , , and . To compute the allocation 

fractions vj, J, note that in the intersection hypothesis test, all weights are allocated to the 

hypothesis with higher priority such that for the global null hypothesis H{1,2}, Equation (9) 

reduces to

and for H{1} and H{2}, we trivially get A1,{1} (γ{1}) = A1,{1}(α) and A2,{2} (γ{2}) = A2,{2} 

(α). As Ai,J(0) = 0, we get v1, {1,2} = 0, v2, {1,2} = 1 and v1, {1} = v2, {2} = 1. The resulting 

adapted closed test rejects H2 if q2 falls below min {A1,{1,2}(α), A2,{2} (α)}. If H2 is 

rejected, H1 may be rejected if q1 ⩽ A1 {1}(α). Depending for which hypothesis the partial 

conditional error rate based on the first stage observations is higher, one gets either γ{1,2} ⩽ 

α if A1,{1,2}(α) ⩽ A2,{1,2}(α) or γ{1,2} ≥ α if A1,{1,2}(α) ≥ A2,{1,2} (α) (given that the partial 

conditional error rate is non-decreasing in the α level).

As another option for an interim design change consider that instead of reversing the order 

of the fixed sequence test, the weighting strategy is changed to a Bonferroni–Holm 

procedure. The corresponding graph is depicted in Figure 2c; edge and node weights are 

given by

To compute the corresponding partial conditional error allocation fractions, the following 

equation has to be solved in γ{1,2}

Consequently, the sum of conditional errors BJ is split between H1 and H2 according to 

 and . In this 

case, the conditional error allocation fractions differ from the choice of second stage weights 

. The specific proportions depend on the observed first stage data and 

the type of conditional error function. The resulting second stage test of H1 then requires 

that q1 ⩽ min {A1,{1,2}(γ{1,2}/2), A1,{1}(α)}, that of H2 that q2 ⩽ min {A2,{1,2} (γ{1,2}/2), 

A2,{2} (α)}. This new design permits rejection of either H1 or H2 without rejecting the other.

3.3. A simple, strictly conservative alternative adaptive procedure

For adaptive designs where hypotheses may be dropped in an interim analysis (for example, 

if treatment arms are selected) but no sample size reassessment is allowed, one can apply a 

simple adaptive multiple comparison procedure (saMTP) that controls the FWER in the 

strong sense but is strictly conservative. At the final analysis, set the p-values of dropped 
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hypotheses (that cannot be tested because of lacking second stage data) to one and perform 

the original preplanned graph-based sequentially rejective procedure [8]. To also permit 

sample size reassessment, one can apply the preplanned test procedure to marginal p-values, 

of adaptive combination tests [49], again setting the p-values of dropped hypotheses equal to 

1. For example, when testing one-sided hypothesis, the inverse normal method, 

, gives such a p-value where n(1) and n 
denote the preplanned first stage and overall groupwise sample sizes, respectively. 

Furthermore,  and qj denote stagewise elementary p-values of the first and second stage 

tests of Hj computed from the first (second, respectively) stage observations only. Φ and cγ 

denote the cumulative distribution function and quantile of the standard normal distribution. 

The resulting adaptive procedure is equivalent to the graph-based partitioning algorithm 

(gPA) proposed in [40]. Note that if one-sided z-tests for the comparison of normally 

distributed means are preplanned and only dropping of hypotheses but no sample size 

reassessment is permitted, saMTP and gPA are the same procedures.

Our proposal - agMTP as defined in Section 3.1- improves gPA and saMTP in several ways: 

it is more flexible because it allows for interim modifications of the weighting strategy, it 

permits to reject intersection hypotheses at the interim analysis (whenever BJ ≥ 1), and it is 

uniformly more powerful than the test based on the inverse normal method because it “re-

uses” the partial conditional error rates of dropped hypotheses.

To show the latter, let I′ ⊆ I denote the index set of hypotheses carried forward to the final 

analysis and assume ∣I′∣, ∣I \ I′∣ > 0. First, note that gPA retains an intersection hypothesis 

HJ, J ⊆ I if J ∩ I′ = θ. Otherwise, it rejects HJ if for some j ϵ J ∩ I′, pj ⩽ wj,Jα. Written as a 

condition on qj it is easy to see that pj ⩽ wj,Jα iff

(10)

In contrast, consider agMTP and consider a graph-based test using inverse normal 

combination tests with p-values pj as above. Then the partial conditional error rate 

Aj,J(wj,Jα) is equal to the right hand side of (10). Consequently, gPA rejects HJ if at least one 

qj ⩽ Aj,J(wj,Jα) and agMTP if either BJ = ΣjϵJ Aj,J(wj,Jα) ≥ 1 or (using (6)) at least one qj ⩽ 

vj,JBJ. It therefore remains to show that Aj, J ⩽ vj,JBJ for all j ϵ J ∩ I′ and that the inequality 

is strict for some cases.

For example, one may choose partial conditional error allocation fractions

Klinglmueller et al. Page 10

Pharm Stat. Author manuscript; available in PMC 2016 March 14.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



for j ϵ J ∩ I′ and vj, J = 0 otherwise. Then 

 which is strictly larger if a 

hypothesis with positive first stage weight is dropped in the interim analysis.

Furthermore, the result also holds if the conditional error allocation fractions vj,J are chosen 

as suggested in (8). Consider that the second stage weights  are set identical to the first 

stage weights wj,J for j ϵ I′ and set to zero (i.e., ) otherwise. Then, the conditional 

error allocation fractions vj,J proposed in Equation (8) are zero for j ϵ J \ I′ and otherwise 

satisfy

which implies γJ ≥ α and consequently vj,JBJ = Aj, J(wj,JγJ) ≥ Aj, J(wj,Jα) for all j ϵ J ∩ I′ and 

the inequality is strict if any wj,J > 0 for some j ϵ J \ I′.

In contrast to gPA and saMTP, agMTP is in general not consonant, even if a consonant 

multiple test procedure is preplanned. For example, consider a test of two hypotheses H1 and 

H2 and that H2 is dropped at interim and the second stage tests are defined as in Section 3.2. 

The conditional level of the test of intersection hypothesis H1 ∩ H2 is B{1,2} = 

A1,{1,2}(w1,{1,2}α) + A2,{1,2} (w2,{1,2}α), which may be larger than A1,{1}(α) (the 

conditional level for the test of H1). Consequently, by setting  we have 

, such that H1 ∩ H2 may be rejected but no elementary 

hypothesis. Even if no interim adaptations are performed, a non-consonant test procedure 

may result. For example, if B{1,2} ≥ 1 one may reject H{1,2} at interim, however both second 

stage p-values qi may be larger than the corresponding partial conditional error rates Ai,{i} 

(α), such that no elementary hypothesis may be rejected. As a consequence all 2m – 1 

intersection hypothesis tests have to be performed, which for large numbers of hypotheses 

becomes computationally infeasible. Since saMTP and gPA are consonant a sequentially 

rejective algorithm requiring at most m steps can be applied. Thus, there is a trade-off 

between the power advantage and computational costs.

4. CASE STUDY

4.1. Preplanned design

To demonstrate the practical application of the presented methodology, consider a clinical 

trial in the spirit of the multiple sclerosis study investigated in [8]. In this case study, two 

treatment regimens with a new therapeutic agent (Treatment 1: 300μg three times a day, 

Treatment 2: 900 μg once daily) are compared to a control treatment in a parallel group 

design. For each test treatment two hierarchically ordered endpoints (annualized relapse rate 

followed by number of lesions in the brain) are compared to control. In total four one-sided 
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elementary null hypotheses Hi : θi ⩽ 0 are tested, where θ1, θ2 refer to the treatment effect 

differences (compared to control) of treatments 1 and 2 in the primary endpoint and θ3, θ4 to 

the treatment effect differences in the secondary endpoint, respectively. The FWER is to be 

controlled at the one-sided level α = 0.025. The planned per-group sample size n is assumed 

to be large enough such that the z-test for the comparison of normally distributed means 

gives conservative elementary p-values pi. Based on the clinical relevance of the endpoints 

and the nature of the test treatments, a multiple comparison procedure with the following 

properties is proposed:

(1) The testing strategy should be symmetric in the two treatment regimens 

because based on prior knowledge each is equally likely to be effective. 

Assuming equal effect sizes, the statistical power should be the same for both 

treatment control comparisons.

(2) Testing the primary endpoint takes precedence over testing the secondary 

endpoint. Unless superiority of a treatment with regard to the primary endpoint 

can be shown, inference on the treatments efficacy regarding the secondary end 

point is not of interest.

A multiple comparison procedure with the desired properties is specified by the graph in 

Figure 3a. The four hypotheses are represented by nodes in the graph. Each node is allocated 

an initial weight giving the portion of the overall α level that is used in the test of the 

intersection of all elementary hypotheses represented in the graph. To reflect the 

prioritization of the primary endpoint, initially the full α-level is distributed between the 

hypotheses of efficacy in the primary endpoint. Table I lists the weights wj,J of all 

intersection hypotheses tests as defined by the graph. The closure of the corresponding 

weighted Bonferroni intersection hypothesis tests is equivalent to a sequentially rejective test 

where initially only H1 and H2 are tested at levels α/2, whereas H3, H4 are allocated weight 

zero. If one of the primary hypotheses can be rejected, its level is reallocated to the 

corresponding secondary hypothesis. If, for a treatment arm both hypotheses can be rejected, 

the primary hypothesis (and given it can be rejected also the secondary hypothesis) can be 

tested at full level α.

4.2. Design modification after an adaptive interim analysis

Assume that after n(1) = n/2 patients in each group have been recruited, an unblinded interim 

analysis is performed. Let  denote the first stage 

standardized mean differences of the treatment-control comparisons corresponding to the 

hypotheses H1, …, H4. After inspection of the unblinded safety data, concerns regarding the 

safety of treatment regimen 2 are raised. Since, in addition, a larger interim effect size is 

observed for treatment regimen 1, the data safety committee decides to discontinue 

treatment arm 2 and to reallocated the remaining patients that were intended to be recruited 

for treatment arm 2 to the two remaining arms. Besides the dropping of the treatment arm 

and sample size reallocation, a second stage testing strategy also needs to be specified. As 

the treatment arm 2 has been dropped, in the final analysis only the two hypotheses 

regarding treatment arm 1 shall be tested. The corresponding second stage weighting 

strategy is defined according to the graph depicted in Figure 3b. The second stage weights 
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 for the weights corresponding to the dropped hypotheses H2 and H4 are set 

to zero for all J ⊆ {1, 2, 3, 4}. Table I lists the corresponding second stage weights  for 

all intersection hypotheses. Finally, assume that it is planned to again apply marginal z-tests 

to the second stage data.

4.3. Final analysis

Assume that the observations collected from subjects recruited in the second stage yield 

second stage z-scores  and , which are computed fromthe observations 

collected in the second stage only, corresponding to second stage p-values, q1 = 0.059 and q3 

= 0.031. To construct the adaptive test for the final analysis, for all 15 intersection 

hypotheses HJ J ⊆ {1, 2, 3, 4} the sums of the partial conditional error rates are computed. 

Let J ⊂ I and j ϵ J. The partial conditional error rate of the z-test is given by

(11)

where Zj denotes the z-statistics of the fixed sample z-test for Hj with a preplanned sample 

size of n observations per group. For example for the global null hypothesis H{1,2,3,4} 

plugging  and  into (11) we get

and

Since w3,{1,2,3,4} = w4,{1,2,3,4} = 0, the corresponding partial conditional errors are zero, as 

well. Table I lists these partial conditional errors and their sums BJ for the second stage tests 

for each intersection hypothesis. Because for each intersection hypothesis only one of the 

weights is positive, the conditional error allocation fractions vj,J defined in (8) coincide with 

the second stage weights  in this example. Therefore, the resulting adaptive test rejects 

H1, if q1 falls below the minimum of the sums of partial conditional error rates BJ for all J ⊆ 

{1, 2, 3, 4} with 1 ϵ J. Because of the hierarchical structure of the underlying graph, to reject 

H3, additionally q3 needs to fall below the minimum of BJ for all J ⊆ {1, 2, 3, 4} with 3 ϵ J 
and 1 ∉ J. Consequently, according to Table I the critical level for q1 is 0.075 and to 

additionally reject H3, q3 needs to fall below 0.088. Hence, in this example both hypotheses 

are rejected. The adaptive procedure for the z-test has been implemented by the first author 
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as part of the R-package gMCP Version 0.8-7 [50]. For the R-code to replicate the 

calculations of the case study see Appendix C (available online as Supporting Information).

5. SIMULATION STUDY

Based on a simulation study we investigated the operating characteristics of the agMTP with 

second stage weights as proposed in Section 3.2 for a range of distributional assumptions 

and compare them with the gPA by [40], which is described in Section 3.3. The setting of 

the simulation study is similar to that of the case study in Section 4: a three armed clinical 

trial comparing two treatments with a common control using a primary and a secondary 

endpoint. Additionally we simulated a toxicity marker, which is positively correlated with 

efficacy in the primary endpoint.

In the simulations an interim analysis is performed after half of the observations have been 

collected and one of four interim adaptation rules is applied.

Preplanned (PP): perform no adaptations; complete the trial as planned and at the final 

analysis test all four elementary null hypotheses as initially planned.

Select better (SB): select the treatment arm with higher observed interim efficacy estimate 

and at the final analysis test only the hypotheses corresponding to the selected treatment.

50:50 (FF): randomly (with equal probability and independent of the outcomes) select either 

treatment arm 1 or 2, drop the other and at the final analysis test only hypotheses 

corresponding to the selected treatment.

Safety (SF): if the estimate of the toxicity marker for a treatment exceeds a certain level s, 

drop the corresponding treatment arm, otherwise, perform no adaptations.

Rule Preplanned represents the baseline scenario of a fixed sample trial without any 

adaptation. Rule Select better represents a simple adaptation rule, where the interim decision 

relies on efficacy data only. Rule 50:50 reflects the complexity of the decision process when 

it comes to choosing a treatment in reality, where the decision may also depend on other, 

possibly external, factors than those provided by a few well defined endpoints. Rule Safety 
represents a scenario where the interim decision is driven by safety considerations. For all 

adaptation rules that drop treatments at interim, trials were simulated with and without 

sample size reallocation, where in the latter scenario patients preplanned for the dropped 

treatment arm are equally allocated to the remaining treatment arm and the control group. 

For agMTP, as in the case study, the second stage weights corresponding to the dropped 

treatment are set to zero; of the continued treatment to one. Note that in the case that no 

sample size reallocation is performed, the gPA is equivalent to the simple adaptive multiple 

testing procedure discussed in the case study in Section 4.

We assume that observations follow a multivariate normal distribution with known 

variances. Then, in the preplanned trial, with n patients per-treatment arm, the standardized 

treatment–control differences of the primary and secondary endpoints, zi, i ϵ 1, …, 4, and of 

the toxicity markers, t1, t2, are multivariate normal with mean vector
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where δ1, δ2 (σ1, σ2) denote the mean effect sizes (and standard deviations) for the efficacy 

for Treatments 1 and 2, respectively. The effect sizes of the toxicity markers are 0 for 

Treatment 1 and κ for Treatment 2 (with common standard deviation 1). The standardized 

effect sizes for the primary and secondary endpoints are assumed to be equal within each 

treatment group. Because sample sizes are assumed to be balanced, the correlation between 

test statistics for the same endpoint is 1/2. We denote the correlation between endpoints 

within a treatment arm by ρ and assume them to be equal for either treatment. We assume 

that the toxicity markers have equal correlation ζ with the corresponding primary endpoint. 

The correlation matrix of (z1, z2, z3, z4, t1, t2) is then given by

Note that knowledge of ρ and ζ is not required to implement the multiple test procedure, but 

they need to be specified for the simulation study. We assume that an interim analysis is 

performed after n(1) = n/2 patients per group have been observed. Consequently, the first 

stage test statistics follow a multivariate normal distribution as specified earlier, replacing n 
by n(1).

For the simulation study, we considered a common standard deviation of σ1 = σ2 = 1, 

correlation coefficients ρ = 0.3, and ζ = 0.5. We chose the preplanned per-group sample size 

to provide at least 90% power to reject any primary hypothesis using the fixed-sample 

graph-based test, as defined by Figure 3a and assuming equal effect sizes for both treatments 

and endpoints, that is, δ1 = δ2 = 0.4. We, further, require that the sample sizes are divisible 

by 4 to be able to reallocate half of the second stage sample size. Using the function 

extractPower from GNU R package gMCP [50], we computed the smallest preplanned 

sample size n = 116 per group that satisfies these requirements. The edited sentence is 

incorrect. This results in the first and second stage sample sizes of 58 per treatment group 

and stage, if no sample size reallocation is performed and the second stage sample size of 82 

for the selected treatment, if sample size reallocation is performed.

The simulation study covers a range of distributional scenarios: no effect in any treatment 

arm (δ1 = δ2 = 0), equal effect sizes in both treatment arms (δ1 = δ2 = 0.4), a smaller effect 

size in one treatment arm (δ1 = 0.3, δ2 = 0.4), and a positive effect in two treatment arms 

only (δ1 = 0, δ2 = 0.4). For all safety scenarios (rule SF), the threshold for the toxicity 

markers (t1, t2) was set to the 95% quantile of the standard normal distribution (i.e., s = 

1.645). For all configurations of effect sizes, we simulated safety scenarios with toxicity 

effects κ = 0.2 and κ = 0.4. All simulations were implemented using R [51] and 106 
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simulation runs per scenario (simulation standard error < 0.0005). Simulation code is 

available at request from the authors.

The results of our simulation study are summarized in Table II. There, we present the 

probabilities to reject at least one null hypothesis (π), to reject a particular null hypothesis Hi 

(πi), and to drop treatment arm i (ηi). Under the global null hypotheses (i.e., δ1 = δ2 = 0), π 

denotes the FWER and for δ1 = 0, δ2 = 0.4, π combines erroneous rejections of H1 with 

correct rejections of H2. Accordingly, π1 and π3 give Type I error rates, π2 and π4 powers. 

For the remaining scenarios, all null hypotheses are false and the probabilities correspond to 

the power.

The results of the simulation study show that agMTP is more powerful than saMTP and gPA 

and thereby confirm the theoretical results of Section 3.3. For the scenarios shown in Table 

II, the overall power π is improved by up to 5 percentage points; the power to reject a 

particular hypothesis πi is improved by up to 7 percentage points. The largest improvements 

are achieved in scenarios where an efficacious treatment is dropped, for example, due to 

safety reasons. This is illustrated by the results for the selection rules FF and SF. For 

scenarios under the global null hypothesis, agMTP is less conservative than saMTP and gPA.

Selecting the treatment with the larger interim effect and performing a sample size, 

reallocation (rule SB) is a very promising adaptive strategy as far as the overall power π is 

concerned. With these adaptations, agMTP yields even larger overall power than the 

preplanned design (rule PP). Although both designs have the same overall sample sizes, 

power is improved by 4–8 percentage points. The power πi to reject a particular hypothesis 

Hi and the number of rejected hypotheses, however, is decreased because of dropping 

hypotheses already at interim. If only the more promising treatment arm is continued at 

interim without sample size reallocation (rule SB, numbers in brackets), the loss of primary 

power P does not exceed 2 percentage points compared with the preplanned design (rule 

PP), which uses a 20% larger overall sample size. This also shows that sample size 

reallocation (rule SB) increases the power substantially compared with adaptive trials 

without sample size reallocation (SB, numbers in brackets).

For scenarios where the non-efficacious treatment is dropped (SB), the power advantage of 

agMTP compared with saMTP and gPA is less than 1 percentage point. But the power 

advantage of agMTP over gPA and saMTP is larger if the sample sizes are held fixed (SB, 

numbers in brackets). Considering the theoretical results in Section 4, it is not surprising that 

our procedures are most advantageous in scenarios where an efficacious treatment is 

dropped (rules FF, SF). In this case, promising interim results for the dropped treatment will 

lead to a corresponding large partial conditional error rate that may be reused. If only 

hypotheses with low partial conditional errors are dropped, little can be gained by recycling 

partial conditional errors in the second stage. Overall, sample size reallocation leads to large 

improvements of power only in scenario SF with κ = 0.4 (and to a lesser extent for κ = 0.2), 

where the second treatment is dropped in the majority of cases, whereas the first treatment is 

dropped only rarely; the advantage of sample size reallocation on π2 and π4 is hardly 

noticeable.
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6. DISCUSSION

In this paper, we generalize graph-based multiple testing procedures to flexible designs that 

allow for an adaptation of the trial design after an unblinded interim analysis. The proposed 

graph-based adaptive testing procedures can be tailored to reflect the structure and logical 

relations between hypotheses and control the FWER in the strong sense. The approach 

covers a large class of procedures including (parallel) gatekeeping, fixed sequence, and 

fallback tests. Although the adaptive tests are based on partial conditional error rates and can 

be applied to all multiple testing procedures based on weighted Bonferroni tests, the use of 

graphs to specify the weights in the planning phase as well as in the interim analysis allows 

for an intuitive communication of the testing strategy. Examples of adaptations in clinical 

trials are the modification of the testing strategy, sample size reassessment, modification of 

endpoints, dropping of treatment arms, or subgroups. The latter implies that hypotheses are 

dropped at the interim analysis. Similar as in [30], the procedure can also be extended to 

allow for the addition of new hypotheses at the interim analysis.

For the implementation of the adaptive test, the joint distribution of the elementary test 

statistics need not be known. Only the marginal distributions of the data for each elementary 

test statistics need to be specified under the null hypothesis in order to compute the partial 

conditional error rates. Therefore, the procedure can also be applied in settings where 

different types of statistics are used to test the different elementary hypotheses. For example, 

the primary hypothesis may concern a metric endpoint, whereas the secondary endpoint is 

binary. In the case study, we demonstrated the computation of the partial conditional error 

rates of the z-test. In such a setting where the marginal distribution of the observations is 

fully specified by the null hypothesis, the conditional error can be directly calculated. For 

settings with nuisance parameters, the partial conditional error rates can often be 

approximated based on asymptotic results [41,52]. Especially, the z-test approximation can 

be applied for various statistical tests similar as in group sequential designs. An alternative 

to asymptotic approximations is the application of p-value combination tests to define the 

marginal tests. For example, if, instead of standard fixed sample test statistics for each 

elementary hypothesis, a test based on the weighted inverse normal method [53] is 

preplanned that combines stagewise p-values by a weighted sum of their standard normal 

quantiles; the partial conditional error rate no longer depends on the nuisance parameters 

[54].

The adaptive procedure can be generalized to designs with more than two stages. This 

allows adaptations to be performed at more than one interim analyses and can be 

implemented by recursive application of the adaptive test as in [46]. Especially, intersection 

hypothesis tests can be improved if the partial conditional error rates are computed after 

each observation and the intersection hypothesis is rejected if the sum of the partial 

conditional error rates exceeds 1. Posch et al. [52] showed that under suitable assumption, 

this test asymptotically exhausts the α level regardless of the joint distribution and therefore 

improves the strictly conservative weighted Bonferroni test. The comparison of such 

strategies to other alternative multiple testing procedures that accounts for correlations will 

be part of our future research.
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The proposed approach can be extended to group sequential designs for testing multiple 

hypotheses, which permit early rejection of elementary hypotheses at predefined interim 

analyses. This can be implemented by applying the partial conditional error rate approach to 

the group sequential graph-based multiple testing procedures proposed in [55]. In this 

setting, the derivation of corresponding second stage tests will require additional 

considerations. For example, how to choose (group sequential) adapted tests that reflect the 

intention of the (potentially modified) weighting strategy and adhere to the (potentially 

modified) functional form of the desired critical boundaries (e.g., Pocock or O’Brien–

Fleming type boundaries), how to deal with the possibility that test decisions made at earlier 

stages are reversed at later stages, and how to decide whether or not to to stop a trial in 

which some but not all hypotheses are rejected early. A comprehensive treatment of these 

topics goes beyond the scope of this article and is part of our future research.

In the simulation study in Section 5, we assumed that a treatment arm is dropped based on 

safety issues observed in the interim analysis. If the toxicity marker is independent of the 

efficacy endpoint and only the toxicity data are used for the treatment selection, any multiple 

test procedure for the two remaining hypotheses (disregarding the other two initially 

considered hypotheses) controls the FWER. König et al. [15] showed that for a hierarchical 

test, this results in a strictly conservative test if toxicity is positively correlated to the 

efficacy data (i.e., on average patients that experience a larger treatment effect in the primary 

endpoint also experience more toxic effects). The proposed adaptive closed test procedure 

provides strong FWER control without any assumptions on the correlation of toxicity and 

efficacy endpoints and the rule for dropping treatment arms—that is, even if toxicity is 

negatively correlated to efficacy and/or efficacy data are used for the treatment selection.

From a purely statistical point of view, the conditional error principle guarantees strict type 1 

error control even if the adaptive interim analysis is performed at a data-dependent time 

point, which is not prespecified. Such a flexibility is astonishing and frightening at the same 

time. Because in actual clinical trials, the impact of interim analyses may go beyond what is 

covered by the statistical model, looking at the unblinded data too frequently is not 

recommended. For example, leaking interim information of the treatment effect may lead to 

an uncontrolled change in the assessment of endpoints, the placebo effect, or the 

characteristics of patients recruited after the interim analyses. Therefore, to maintain the 

confirmatory nature of a clinical trial, details of the planned adaptations should be laid down 

in the study protocol and procedures to ensure the confidentiality of the interim results 

needed to be put in place. Furthermore, too many adaptations are likely to compromise the 

persuasiveness of the results. In addition, adaptations do not necessarily lead to an increased 

efficiency of the test procedure but may lead to unfavorable operating characteristics for the 

situation at hand. For example, one may be misguided by highly variable interim data based 

on small samples leading to inefficient changes to the study design [23]. Therefore, careful 

planning and evaluation of different testing strategies and scenarios is essential.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Graphical weighting procedure resulting in a hierarchical test of three elementary null 

hypotheses H1, H2, and H3.
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Figure 2. 
Graphical weighting procedures for (a) a hierarchical test of a primary hypothesis H1 and a 

secondary hypothesis H2; (b) adapted weighting procedure reversing the order of H1 and H2; 

and (c) adapted weighting strategy corresponding to the Bonferroni–Holm procedure.
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Figure 3. 
(a) Graph defining the multiple testing procedure of the multiple sclerosis trial in Sections 4 

and 5. (b) Modified graphical weighting strategy - if Treatment 2 (i.e., H2, H4) is dropped at 

interim.
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Table II

Probabilities in percent: π to reject at least one null hypothesis, πi to reject a particular hypothesis Hi, and ηi to 

drop treatment arm i at interim. Numbers in brackets give rejection probabilities if no sample size reallocation 

is performed. 106 trials were simulated assuming mean difference δi for treatment i (equal across endpoints) 

and mean toxicity response κ in treatment arm 2. In each scenario, the fixed sample gMCP was applied to the 

preplanned design. Adaptive trials were simulated applying the rules SB, 50:50 (FF), or SF. These were 

simulated with and without sample size reallocation of dropped treatment arms and evaluated using the 

agMTP and the gPA.

(δ1, δ2) Rule(κ) Procedure π π 1 π 2 π 3 π 4 η 1 η 2

(0, 0) PP gMCP 2.3 1.3 1.3 0.1 0.1 0 0

SB agMTP 2.2 (2.2) 1.1 (1.1) 1.1 (1.1) 0.1 (0.1) 0.1 (0.1) 50 50

gPA 2.1 (2.1) 1.0 (1.0) 1.0 (1.0) 0.1 (0.1) 0.1 (0.1) 50 50

FF agMTP 1.4 (1.4) 0.7 (0.7) 0.7 (0.7) 0.1 (0.1) 0.1 (0.1) 50 50

gPA 1.2 (1.2) 0.6 (0.6) 0.6 (0.6) 0.0 (0.0) 0.0 (0.0) 50 50

SF(0.2) agMTP 1.4 (1.4) 1.0 (1.0) 0.5 (0.5) 0.1 (0.1) 0.0 (0.0) 5 29

gPA 1.4 (1.4) 1.0 (1.0) 0.4 (0.5) 0.1 (0.1) 0.0 (0.0) 5 29

SF(0.4) agMTP 1.2 (1.2) 1.1 (1.1) 0.1 (0.1) 0.1 (0.1) 0.0 (0.0) 5 70

gPA 1.1 (1.1) 1.0 (1.0) 0.1 (0.1) 0.1 (0.1) 0.0 (0.0) 5 70

(0, 0.4) PP gMCP 79.0 2.3 78.9 0.2 65.1 0 0

SB agMTP 86.7 (78.6) 0.2 (0.2) 86.6 (78.4) 0.0 (0.0) 77.5 (64.9) 98 2

gPA 86.6 (78.3) 0.1 (0.1) 86.4 (78.2) 0.0 (0.0) 77.2 (64.5) 98 2

FF agMTP 45.0 (40.8) 1.2 (1.2) 43.8 (39.6) 0.1 (0.1) 39.2 (32.8) 50 50

gPA 44.4 (40.1) 0.6 (0.6) 43.7 (39.5) 0.0 (0.0) 39.0 (32.6) 50 50

SF(0.2) agMTP 54.2 (54.0) 1.9 (1.8) 53.4 (53.3) 0.2 (0.2) 43.7 (43.5) 5 28

gPA 53.8 (53.7) 1.5 (1.5) 53.4 (53.3) 0.1 (0.1) 43.7 (43.5) 5 28

SF(0.4) agMTP 21.7 (21.7) 1.9 (1.9) 20.2 (20.2) 0.2 (0.2) 16.3 (16.3) 5 70

gPA 21.0 (21.0) 1.1 (1.2) 20.2 (20.2) 0.1 (0.1) 16.3 (16.3) 5 70

(0.3, 0.4) PP gMCP 85.1 64.4 80.7 46.8 68.0 0 0

SB agMTP 90.0 (83.3) 28.1 (25.5) 61.9 (57.8) 22.7 (18.8) 56.9 (49.7) 67 33

gPA 88.4 (80.9) 27.2 (24.3) 61.2 (56.6) 20.5 (16.4) 55.0 (47.1) 67 33

FF agMTP 82.7 (74.2) 37.6 (32.9) 45.1 (41.4) 30.2 (23.9) 41.4 (35.5) 50 50

gPA 77.8 (68.4) 34.1 (28.9) 43.7 (39.5) 25.2 (19.0) 39.0 (32.6) 50 50

SF(0.2) agMTP 78.7 (76.4) 62.4 (60.2) 54.9 (54.8) 46.8 (43.8) 45.9 (45.7) 5 28

gPA 76.8 (74.2) 60.6 (58.1) 54.8 (54.7) 44.1 (40.9) 45.8 (45.6) 5 28

SF(0.4) agMTP 73.2 (67.1) 66.9 (60.8) 21.0 (21.0) 52.3 (44.3) 17.4 (17.3) 5 69

gPA 68.4 (61.7) 62.1 (55.4) 21.0 (21.0) 45.5 (37.4) 17.4 (17.3) 5 69

(0.4, 0.4) PP gMCP 90.6 82.6 82.7 71.2 71.2 0 0

SB agMTP 94.4 (89.2) 47.2 (44.6) 47.2 (44.6) 43.8 (38.9) 43.8 (38.9) 50 50

gPA 93.2 (87.1) 46.6 (43.5) 46.6 (43.6) 42.0 (36.4) 42.0 (36.4) 50 50

FF agMTP 91.0 (84.0) 45.5 (42.0) 45.5 (42.0) 42.0 (36.5) 42.0 (36.4) 50 50

gPA 87.4 (78.9) 43.7 (39.5) 43.7 (39.4) 39.0 (32.5) 39.0 (32.5) 50 50

SF(0.2) agMTP 86.7 (85.2) 79.5 (78.1) 56.5 (56.4) 69.8 (67.3) 48.3 (48.2) 5 29
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(δ1, δ2) Rule(κ) Procedure π π 1 π 2 π 3 π 4 η 1 η 2

gPA 85.8 (83.9) 78.7 (76.9) 56.4 (56.3) 68.3 (65.2) 48.2 (48.0) 5 29

SF(0.4) agMTP 85.6 (81.4) 82.9 (78.8) 21.9 (21.9) 75.0 (68.1) 18.5 (18.5) 5 69

gPA 83.2 (78.0) 80.6 (75.4) 21.9 (21.9) 70.9 (62.8) 18.5 (18.5) 5 69

gMCP, graphical multiple comparison procedure; SB, select better; SF, safety; agMTP, adaptive graph-based multiple testing procedure; gPA, 
graph-based partitioning algorithm.
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