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Abstract: Every organ develops fibrosis that compromises functions in response to infections, injuries,
or diseases. The cornea is a relatively simple, avascular organ that offers an exceptional model to
better understand the pathophysiology of the fibrosis response. Injury and defective regeneration of
the epithelial basement membrane (EBM) or the endothelial Descemet’s basement membrane (DBM)
triggers the development of myofibroblasts from resident corneal fibroblasts and bone marrow-
derived blood borne fibrocytes due to the increased entry of TGF beta-1/-2 into the stroma from the
epithelium and tears or residual corneal endothelium and aqueous humor. The myofibroblasts, and
disordered extracellular matrix these cells produce, persist until the source of injury is removed, the
EBM and/or DBM are regenerated, or replaced surgically, resulting in decreased stromal TGF beta
requisite for myofibroblast survival. A similar BM injury-related pathophysiology can underly the
development of fibrosis in other organs such as skin and lung. The normal liver does not contain
traditional BMs but develops sinusoidal endothelial BMs in many fibrotic diseases and models.
However, normal hepatic stellate cells produce collagen type IV and perlecan that can modulate TGF
beta localization and cognate receptor binding in the space of Dissé. BM-related fibrosis is deserving
of more investigation in all organs.

Keywords: fibrosis; basement membranes; myofibroblasts; fibrocytes; corneal fibroblasts; TGF beta;
collagen type IV; cornea; skin; lung; liver

1. Introduction

Fibrosis is a common terminal pathology for numerous insults in most, if not all,
organs. For example, in the lung, fibrosis can be triggered by radiation, infection, toxic
exposures, hypersensitivity pneumonitis or unknown factors underlying idiopathic pul-
monary fibrosis [1]. Similarly, many insults can produce scarring stromal fibrosis in the
cornea, including viral infections, bacterial infections, trauma, chemical burns, and sur-
gical procedures [2]. While fibrosis often represents an end stage of irreversible organ
dysfunction, there are specific conditions where fibrosis may reverse spontaneously if the
inciting factors are eliminated. For example, myofibroblast-related scarring stromal fibrosis
of the cornea after laser vision correction photorefractive keratectomy (PRK) often resolves
spontaneously over time measured in months to years in both humans and rabbits [3,4].

Major advances have been made in understanding the factors underlying corneal
stromal fibrosis over the past few years. This research pointed to the critical roles of the two
major basement membranes (BMs) of the cornea, the epithelial basement membrane (EBM)
underlying the epithelium [5] and Descemet’s basement membrane (DBM) overlying the
corneal endothelium [6,7], in the pathophysiology of stromal fibrosis. Both the corneal EBM
and DBM modulate the passage of transforming growth factor (TGF) beta-1 and TGF beta-2
into the central stroma from the tears and epithelium [5] or residual corneal endothelial
cells and the aqueous humor [7], respectively. In both locations, injury and defective or
delayed regeneration of the corneal BMs leads to penetration of high levels of the TGF beta

Cells 2022, 11, 309. https://doi.org/10.3390/cells11020309 https://www.mdpi.com/journal/cells

https://doi.org/10.3390/cells11020309
https://doi.org/10.3390/cells11020309
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0001-8121-960X
https://doi.org/10.3390/cells11020309
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells11020309?type=check_update&version=2


Cells 2022, 11, 309 2 of 21

into the stroma that drive the development of myofibroblasts from at least two different
precursor cells. The pathophysiological mechanisms leading to fibrosis in the cornea are
likely relevant to fibrosis that develops in many other organs. This review will detail the
pathophysiology of fibrosis in the cornea and then provide examples where BM injury and
defective regeneration can underlie the development of fibrosis in other organs.

2. BM-Related Corneal Fibrosis

The cornea is an exceptional model to study fibrosis due to its relative simplicity,
normal transparency, available imaging modalities, and large variety of reproducible
wounding models. Corneal fibrosis responses can be separated into anterior EBM-related
and posterior DBM-related fibrosis, although severe injuries and infections often involve
both BMs and some fibrosis producing infections or immune-related diseases can enter
from the peripheral limbal blood vessels.

2.1. Normal Cornea Structure and Transparency

The normally transparent cornea (Figure 1A) is composed primarily of three tissues,
the epithelium, stroma, and corneal endothelium (Figure 2). The approximately 50 µm thick
corneal epithelium is a 5 to 7 layer thick nonkeratinized, stratified, squamous epithelium
that lies atop the EBM (Figure 2) and is bathed in tears produced by the accessory and main
lacrimal glands. The stroma is approximately 300 to more than 600 µm thick, depending
on the species, and is populated by keratocan-positive keratocyte fibroblastic cells that
function to maintain the unique packing of uniform diameter stromal fibers (Figure 3A,B)
that provides the cornea its transparency. The stromal ECM is primarily composed of
collagen type I, along with smaller amounts of collagen type III, IV, V, VI, VIII and XII [8].
The extracellular matrix (ECM) between the corneal stromal fibrils, that is sometimes
referred to as the “ground substance”, contains small leucine-rich proteoglycans (SLRPs),
including decorin, biglycan, lumican, keratocan, and fibromodulin [8]. Some species,
including humans, have an acellular condensation of the anterior stroma termed Bowman’s
layer [9]. The corneal endothelium [10], unlike vascular endothelium, develops from
neural crest and is a monolayer of cells that lies posterior to DBM (Figure 2) [11]. The
corneal endothelium cooperates with keratocytes to produce the DBM during development
and after injury [7]. The proliferative capacity of the corneal endothelial cells may vary
between species, with human endothelial cells thought to have a relatively low capacity to
proliferate, but this may be related to the ages of the animals studied [10].

The normal central cornea is avascular, but bone marrow-derived cells, including
fibrocytes, migrate into the stroma from the edge of the cornea (limbus) after corneal
injuries [12]. The corneal stroma is also richly innervated, primarily with sensory nerves
that arborize and terminate in the basal epithelium [13]. There are also normally small
numbers of immune cells, including resident macrophages and Langerhans cells in the
cornea [14].
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Figure 1. Slit lamp photographs of haze and scarring fibrosis in rabbit corneas. (A) Normal un-
wounded transparent cornea. (B) One month after −4.5D PRK a cornea has faint opacity (haze) within
arrows [5]. (C) One month after −9D PRK a cornea has dense scarring fibrosis within arrows [5].
(D) At 2 mo. after −9D PRK areas of clearing (lacunae, arrows) are developing within scarring
fibrosis [5]. (E) Dense scarring fibrosis 2 weeks after 5 mm surface alkali burn with 1 N NaOH.
Stromal neovascularization (arrowheads) begins to develop. (F) Scarring fibrosis has progressed
at 4 weeks after alkali burn. Stromal neovascularization (arrowheads) has progressed. (G) Dense
scarring fibrosis 1 mo. after 8mm Descemetorhexis. Stromal neovascularization (arrowheads) has
developed [7]. (H) Scarring fibrosis has diminished by 6 mo. after Descemetorhexis with iris details
now visible. Most of the opacity that remains is associated with the corneal neovascularization
(arrowheads) [7]. Mag. 20×.

Figure 2. Corneal BM components that modulate TGF beta-driven myofibroblast development and
fibrosis in unwounded rabbit corneas [5]. (A) Immunohistochemistry (IHC) for perlecan (Perl), as
well as laminin alpha-5 (LAMA5) [5]. (B) IHC for perlecan alone. (C) IHC for collagen type IV. Arrows
indicate the EBM with overlying epithelium (e) and arrowheads indicate Descemet’s membrane that
overlies the corneal endothelium, respectively, in all panels. S is stroma populated primarily with
keratocytes. Blue is DAPI stained nuclei. Mag. 200×.
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Figure 3. TEM of normal and fibrotic rabbit corneas. (A) Lower magnification image of an un-
wounded cornea showing the epithelium (e) and stroma (s) with a keratocyte (arrow). (B) Higher
magnification image showing the epithelium (e) with the underlying EBM. The arrows indicate the
lamina lucida anterior to the lamina densa of the EBM. In the stroma (s) note the uniform diameter of
the collagen fibrils, with some seen in cross-section and others longitudinally, and the highly ordered
packing of the fibrils. (C) In a cornea with severe fibrosis at 1 month after PRK, the stromal ECM is
highly disorganized (*), without evidence of regular fibrils or packing. The anterior stroma (S) is also
populated with many layered myofibroblasts (m). These images were previously unpublished but
from the study of Torricelli et al., Investig. Ophthalmol. Vis. Sci. 2013, 54, 4026–4033.

2.2. The Corneal Wound Healing Response to Injury

The first observable stromal cellular change after corneal injury is apoptosis (Figure 4)
of the keratocytes in proximity to the injury to the epithelium [15] or the endothelium [16]
that is mediated by interleukin (IL)-1 alpha released by the injured epithelial and/or en-
dothelial cells and the activated Fas/Fas ligand system [17,18]. The extent of the apoptosis
response is proportional to the severity of the injury to the epithelium and/or endothe-
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lium [19], and this response is thought to have evolved as an innate response to produce a
cellular firebreak in rejoinder to viral infections to the epithelium and/or endothelium that
have the capacity to spread to stromal cells and into the eye [20].

Figure 4. Keratocyte apoptosis in response to injury in rabbit corneas. (A) TUNEL assay at 24 h after
−4.5D PRK that entails epithelial debridement and then anterior stromal ablation with the excimer
laser. Arrows indicate anterior stromal keratocytes undergoing apoptosis. The apoptotic cells can
be detected with TEM within moments of epithelial scrape but become strongly TUNEL+ from 4
to more than 24 h. Many bone marrow-derived cells such as monocytes and fibrocytes detected
with markers such as CD34, CD45, and CD11b infiltrate the stroma from the limbus and many also
undergo apoptosis in the first 24 to 72 h. (B) At 24 h after −9D PRK, with twice the number of excimer
laser pulses, many more anterior stromal keratocytes (arrows) undergo apoptosis. Thus, there is a
correlation between the magnitude of the anterior corneal injury and the number of keratocytes that
undergo early apoptosis [19]. (C) At 1 h following an 8 mm corneal endothelial scrape injury, many
posterior stromal keratocytes (arrows) undergo apoptosis detected with the TUNEL assay. Note the
edema of the stroma that also occurs immediately after endothelial injury. The arrowhead indicates
DBM stained (green) for BM component nidogen-1. Figures (A,B) were previously unpublished but
from the study of Mohan et al., 2003 [19]. Figure (C) reprinted with permission from Medeiros et al.
Exp. Eye Res. 2018; 172:30-35.

Injury to the epithelium and underlying EBM results in the entry of large amounts
of TGF beta-1 and TGF beta-2 (Figure 5) from the corneal epithelium and tears into the
stroma [5], in addition to other growth factors such as the platelet-derived growth factor
(PDGF). Similarly, injury to the corneal endothelium and overlying DBM results in the entry
of large amounts of TGF beta-1 and TGF beta-2 into the stroma from the aqueous humor
in the anterior chamber of the eye and residual peripheral corneal endothelial cells [7]. In
both the epithelial-stromal and endothelial-stromal injuries some stromal cells also begin
to produce TGF beta isoforms, but this production is relatively limited compared with
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the TGF beta that enters from tears, epithelium, endothelium and aqueous humor [5,7].
The TGF beta-1 and -2, along with PDGF, trigger keratocytes in proximity to the injury,
that escape the initial wave of keratocyte apoptosis, to differentiate into vimentin-positive,
keratocan-negative corneal fibroblasts. These corneal fibroblasts, along with fibrocytes that
enter the stroma from the limbal blood vessels [12,21], begin a developmental program
to transition into alpha-smooth muscle actin (SMA)-positive, desmin-positive, vimentin-
positive, keratocan-negative myofibroblasts, and that development only continues as long
as requisite levels of TGF beta are available in the stroma where these precursors exist.
Otherwise, if stromal TGF beta levels decline, the precursors undergo apoptosis or transition
back to their cell types of origin [5,7]. That myofibroblast development from precursor
corneal fibroblasts and fibrocytes occurs over a period of weeks to months depending
on the severity of injury, the localized concentration of TGF beta-1 and TGF beta-2 in the
stroma [5,7], and the species. For example, after high correction photorefractive keratectomy
(PRK) surgery, scarring stromal fibrosis develops 3 to 4 weeks after surgery in rabbits [5] but
typically does not develop until three to 6 months after surgery in humans [3]. Critically,
whether the development of corneal fibroblast- and fibrocyte-derived precursor cells receive
sufficient and ongoing levels of TGF beta-1 and TGF beta-2 depends on whether, or not,
the EBM and/or DBM regenerate their normal structures and functions in a timely manner
(or in the case of DBM is replaced surgically by transplantation) [5,7]. In turn, whether the
EBM regenerates in a timely manner depends on the severity of the injury (and, therefore,
the level of the initial keratocyte apoptosis response), the irregularity of the stromal surface
induced by the trauma or surgery (that interferes mechanically with EBM regeneration),
and likely genetic factors [22].

Figure 5. Cont.
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Figure 5. Localization of TGF beta-1 and TGF beta-2 in unwounded and wounded rabbit corneas.
(A) TGF beta-1 (TGFb1) is produced (large arrows) in corneal epithelium (e) and endothelium (large
arrowheads) and is also present in tears and aqueous humor in the anterior chamber (AC) [5]. In
unwounded cornea, collagen type IV (COL IV) is detected in the EBM (small arrows) and in DBM
(small arrowheads). (B) TGFb2 is not expressed in the corneal epithelium or corneal endothelium
(arrowhead indicates a small area of visible corneal endothelium) but is present in tears (produced
by accessory and main lacrimal glands) and in the aqueous humor. (C) In corneas that do not
develop fibrosis or in corneas that develop fibrosis that subsequently resolves, as in this cornea at
8 weeks after PRK, TGFb1 is retained from entering the stroma by the fully regenerated EBM (arrows)
and regeneration of the superficial epithelial barrier function (EBF, small arrowheads). Note no
SMA-positive myofibroblasts remain, but a few vimentin-positive, SMA-negative corneal fibroblasts
persist just posterior to the EBM. (D) In a cornea that develops fibrosis 4 weeks after PRK, high levels
of TGFb1 (and TGFb2 not shown) accumulate throughout the epithelium (e) and into the anterior
stroma (s) without evidence of EBM regeneration or EBF. Numerous SMA-positive myofibroblasts
(arrows) and SMA-negative, vimentin-positive corneal fibroblasts are present in the sub-epithelial
stroma. (E) The same section as in D, but showing only TGFb1, highlights the penetration of the
TGFb1 into the anterior stroma (arrows), although some stromal cells also produce limited amounts
of TGFb1 [5]. (F) In a rabbit cornea at 4 weeks after Descemetorhexis removal of an 8 mm disc of
DBM and corneal endothelium, TGFb1 (arrows) is localized at the posterior corneal surface still
devoid of DBM or endothelium. Much of the posterior stroma (bracket) contains collagen type IV
(COL IV) not associated with DBM that is upregulated in corneal fibroblasts by TGFb1. Since COL IV
directly binds TGFb1 in competition with cognate TGF beta receptors, it is hypothesized this COL IV
is produced to downregulate TGFb1 effects on cells in the posterior stroma, including myofibroblast
precursors [7]. A similar upregulation of non-EBM COL IV occurs in the anterior stroma after injuries
such as PRK. Panels A and B are previously unpublished images from study de Oliveira et al. Exp
Eye Res, 2021;202:108325. Panels C, D and E reprinted with permission from de Oliveira et al. Exp
Eye Res, 2021;202:108325. Panel F reprinted with permission from Sampaio LP et al. Exp Eye Res.
2021;213:108803.

2.3. Minor Injuries and Non-Fibrotic Healing in the Anterior Cornea

Relatively minor injuries to the anterior cornea, such as corneal abrasions or laser
vision correction PRK for low myopia, usually heal with little stromal opacity (Figure 1B)
and no stromal fibrosis (Figure 6B) [5]. The priority to prevent fibrosis after these injuries
is for the epithelium to first close within a period of 1 to 2 weeks [5], and therefore, that a
persistent epithelial defect does not develop [23]. This is because the epithelial cells, and
not keratocytes or corneal fibroblasts, at least early in the regeneration process, produce
self-polymerizing laminins 511 and 521 that initiate BM regeneration [24], and trigger the
subsequent binding of other BM components, such as perlecan and nidogens, to form the
nascent EBM [5]. Thus, no EBM regeneration occurs in an area of the cornea where the
epithelium does not close, and if it does not close, stromal fibrosis invariably develops in
that area [23]. The critical importance of the fully regenerated EBM (and DBM that will be
discussed later in this paper) is that it contains the components perlecan and collagen type
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IV that modulate the passage of TGF beta-1 and TGF beta-2 through the BM (from the tears,
epithelium, endothelium, and/or aqueous humor) and into the stroma [5,7,25]. Perlecan
produces a high negative charge due to its three heparan sulfate side chains [24,26] and,
therefore, generates a non-specific barrier to TGF beta-1 and TGF beta-2 passage through
the EBM (or DBM) into the stroma [5]. Collagen type IV directly binds TGF beta-1 or TGF
beta-2 [2,27,28]; therefore, EBM (or DBM) collagen type IV also impedes the movement of
the TGF betas through the BM into the corneal stroma [5,25]. Nidogen-1 and nidogen-2 in
the EBM [5,25] also bind PDGF [29], and thereby modulate the transition of keratocytes to
both corneal fibroblasts and myofibroblasts [30].

Figure 6. Stromal cellularity of a normal cornea and corneas after injuries that heal without fibrosis and
with fibrosis in rabbits. (A) The unwounded corneal stroma (s) is populated with keratocan-positive
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keratocytes between the epithelium (e) and corneal endothelium (arrowheads). At the vimentin
(vim) antibody concentration used [5,25], only a few anterior stromal keratocytes were vimentin
positive. No SMA-positive cells were detected. (B) One month after −4.5D PRK, there were numerous
vimentin-positive corneal fibroblasts in the anterior stroma but the stroma was mostly populated with
keratocan-positive keratocytes. No SMA-positive myofibroblasts were detected. (C) One month after
−9D PRK, the anterior stroma is populated with SMA-positive, vimentin-positive myofibroblasts
and SMA-negative, vimentin-positive corneal fibroblasts (and possibly fibrocyte progeny). (D) At
1 month after a one-minute 1N NaOH alkali burn that also destroyed the endothelium and Descemet’s
membrane, the full-thickness corneal stroma is filled with myofibroblasts and corneal fibroblasts.
Few keratocytes are detected. (E) At 1 month after infection with Pseudomonas aeruginosa keratitis
sterilized with topical tobramycin there is severe opacity of the cornea in a slit lamp photograph.
In IHC, approximately 90% of the stroma is filled with SMA-positive myofibroblasts, and in this
cornea sparred only the most posterior stroma adjacent to the corneal endothelium. In a TEM
image of this cornea, no lamina lucida/lamina densa is detected. The stroma (s) has disorganized
ECM (*) and numerous myofibroblasts (m). (F) At 1 month after infection with Pseudomonas
aeruginosa keratitis sterilized with topical tobramycin, the opacity in the cornea decreases and
numerous transparent areas called lacunae (black arrows) develop. On IHC in this cornea where the
Pseudomonas aeruginosa extended through the entire cornea and destroyed the corneal endothelium,
SMA-positive myofibroblasts populate the posterior stroma but myofibroblasts disappeared in the
anterior stroma. Corneal neovascularization (arrows) with SMA-positive pericytes develops. In a
TEM image, lamina lucida/lamina densa (arrowhead) was regenerated. The stroma (s) had organized
collagen fibrils similar to normal unwounded stroma and no myofibroblasts were detected in the
anterior stroma. (G) At 1 month after Descemetorhexis (DMR), the posterior stroma is filled with
SMA-positive myofibroblasts. The more anterior stroma in this section had keratocan-positive
keratocytes. An intermediate layer of SMA-negative, keratocan-negative, vimentin-positive corneal
fibroblasts (and likely fibrocyte progeny) are present between the keratocyte and myofibroblast layers.
(H) At 6 months after DMR, the corneal endothelium (arrowheads) regenerates. Most of the posterior
stroma is repopulated with keratocan-positive keratocytes, except adjacent to the corneal endothelium
and regenerated DBM there were numerous keratocan-negative, SMA-negative, vimentin-positive
corneal fibroblasts and a few remaining SMA-positive myofibroblasts. e is epithelium and s is stroma
in all panels. Blue is DAPI-stained nuclei in all panels. Panels B and C reprinted with permission
from de Oliveira et al. Exp Eye Res 2021:202;108325. Panels E and F reprinted with permission
from Marino et al. Exp Eye Res. 2017;161:101-105. Panels G and H reprinted with permission from
Sampaio LP et al. Exp Eye Res. 2021;213:108803.

Once the EBM regenerates, TGF beta levels in the anterior stroma decline and precursor
cells in transition to myofibroblasts either undergo apoptosis or, in the case of corneal fi-
broblasts, can revert to keratocytes [5,25]. Thus, the progression to myofibroblast-mediated
fibrosis is halted. The relatively small amounts of disorganized ECM components, such as
collagen type I, secreted by the corneal fibroblasts, are subsequently reorganized and/or
phagocytized [31] by keratocytes, thereby returning the cornea to transparency [5,25].

2.4. Major Injuries and Fibrotic Healing in the Anterior Cornea

More severe injuries to the anterior cornea, such as chemical burns, lacerations, severe
trauma, microbial infections, or laser vision correction PRK for high myopia (without intraop-
erative topical mitomycin C), commonly heal with significant stromal opacity (Figure 1C,E,F)
and the generation of myofibroblasts and stromal fibrosis (Figure 6C–F) [5,25,32,33]. In these
more severe injuries to the anterior cornea, even if the epithelium closes, the EBM is not
fully regenerated in a timely manner (Figure 3C), with defective incorporation of perlecan
being the best-characterized abnormality (Figure 7). Therefore, TGF beta-1 and TGF beta-2
penetrate the stroma to persistent levels (Figure 5D,E) adequate to drive the development of
myofibroblasts (Figure 6C–E) from precursor corneal fibroblasts and fibrocytes [12,21,33].
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Figure 7. Defective perlecan EBM incorporation in a PRK injured rabbit cornea that developed
scarring stromal fibrosis and myofibroblasts. Confocal microscopy Imaris 3D constructed images
of triplex IHC for laminin alpha-5, perlecan and nidogen-1 in an unwounded control cornea and
corneas with moderate −4.5D PRK and severe −9D PRK epithelial-stromal injury [5]. (A) Laminin
alpha-5 (green) was detected in the epithelium (e) and in the EBM (arrows) in an unwounded cornea.
Two DAPI-negative vesicles with laminin alpha-5 (arrowheads) are present in the anterior stroma
adjacent to the EBM. These were likely produced by keratocytes to contribute to maintenance of
the EBM. Perlecan (red) was detected in the EBM (arrows), and in vesicles in the anterior stroma
(arrowhead). Nidogen-1 (blue gray) is a major component in the EBM (arrows) and is present in
secretory vesicles in the anterior stroma (arrowheads). (B) A cornea at 1 month after surgery that
had moderate epithelial-stromal injury (−4.5D PRK) and did not develop myofibroblasts or scarring
stromal fibrosis (see Figure 1B). The laminin alpha-5, perlecan and nidogen-1 localization in the EBM
are similar to that noted in the unwounded cornea (large arrows), except there are increased nidogen-1
(arrowheads) in the subepithelial stroma surrounding stromal keratocyte/corneal fibroblast cells.
Vesicles (small arrows) that are DAPI-negative are present in the anterior stroma and contain one or
more of the EBM components. (C) In a cornea 1 month after more severe epithelial-stromal injury
(−9D PRK) there is greater stromal opacity and myofibroblasts (see Figure 1C). Laminin alpha-5
and nidogen-1 (arrows) EBM localization is similar to that noted in the unwounded control cornea.
Perlecan, however, was not detected at significant levels in the EBM, even though it is present
within and surrounding myofibroblasts (arrowheads) in the anterior stroma. Stromal nidogen-1
(arrowheads) surrounding myofibroblasts is also present at high levels in the anterior stroma. Blue
in all panels is DAPI-stained nuclei. e is epithelium. * indicates artifactual defects in the epithelium
which are often noted in PRK corneas that are cryo-sectioned in the first 1 to 2 months after surgery
while the EBM has not fully regenerated. Reprinted with permission from de Oliveira et al. Exp Eye
Res 2021:202;108325.
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There is a breakdown in the repair of the EBM in these corneas likely because the initial
wave of keratocyte apoptosis and/or necrosis elicited by the injury is sufficiently large
(Figure 6B) [15,18] that there are insufficient numbers of proximate keratocytes and corneal
fibroblasts to coordinate the repair with the epithelium through the contribution of perlecan,
nidogens, and collagen type IV [5,25,33]. Many of these injuries also produce severe anterior
stromal surface irregularity that mechanically impedes EBM regeneration [34]. There can
be other yet unrecognized factors in the cornea that inhibit the full regeneration of EBM,
with lamina lucida and lamina densa, signaling maturity of the EBM [35].

Fibrosis must not be thought of only in terms of pathology. Clearly, the process serves
an important protective function to maintain morphology in the organs where it develops,
at least until excessive fibrosis leads to an advanced compromise of organ function. A
good example of this principle is the corneal response to Pseudomonas aeruginosa keratitis
(Figure 6E) [32]. If fibrosis did not rapidly develop in this quickly progressing and severe
infection of the cornea, then perforation of the cornea and loss of the eye would occur much
more frequently than is observed.

Even with severe full-thickness fibrosis of the corneal stroma caused by trauma or
infection, there can be a surprising return of transparency and function [32,36]. Typically,
this resolution of fibrosis occurs over a period of many months to years as the EBM and
DBM are regenerated and myofibroblasts that are deprived of their ongoing, requisite
supply of TGF beta undergo apoptosis [7,32]. Thus, the EBM can eventually be fully
regenerated as keratocytes and/or corneal fibroblasts penetrate the fibrosis and cooperate
with the corneal epithelium to restore a mature EBM [32,33]. Along with restoration of the
normal epithelial barrier function (Figure 5C) [5], the mature EBM markedly diminishes the
passage of TGF beta-1 and TGF beta-2 into the corneal stroma from the tears and corneal
epithelium, and triggers myofibroblast apoptosis [37]. At this point, corneal fibroblasts
and keratocytes repopulate that fibrotic stroma and re-establish the normal ultrastructure
of the stroma associated with transparency by phagocytosis and reorganization [31], and
in some cases eventually return the stroma to full transparency [5,25]. Essentially, the
corneal fibroblasts and keratocytes clean up the disorganized ECM mess produced by the
myofibroblasts.

Two or more potential myofibroblast precursor cells have been reported in well-studied
organs, including skin, lung, and cornea [21,38–40]. The best characterized corneal my-
ofibroblast precursors are fibroblasts derived from keratocytes and bone marrow-derived
fibrocytes [21,22,30]. Epithelial to mesenchymal transition (EMT) and endothelial to mes-
enchymal transition (EndoMT) leading to myofibroblast development have not been well-
characterized in the cornea. An in vitro study with corneal stromal and bone marrow
(BM)-derived cells found that the numbers of SMA+ myofibroblasts generated from either
keratocyte-derived precursor cells or BM-derived precursors were highest when both pre-
cursors were co-cultured in the same culture flask (juxtacrine), as when the two precursor
cells were co-culture in different compartments of a Transwell System (paracrine) [41].
This suggests that the two different myofibroblasts cells potentiate the overall fibrosis re-
sponse when they are present together in the corneal stroma. A proteomic study of corneal
fibroblast-derived myofibroblasts compared with bone marrow-derived myofibroblasts
found that 29% of proteins were differentially expressed between these two myofibroblast
types [42], including proteins that contribute to the structure of fibrotic tissue, such as
collagen types III, VII, and XI. Clues to progenitor-dependent differences in myofibroblasts
were suggested by bioinformatic analysis of the differentially expressed proteins in that
study [42]. Thus, canonical pathways involving oxidative phosphorylation, mitochondrial
dysfunction, and sirtuin signaling were predominant in cornea-derived myofibroblasts,
whereas pathways involving integrin signaling, glycolysis I, and remodeling of epithe-
lial adherens junctions were predominant in BM-derived myofibroblasts. The Ingenuity
Pathway Analysis of the differentially expressed proteins in these two myofibroblasts
were also different, suggesting molecular and cellular functional differences [42]. Since
BM-derived myofibroblasts produced much more collagen type XI and collagen type III,
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they likely contributed greatly to structure and strength of the fibrotic tissue in the cornea.
Alternatively, since corneal keratocyte-derived myofibroblasts produced more collagen
type VII, they more likely modulated cytokine production by adjacent fibroblasts in the
healing stroma [42]. Thus, myofibroblasts derived from different precursors in a fibrotic
tissue should not be thought of as equivalent, but rather as cells with similar phenotypes
that contribute differentially to enhance the overall fibrosis response.

2.5. Injuries and Fibrotic Healing in the Posterior Cornea

The processes involved in the development of posterior corneal fibrosis involving DBM
and the corneal endothelium (Figure 1G,H) [6,7] parallel those involving the EBM and the
corneal epithelium in the anterior cornea [5,11]. Thus, injury and delayed regeneration of
DBM leads to the penetration of high levels of TGF beta-1 and TGF beta-2 into the posterior
stroma, although the primary sources of the fibrotic growth factors after posterior injury are
from the aqueous humor and residual corneal endothelial cells [7]. Similarly, the precursor
cells to myofibroblasts in the posterior cornea are fibroblasts derived from keratocytes and
bone marrow-derived fibrocytes (Figure 6F–H) [6,7]. However, regeneration of DBM, if it
occurs at all, tends to occur over a much longer period, measured in many months or years
after injury, than regeneration of the EBM after its injury [7]. Thus, posterior corneal fibrosis
tends to persist without corneal transplantation, especially in adult humans where there is
limited endothelial proliferation in the absence of pharmacological manipulation [10].

3. Other Candidate Organs Where BM Injury Can Be Associated with Fibrosis
3.1. Skin

The skin BM (Figure 8A) [43] that separates the keratinized squamous epithelium
from the underlying dermis has obvious parallels to the cornea. However, skin as an
organ is exceedingly more complex than the cornea because of the accessory organs,
such as hair follicles and sebaceous glands, as well as the vascularization of the dermis.
This complexity is likely the explanation for why studies that parallel those for corneal
fibrosis, for example after mechanical scrape injury, have not been reported for skin where
unambiguous identification of cell phenotypes can be problematic. Nonetheless, there are
numerous parallels to skin fibrosis caused by traumatic and thermal injuries [44] and in the
skin manifestations of scleroderma [45].

Although there is some disagreement between different studies, that are likely related
to antibody differences, keratinocytes produce TGF beta-1 and TGF beta-2 [46–48]. Other
sources of skin TGF beta likely include bone marrow-derived cells in the dermal blood
vessels and dermis, including monocytes and macrophages [49], and dermal fibroblasts
themselves [50].

Skin has many potential precursors to myofibroblasts in fibrosis due to trauma and
burns, as well as diseases such as scleroderma. These include dermal fibroblasts [51],
keratinocytes via EMT [52,53], adipocytes [54], as well as pericytes [55] and fibrocytes [56]
that migrate from the dermal blood vessels.

These parallels with the cornea, and similarities in anatomy and injuries, suggest
that defective BM regeneration after skin injuries can have a role in dermal myofibroblast
development and skin fibrosis. It would be of interest to determine if traumatic and thermal
skin fibrosis is associated with defective perlecan incorporation into the keratinocyte BM
similar to the cornea [5,25].
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Figure 8. Organs where BMs can have a role in fibrosis [43]. (A) TEM in normal rabbit skin. The
basal keratinocyte (k) and dermis (d) are separated by the BM with lamina lucida (arrows) and
lamina densa. Note the larger and more disorganized fibrils in the dermis compared with corneal
stroma in Figure 3b. (B) TEM in normal rabbit lung. The alveolar BM with lamina lucida (arrow)
and underlying lamina densa separates the alveolar epithelial cell type I (AE cell type I) from the
interstitial space. (C) IHC for SMA in normal human lung primarily stains pericytes associated
with blood vessels. There is little staining for SMA in the normal lung parenchyma. Blue is DAPI
stained nuclei. (D) In a human lung with advanced idiopathic pulmonary fibrosis (IPF) SMA-positive
myofibroblasts are present throughout the parenchyma. Blue is DAPI stained nuclei.

3.2. Lung

In some ways, the monolayer of alveolar epithelial type I cells overlying the alveolar
BM (Figure 8B) and underlying interstitial space in lung alveoli is similar in organization
to that of the corneal endothelial cells, Descemet’s membrane, and corneal stroma. Many
toxic agents associated with idiopathic pulmonary fibrosis (IPF) (Figure 8C,D) and other
fibrotic lung pathologies, such as tobacco smoke, bleomycin, paraquat, and butylated
hydroxytoluene, produce chronic injury to the alveolar epithelial type I and II cells, and
likely injury to the underlying BM [57,58]. Although there has been limited direct study of
the ultrastructure and composition of the alveolar BM in these conditions, ultrastructural
abnormalities, breaks, and convolution of the alveolar BM were clearly noted in transmis-
sion electron microscopic studies of IPF and other fibrotic lung diseases [57,58]. Fibrosis in
interstitial lung diseases has been classically identified as fibrous tissue accumulation in
the pulmonary interstitium within the alveolar walls bounded by the alveolar epithelial
and capillary endothelial BMs [57]. Bowden [59] pointed out that insults that delayed the
regeneration or interfere with the continuity between alveolar epithelial cells predispose
to the development of pulmonary fibrosis. He also noted that delayed regeneration of the
endothelial cells within the alveolus after some injuries, such as irradiation or butylated
hydroxytoluene, also led to the accumulation of fibrotic myofibroblast cells [59]. Alveolar
epithelial cell or alveolar endothelial cell injury is likely associated with injury and/or
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abnormal maintenance of the associated BMs which would likely alter BM regulation of
TGF beta localization in these disorders.

The alveolar BM and endothelial BM in lung, similar to the corneal BMs and BMs in
other organs, are composed of laminins, nidogens, perlecan, collagen type IV, and other
components, some of which are tissue-specific [60,61]. These studies have shown that
alveolar epithelial type I cells and endothelial cells produce these lung BM components,
but other lung cells may also make contributions.

Several potential progenitors to myofibroblasts in lung fibrotic diseases have been
supported by studies. A huge body of data was generated related to the alveolar epithelial
type I or II cells themselves being myofibroblast progenitors via EMT in which TGF beta
and/or other growth factors or cytokines trigger a major change in phenotype of the epithe-
lial cells to mesenchymal myofibroblasts [62–65]. Kim and coworkers [66] engineered mice
expressing the marker beta-galactosidase (beta-gal) exclusively in lung epithelial cells and
then transiently overexpressed active TGF beta-1 in the lungs in vivo using an adenoviral
vector (adTGF-β1) administered intranasally versus vehicle. After 21 days, lung sections
revealed moderate fibrosis in the adTGF-β1-treated, but not vehicle-treated, mice. Clusters
of x-gal-positive cells were noted within areas of lung with collagen deposition and some of
the x-gal-positive cells were also alpha-smooth muscle actin-positive, supporting the EMT
process occurring in vivo. Cell lineage tracing studies, however, raised questions about
the importance of EMT in pulmonary fibrosis [67–69]. Therefore, EMT as a major source
of myofibroblasts in pulmonary fibrosis remains controversial. Bone marrow-derived,
blood-borne fibrocytes have been shown in several studies to have an important role in
the generation of myofibroblasts in pulmonary fibrosis [70–73]. Alveolar septal fibroblasts
have long been seen as likely progenitor cells to myofibroblasts [67,74]. One study found
that pericytes were an important progenitor to myofibroblasts in fibrotic lungs [69], but that
remains controversial [67]. Finally, there is a possibility that endothelial to mesenchymal
transition (EndoMT) can have a role in some fibrotic lung diseases and; therefore, vascular
endothelial cells can serve as the progenitor cells in these lung diseases [75]. Likely, as
in the cornea, there are several progenitors to myofibroblasts in fibrotic lungs and these
myofibroblasts may have differing functions in the fibrosis response [42].

There is an old maxim in criminal and civil litigation that can be briefly summarized
as “follow the money.” In fibrosis research, the analogous maxim is “follow the TGF beta”
because without excessive production or activation, or anomalous localization, of TGF
beta, it is unlikely fibrosis will develop in a tissue. In the lung, there are several potential
sources of TGF beta that have been associated with fibrotic lung diseases, many of these
are associated with chronic injury to the alveolar epithelium [76]. These sources include
alveolar macrophages, neutrophils, eosinophils, endothelial cells, fibroblasts, “activated
alveolar epithelial cells,” and even the myofibroblasts themselves once they develop in lung
tissues [76–82]. Type II alveolar epithelial cells and interstitial fibroblasts were also shown to
express connective tissue growth factor (CTGF), a growth factor associated with fibrosis in
which the transcription is activated by TGF beta, in IPF [83]. Many of the myriad activators
of latent TGF beta are present in healthy and fibrotic lung tissues and the expression and
localization of these TGF beta activators is likely important in the pathophysiology of many
fibrotic lung diseases [2,84].

It seems likely that chronic injury to the alveolar epithelium [76] would also lead to
damage and possibly altered composition of the associated alveolar BM, although this has
been little studied. One study [85] found in a bleomycin model of fibrosis in hamsters
that there was focal injury to the alveolar epithelial cells and the alveolar epithelial BM
associated with acute inflammation by 6 days after bleomycin exposure. The BM damage
included denudation and thickening of the alveolar epithelial BM. By 60 days after exposure,
although the alveolar epithelium had regenerated, there remained BM abnormalities of
thickening and duplication of the alveolar epithelial BM that was most prominent in the
fibrotic areas of the lung. No alterations in the capillary endothelial BM were noted in
this model. Studies such as these can be especially revealing if they included time course
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experiments after injury with multiplex immunohistochemistry for BM components such
as perlecan, collagen type IV, nidogens, and laminins, similar to studies performed in the
cornea [5,25].

In vitro studies of alveolar BMs have found using rat alveolar type II cells transfected
with the SV40-large T antigen gene, to induce extended life of the cells, that were then
propagated on type I collagen matrix gels [86]. Only when pulmonary fibroblasts were
present in the gel did the alveolar cells produce a thin continuous BM. These alveolar
BMs contained the typical BM components, including the perlecan and collagen type IV
modulators of TGF beta localization by BMs [26–29], as well as laminins and nidogens. In
that study, pulmonary fibroblasts supplied soluble components to the generating BM [86],
similar to what was found for keratocyte/corneal fibroblast contributions to regeneration
of the epithelial BM in corneas [5,25]. Another group confirmed the importance of alveolar
epithelial-pulmonary fibroblast interactions in the generation of the alveolar epithelial BM
in a similar in vitro mouse model [87].

These similarities to BM changes in corneas suggest that the alveolar BM has a role
in modulating alveolar macrophage or other cellular TGF beta localization into the acinar
interstitial spaces to modulate myofibroblast development from septal fibroblasts and
fibrocytes in conditions where there are chronic insults to acinar epithelial cells, for example,
caused by smoke, bleomycin, paraquat, butylated hydroxytoluene, and other agents.

4. Liver Fibrosis: Capillarization of Hepatic Sinusoids Associated with the Generation
of Endothelial BMs

The liver is a structurally unique organ where BMs do not have a role in normal
physiology, but the appearance of BMs likely contributes to the pathophysiology of fibrosis.
This is because the distinctive organization of hepatic tissue necessary for its functions
requires direct cellular contact to perform detoxification, modification, and excretion of
endogenous and exogenous substances, including toxins. Thus, there are no BMs associated
with hepatocytes, endothelial cells, vascular channel sinusoids or the spaces of Dissé in
normal liver (Figure 9). Hepatic stellate cells (HSCs) exist in a quiescent state within this
complex network of extracellular matrix in the space of Dissé. HSCs, previously called
vitamin A-storing cells, lipocytes, interstitial cells, fat-storing cells, or Ito cells, however,
secrete laminins, proteoglycans (including perlecan) and collagens (including collagen type
IV) to contribute to the local extracellular matrix. HSCs are normally important storers of
vitamin A [88–90]. Nidogen-1 and nidogen-2 were also detected in precursors to HSCs
during liver development in mice using in situ hybridization [91]. It is interesting that four
major components of BMs are produced but no traditional BMs are detected using TEM in
proximity to hepatocytes, endothelial cells, the vascular channels of the sinusoids, or the
spaces of Dissé in normal liver. Presumably, this is because the makeup of this ECM in the
space of Dissé does not include properly localized, self-polymerizing laminins required to
initiate BM formation [24], does not have the appropriate stoichiometry of BM components
for BM assembly, or contains other components that actively inhibit BM formation.

A recent review by Karsdal et al. [92] emphasized ECM changes that occur in liver fi-
brosis related to BM components and the interstitial matrix (IM) and how they are different
depending on the etiology of the injury. For example, the fibrosis pattern of early-stage
chronic viral hepatitis is characterized as a periportal fibrosis with increased interstitial
collagens and dense peribiliary BMs [92]. Conversely, fibrosis due to alcoholic or nonalco-
holic steatohepatitis (NASH) is characterized by pericellular accumulation of BM proteins
and production of small amounts of collagen type III and other fibrillar collagens by HSCs.
Increased collagen type IV is the first sign of early fibrosis in NASH [92].

In many chronic liver diseases, a pathological finding often noted is what is referred to
as “capillarization of hepatic sinusoids” [93]. This includes the formation of extraneous BM
beneath the endothelial cells of the sinusoids, the loss of the normal endothelial fenestrations
(defenestration) (Figure 9) and the transformation of sinusoidal endothelium to a more
vascular type of endothelium. These pathophysiological changes are thought to interfere
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with the exchange of materials between the sinusoidal blood and the hepatocytes [94].
Thus, in liver the generation of sinusoidal BMs in fibrosis is detrimental to liver function.
Capillarization of hepatic sinusoids is non-specific and can occur with alcoholic liver
fibrosis, autoimmune hepatitis, and primary biliary cirrhosis in humans and in animal
models it can be induced in hepatic fibrosis models triggered by dimethylnitrosamine,
carbon tetrachloride, and selenium [93]. Capillarization is accompanied by an increase
in collagen type IV and collagen type XVIII content within the space of Dissé [95,96]. A
similar abnormality, that is termed “pseudocapillarization of sinusoids,” has been noted in
livers of the elderly without fibrosis [97,98].

Figure 9. TEM of normal liver in the rabbit. No BM is associated with hepatocytes, endothelial cells
(e), vascular channel sinusoids or spaces of Dissé (D). The hepatocyte has processes (arrowheads) that
extend into the space of Dissé. The sinusoids have a discontinuous, highly fenestrated endothelial lining.
Neither the hepatocytes nor endothelial cells have BMs that separate them from the space of Dissé.
Mag. 30,000×. Reprinted with permission from Saikia et al. Cell and Tissue Res, 2018;374:439-453.

What is the ongoing source of TGF beta that drives liver fibrosis? Most etiologies for
fibrosis, such as viral infections, autoimmune disorders, allergic diseases, and toxic expo-
sures, are associated with chronic inflammation and many investigations have supported
macrophages as the primary source of TGF beta-1 that drives fibrosis [79,99,100]. However,
this remains controversial since other cells, including Kupffer cells, liver sinusoidal en-
dothelial cells, resident dendritic cells, and even hepatic stellate cells, have been shown to
produce TGF beta-1 [101]. In one study, platelet TGF beta-1 was found to have an important
role in liver fibrosis induced by carbon tetrachloride in mice [102]. It is possible that which
cells produce the pro-fibrotic TGF beta-1 (and TGF beta-2) depends on the specific liver
disorder and the stage of development of fibrosis.

Similarly, it remains controversial which cells give rise to myofibroblasts in liver fibro-
sis. Many studies in liver fibrosis of varying etiologies have focused on HSCs being the main
precursor cells of myofibroblasts that populate the organ during fibrosis [90,99,103,104].
However, in a study that used lineage fate tracing methods, Mederacke and coworkers [104]
concluded that while HSCs were the dominant progenitor to myofibroblasts regardless of
the etiology of liver fibrosis, there were other precursors as well. Thus, there is also evi-
dence that bone marrow-derived fibrocytes generate liver myofibroblasts [105,106]. There
is also evidence, albeit controversial, that hepatocytes or cholangiocytes via EMT [107] and
sinusoidal endothelial cells via EndoMT [108] can serve as progenitors to myofibroblasts.
What other precursors besides HSCs contribute to fibrosis may depend on the specific
etiology of the liver injury. Regardless of the precursor, however, it does not appear that
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traditional BMs have a role in modulating TGF beta or other pro-fibrotic regulators in liver
fibrosis. It is possible that collagen type IV, because it directly binds TGF beta-1 [2,27,28],
as well as perlecan [26] or other molecules, can modulate liver TGF beta within the mi-
croenvironment of the space of Dissé, but not via traditional BMs. This can be similar
to corneal fibroblasts producing collagen type IV in the corneal stroma far from the BMs
to modulate TGF beta [7]. However, in the cornea, it is not known whether the collagen
type IV detected by immunohistochemistry in the stroma far away from BMs after fibrotic
injuries is full-length collagen type IV or rather degradation fragments of collagen type IV.
Collagen type IV degradation fragments, such as arresten (alpha-1 chain) and canstatin
(alpha-2 chain), can have important functions, such as inhibition of neovascularization.

5. Conclusions

The fibrosis response, to a wide range of injuries, is of obvious importance in virtually
every organ where it was investigated. It seems unlikely that this overall process would
be unique to each individual organ. Rather, it seems probable that the systems in place to
promote fibrosis, and its resolution, would be generally utilized throughout the organism,
except possibly in organs with specialized functions, such as the liver, that require a
structure free of traditional BMs. With that in mind, this author is of the opinion that the
importance of the BMs in corneal fibrosis from traumatic, infectious, chemical, and surgical
injuries, where it is most easily studied without numerous potentially confounding cells,
is likely to be also relevant in the many other organs where fibrosis is important in the
pathophysiological response to injuries and diseases.
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