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Abstract. Amyotrophic lateral sclerosis (ALS) is a fatal 
neurodegenerative disease, which involves the progressive 
degeneration of motor neurons. ALS has long been considered 
a disease of the grey matter; however, pathological altera-
tions of the white matter (WM), including axonal loss, axonal 
demyelination and oligodendrocyte death, have been reported 
in patients with ALS. The present review examined motor 
neuron death as the primary cause of ALS and evaluated the 
associated WM damage that is guided by neuronal‑glial inter-
actions. Previous studies have suggested that WM damage may 
occur prior to the death of motor neurons, and thus may be 
considered an early indicator for the diagnosis and prognosis 
of ALS. However, the exact molecular mechanisms underlying 
early‑onset WM damage in ALS have yet to be elucidated. 
The present review explored the detailed anatomy of WM and 
identified several pathological mechanisms that may be impli-
cated in WM damage in ALS. In addition, it associated the 
pathophysiological alterations of WM, which may contribute 
to motor neuron death in ALS, with similar mechanisms of 
WM damage that are involved in multiple sclerosis (MS). 

Furthermore, the early detection of WM damage in ALS, 
using neuroimaging techniques, may lead to earlier therapeutic 
intervention, using immunomodulatory treatment strategies 
similar to those used in relapsing‑remitting MS, aimed at 
delaying WM damage in ALS. Early therapeutic approaches 
may have the potential to delay motor neuron damage and thus 
prolong the survival of patients with ALS. The therapeutic 
interventions that are currently available for ALS are only 
marginally effective. However, early intervention with immu-
nomodulatory drugs may slow the progression of WM damage 
in the early stages of ALS, thus delaying motor neuron death 
and increasing the life expectancy of patients with ALS.
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1. Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegen-
erative disease, involving the progressive degeneration of 
upper and lower motor neurons. ALS is also known as Lou 
Gehrig's disease, after the baseball player Lou Gehrig who 
was diagnosed with the disease (1). ALS can be classified as 
sporadic (sALS), which represents ~90% of all ALS cases, 
and familial (fALS), which accounts for the remaining 10% 
of cases  (2). Sexual dimorphism has been suggested to be 
involved in ALS disease onset and progression (3), and the 
incidence and prevalence of ALS is greater in males compared 
with in females (4,5). Exposure to environmental toxins, such 
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as pesticides, has been considered a key risk factor for ALS; 
however, further studies are required to elucidate the implica-
tion of environmental factors in ALS development (6). ALS 
is the most common motor neuron disease in adults, and its 
onset is characterized by distal weakness in the arms or legs, 
indicative of lower motor neuron involvement. Muscular weak-
ness limits the use of muscles for the execution of voluntary 
and involuntary movements, thus causing muscular atrophy, 
eventually leading to respiratory muscle failure and death (7). 
As the disease progresses into the later stages, patients also 
experience a progressive decline of cognitive function. In the 
later stages of ALS, the ocular muscles controlling vision are 
usually the last to be affected (1).

The primary focus of clinical management for patients 
with ALS is the symptomatic management of the disease 
using conventional pharmacological agents, as no cure is 
currently available. However, non‑conventional approaches, 
including radiotherapy, muscle stretching and nutritional 
management, have also been employed to alleviate the pain, 
respiratory dysfunction, psychiatric/cognitive disturbances, 
nutritional deficits and sleep‑related dysfunctions associated 
with ALS (8). Clinical trials for ALS started in the 1980s; 
however, the majority of experimental drugs proved to be inef-
fective with the exception of riluzole, which was reported to 
marginally extend the lifespan of the patients (1,9).

ALS is most commonly referred to as a motor neuron 
disease, due to the activation of abnormal programmed 
cell death signaling pathways during the pathogenesis of 
the disease, leading to the death and degeneration of motor 
neurons (10). ALS has been primarily considered a disease of 
the grey matter involving motor neuron degeneration; however, 
pathological alterations in the white matter (WM) have been 
reported to be more pronounced compared with those in motor 
neuron structures (11). In addition, WM pathophysiological 
processes have been detected during the early stages of ALS, 
prior to the appearance of clinical symptoms (12). WM is 
predominantly composed of myelinated and unmyelinated 
neuronal axons organized into specific tracts with surrounding 
glial cells (13). The term ‘white matter’ arises from the white 
color of the lipids, which are the main constituents of myelin. 
Myelin has a water content of ~40%; the dry mass is composed 
of 70‑85% lipid  (14) and 15‑30% protein  (15). Among the 
main proteins found in myelin are proteolipid protein (~50%), 
myelin basic protein (~30%) and minor proteins, including 
myelin oligodendrocyte glycoprotein, 2',3'‑cyclic‑nucleotide 
3'‑phosphodiesterase and myelin‑associated glycoprotein 
(<1%) (16). The WM of the central nervous system (CNS) is 
susceptible to anoxia, trauma and autoimmune processes (17). 
WM damage can be induced by primary and secondary 
diseases associated with ischemia, inflammation, trauma and 
hypoxia (13). WM damage has been reported to contribute to 
the motor and neurological deficits associated with cognitive 
impairment in neurological conditions, including ALS (18), 
Alzheimer's disease (19), Huntington's disease (20), progres-
sive supra‑nuclear palsy (21) and multiple sclerosis (MS) (22). 
The severity of WM damage increases with age, leading to 
decreased cognitive abilities and slower conduction velocity 
of electrical impulses during physiological functioning (23).

The molecular mechanisms involved in WM damage vary, 
and include alterations in toll‑like receptor‑3 expression (24), 

absorption of Clostridium  perfringens ε‑toxin  (25) and 
glutamate excitotoxicity during secondary spinal cord (SC) 
injury (26). Neuropathological alterations of the WM, including 
axonal degeneration and oligodendrocyte loss (27,28), have 
been reported in patients with ALS. A previous study using 
multi‑modal magnetic resonance imaging demonstrated that 
cortical thinning and WM degeneration were associated 
with cognitive and behavioral impairments in motor neuron 
diseases (29), whereas significant WM differences have been 
identified between male and female patients with ALS (30).

The exact molecular mechanisms underlying WM damage 
in ALS have yet to be elucidated. The presence of clinical and 
pathological similarities between patients with ALS and MS 
suggests that a similar WM pathology may be implicated in 
the diseases (13,31). Typical symptoms of patients with MS 
include disability, incontinence, limb tremor, pain, spasms, 
fatigue and spasticity (32). Patients with ALS also display some 
of the common symptoms of MS; however, typical ALS mani-
festations also include severe muscle weakness, fasciculation, 
bulbar symptoms and severe respiratory abnormalities (33).

MS is an autoimmune disease, which is characterized by 
the immune destruction of the myelin sheath surrounding 
brain and SC neurons, leading to axonal and neuronal loss. 
Damaged myelin disrupts the conduction of electrical signals 
along neural fibers, which is essential for the maintenance 
of normal functions. Therefore, patients with MS suffer 
numerous neurological disabilities that negatively impact 
their quality of life. At present, no cure for MS is available, 
due to the inability to repair damaged myelin (34). Brain 
derived neurotrophic factor (BDNF) is a neurotrophin, 
which has demonstrated beneficial effects during remyelin-
ation processes and myelin repair; however, its actions can 
be hampered by the overexpression of its transcriptional 
repressor, methyl CpG binding protein 2 (MeCP2) (34,35). 
Despite the significant differences between MS and ALS, the 
overlapping symptoms and pathological alterations suggest 
that the progressive degeneration of central axons may be a 
critical process in the diseases.

Defects in several genes involved in axonal transport 
may contribute to axonal loss in MS and ALS (36). Notably, 
pathogenic mechanisms similar to those responsible for the 
development of neuroinflammation, excitotoxicity and axonal 
dysfunction in MS have also been identified in ALS (31). A 
previous study indicated that first‑degree relatives of patients 
with MS had a greater risk of developing ALS and vice versa, 
thus suggesting that similar genes may predispose families to 
MS and ALS (37). Specifically, inflammatory T‑lymphocytes, 
including T helper (Th) 1 and Th17, and the production of 
inflammatory mediators, including interleukin 6, have been 
reported to drive the inflammatory cascade implicated in 
the neurological deficits present in patients with ALS and 
MS (38). Therefore, research has turned to other neurode-
generative diseases, including MS, in order to advance the 
understanding of WM damage associated with ALS and 
promote the development of more effective therapeutic 
strategies  (13,39). The present review discussed the key 
molecules that have been implicated in the common mecha-
nisms of WM damage in MS and ALS. In addition, current 
therapeutic strategies for the management of ALS were also 
addressed.
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2. WM anatomy

The WM of the CNS contains axon bundles ensheathed 
by myelin, which is produced by oligodendrocytes and 
serves as an insulator, thus facilitating the propagation of 
electrical impulses along the nerve axons. There are three 
predominant WM tracts in the CNS, composed of projec-
tion, association and commissural tracts (40). Conversely, 
the CNS grey matter largely contains neuronal cell bodies, 
dendrites, glial cells and synapses (41). Myelin is an insu-
lating substance, which is essential for the propagation of 
electrical impulses along nerve axons, and is required for 
the physiological functioning of the nervous system (42). 
The myelin sheath surrounding the nerve axons in the WM 
tracts serves a critical role in relaying messages from the 
brain to the various areas of the body; it also coordinates 
grey matter communication between areas of the CNS (43). 
Nerve axons are the predominant component of WM. They 
are long projections that originate from the neuronal cell 
body and serve to transmit information in the form of elec-
trical impulses. In addition, nerve axons transport nutrients 
essential for the health and physiological function of the 
axons and the neuronal cell bodies (44).

In the CNS, glial cells, including oligodendrocytes and 
astrocytes, are critical for the maintenance of axonal integ-
rity (45). Oligodendrocytes maintain the structural integrity 
and functionality of myelin, and the lipid‑rich myelin sheath 
ensures the speed and reliability of electrical transmis-
sion (46). Astrocytes are the most prevalent type of glial cell 
in the CNS. WM astrocytes differ from grey matter astrocytes 
in morphology, development and function. WM astrocytes are 
mainly in charge of maintaining the neuronal‑glial homeo-
static equilibrium, participate in oligodendrocyte lineage 
differentiation, provide energy supply and nutritional support 
to the nervous tissue by delivering trophic factors and iron, 
and are involved in immune and inflammatory processes (13). 
Although the functional significance of WM glia has yet to 
be fully elucidated, previous studies have reported that oligo-
dendrocyte and astrocyte dysfunction is implicated in the 
pathogenesis of neurological disorders, including MS (47), 
ischemic stroke  (40), Huntington's  (20) and Alzheimer's 
disease (48), schizophrenia (49), psychiatric disorders (50) and 
ALS (51).

Recently, ALS oligodendrocytes were demonstrated 
to contribute to motor neuron death, through a superoxide 
dismutase (SOD) 1‑dependent mechanism  (52), whereas 
oligodendrocyte degeneration has been reported to occur 
prior to disease onset. New oligodendrocytes are formed to 
compensate for the loss; however, they fail to mature, thus 
resulting in progressive demyelination  (52). Furthermore, 
axonal demyelination has been directly associated with ALS 
deterioration (53). Therefore, oligodendrocyte dysfunction is 
considered as a major factor contributing to neuronal degen-
eration, with relevance to diseases including ALS (28,54). 
Notably, the glial pathology in ALS, including oligodendrocyte 
degeneration and impaired maturation, and its involvement in 
neurodegeneration, is analogous to the pathology displayed in 
MS (28).

3. Molecular mechanisms involved in the pathogenesis of 

WM damage in ALS

Biological targets of ALS pathology. Several abnormal biological 
processes have been suggested to be involved in the mecha-
nisms underlying the pathogenesis of ALS (55), thus making 
it a very complex multi‑system and multi‑syndrome disorder, 
for which no single cause can be identified (Figs. 1 and 2). 
Considerable progress has been made in the investigation of 
the genetic aspect of ALS pathophysiology. Several genes have 
been demonstrated to be involved in fALS, including chromo-
some‑9 open reading frame 72 (56), SOD1 (57), coiled‑coil‑he
lix‑coiled‑coil‑helix domain containing 10 (58), Matrin‑3 (59), 
tumor necrosis factor (TNF) receptor‑associated factor family 
member‑associated nuclear factor‑κB activator‑binding 
kinase  1  (60), TAR DNA‑binding protein  (61), fused in 
sarcoma (62), optineurin (63), Valosin‑containing protein (64), 
ubiquilin 2 (65), sequestosome 1 (66) and profilin (2,67,68). 
Recently, mutations in the NIMA related kinase 1 gene were 
associated with ALS (69). With the development of genome 
sequencing techniques, the number of genes implicated in ALS 
pathogenesis is increasing, thus suggesting the complexity of 
the disease, and explaining the elusiveness of a cure. sALS and 
fALS are the predominant types of ALS, and appear to share 
some similar pathophysiological mechanisms, including oxida-
tive stress, excitotoxicity, aggregate formation, inflammation 
and neurofilament disorganization (70,71).

Notably, the mechanisms underlying early‑onset WM 
pathology in MS are similar to those responsible for early‑onset 
WM damage prior to motor neuron death in ALS (13,72,73). 
Therefore, elucidation of the pathological mechanisms 
involved in MS‑induced WM damage may provide useful 
insight to advance the understanding of certain aspects of 
ALS. Furthermore, novel therapeutic approaches that target 
WM pathology in the early stages of ALS, may have the poten-
tial to delay the progression of the disease and the onset of 
motor neuron death.

Mitochondrial damage and oxidative stress. Mitochondria are 
the primary site of ATP production; they also have a major 
role in the maintenance of Ca2+ homeostasis, the production 
of free radicals and the regulation of intrinsic apoptotic path-
ways (74,75). Therefore, mitochondrial dysfunction may be 
involved in the initial degenerative processes of ALS (76).

Reactive oxygen species (ROS) are byproducts of aerobic 
metabolism. The cumulative production of ROS results in 
oxidative stress, which causes mitochondrial damage. ROS 
can induce mitochondrial DNA mutations, impair the mito-
chondrial respiratory chain, alter mitochondrial membrane 
permeability and ultimately cause cell death (77). Previous 
studies have suggested the time‑ and dose‑dependent involve-
ment of ROS, including superoxide (•O2

‑) and hydroxyl (•OH) 
radicals, and hydrogen peroxide (H2O2), in mitochondrial 
damage driving motor neuron degeneration (Fig. 1) (78,79). In 
sALS and fALS, post‑mortem and biopsy samples from the SC 
and motor neurons revealed abnormalities in mitochondrial 
structure, number and localization, which were associated 
with defects in respiratory chain complexes (80). Furthermore, 
elevated ROS production and mitochondrial dysfunction have 
also been observed in SC samples isolated from a rat model of 
sALS (81).
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Figure 1. Schematic representation of the effects of mitochondrial damge and ER stress in ALS pathogenesis. Dysfunction of glial cells results in decreased 
levels of chaperone proteins, including HSPs and members of the PDI family. The impaired expression of chaperone proteins results in protein misfolding, 
which impairs ER‑Golgi apparatus trafficking. The UPR signaling pathway is activated due to ER stress caused by impaired ER‑Golgi trafficking, and initiates 
cell apoptosis. In addition, mutations in superoxide dismutase 1 cause mitochondrial damage and oxidative stress, ultimately leading to abnormalities in axonal 
transportation. ER, endoplasmic reticulum; ALS, amyotrophic lateral sclerosis; HSP, heat shock protein; PDI, protein disulphide isomerase; UPR, unfolded 
protein response; PERK, protein kinase R‑like endoplasmic reticulum kinase; ATF, activating transcription factor; IRE, inositol‑requiring enzyme.

Figure 2. Schematic representation of the effects of glutamate excitotoxicity, energy metabolism deficiency and axonopathy in ALS pathogenesis. Dysfunction 
of glial cells results in the decreased expression of glutamate transporters, including GLT‑1 and GLAST, leading to glutamate excitotoxicity. Although 
excitotoxicity can induce axonopathy and neuronal degeneration, interventions aimed at increasing BDNF production can attenuate excitotoxicity, enhance 
axonal repair and regrowth and eventually ameliorate the degeneration of motor neurons. Furthermore, glial cell dysfunction results in the downregulation 
of MCTs, thus impairing the axonal energy supply, which leads to axon loss and motor neuron degeneration. The BDNF signaling pathway is also implicated 
in MCT expression; however, further studies are required to investigate the molecular mechanisms that are involved. In addition, class 3 semaphorins are 
involved in oligodendroglial migration, and their dysregulation is implicated in remyelination impairments and axonopathy. ALS, amyotrophic lateral scle-
rosis; GLT, glutamate transporter; GLAST, glutamate aspartate transporter; BDNF, brain‑derived neurotrophic factor; MCT, monocarboxylate transporter; 
Sema, semaphorin.
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Cell type‑specific mitochondrial damage has been demon-
strated to contribute to the pathogenesis of ALS: Mitochondrial 
dysfunction in astrocytes has been associated with a neuro-
toxic phenotype that impairs motor neuron survival (82), with 
a mechanism that may involve mutant (m)SOD1 aggrega-
tion. mSOD1 aggregates cause mitochondrial damage due 
to a decrease in the antioxidant activity of the enzyme, thus 
resulting in ROS accumulation. In addition, mSOD1 may 
potentiate the formation of •OH, as suggested by the increased 
levels of oxidation products in mSOD1‑transfected mice 
compared with controls (83). Furthermore, mSOD1 protein 
aggregates may be responsible for impairments in axonal 
transport, neurotrophic factor supply, endoplasmic reticulum 
(ER) stress and apoptosis in glial cells  (84,85). mSOD1 is 
present in ~20% of patients with fALS and ~3% of patients 
with sALS (86); however, oxidative stress and mitochondrial 
damage are also present in non‑SOD1‑linked ALS cases (87).

ER stress. ER is an intracellular organelle that is responsible for 
protein quality control, as it ensures that proteins are correctly 
synthesized, folded, packaged and delivered in the appropriate 
locations. Under ER stress conditions, the unfolded protein 
response (UPR) signaling pathway is activated to restore 
cellular integrity or initiate apoptosis (88). Three ER stress 
sensors mediate the UPR, namely protein kinase R‑like ER 
kinase (PERK), activating transcription factor 6 (ATF6) and 
inositol‑requiring enzyme 1 (IRE1) (89). ER stress can be trig-
gered by the accumulation of unfolded or misfolded proteins in 
the ER lumen, and by other mechanisms, including the inhibi-
tion of ER‑to‑Golgi apparatus transport. Notably, mSOD1 has 
been implicated in impaired ER‑to‑Golgi trafficking, which 
represents an early cellular disturbance before the induction of 
ER stress, Golgi fragmentation (90), mSOD1 aggregation and 
cell apoptosis (Fig. 1) (91).

Chaperone proteins, including heat shock proteins (HSP) 
and members of the protein disulphide isomerase (PDI) 
family, ensure proteins are folded correctly, and may have a 
cytoprotective role in ALS (92). Low levels of HSP in motor 
neurons increase their susceptibility to stress, thus increasing 
their vulnerability to cell death processes. Neuronal HSP 
levels depend upon the neuronal and glial production of 
HSP (93). Notably, periventricular WM damage induced by 
iron accumulation in oligodendrocytes may increase ER stress 
and mitochondrial disruption, ultimately resulting in glial cell 
death (94). Therefore, WM damage may be responsible for 
HSP deficits and increased ER stress, which eventually lead to 
motor neuron apoptosis.

The UPR signaling pathway has been implicated in WM 
tract myelination under normal physiological conditions. The 
ER stress sensors PERK, ATF6 and IRE1 are activated under 
physiological conditions, resulting in the upregulation of 
downstream molecules, including PDI, 78 kDa glucose‑related 
protein and 94 kDa glucose‑related protein. These molecules 
have been associated with oligodendrocyte damage, reduced 
axon numbers and demyelination, which are associated with 
ALS progression  (95,96). Notably, increased PDI expres-
sion has been reported in WM microglia of the SC and in 
astrocytes of the SC ventral horn in an ALS mouse model, 
thus suggesting that the UPR in WM glia may occur early 
in the phase of motor neuron degeneration during ALS (97). 

Motor neurons in mice with fALS were revealed to be prone 
to ER stress and demonstrated upregulated ER stress marker 
expression accompanied by axonal degeneration (98). These 
studies suggested that the early mechanisms of WM damage 
in ALS may induce ER stress, which, in turn, may activate the 
UPR signaling pathway, ultimately resulting in motor neuron 
degeneration and death. Therefore, it may be hypothesized that 
therapeutic strategies aimed at attenuating or delaying WM 
damage may have potential in reducing motor neuron death 
and disease progression in patients with ALS, thus increasing 
their life expectancy.

Glutamate excitotoxicity. Accumulating evidence suggests 
that glutamate excitotoxicity may be implicated in the mecha-
nisms of neuronal degeneration in ALS (99‑101); imbalances 
between excitatory and inhibitory neurotransmission may 
contribute to the pathogenesis of the disease. Glutamate is the 
primary excitatory amino acid neurotransmitter in the CNS. 
Glutamate excitotoxicity has been associated with oligoden-
drocyte apoptosis and may induce WM degeneration following 
SC injury (26). An increase in excitatory neurotransmission, as 
indicated by increased levels of glutamine, has been reported 
in the motor cortex and WM of patients with ALS compared 
with healthy controls (101). Glutamine synthesis is catalyzed 
by the enzyme glutamine synthetase from glutamate and 
ammonia (102), and glutamine production is used as a marker 
of glutamate levels to detect glutamate‑induced excitotoxicity.

Astrocyte‑mediated cell‑specific excitotoxicity has also 
been implicated in the pathogenesis of ALS. Astrocytes 
express two glutamate transporters (GLTs): GLT‑1, also known 
as excitatory amino acid transporter (EAAT) 2, and glutamate 
aspartate transporter, also known as EAAT1, which partici-
pate in extracellular glutamate homeostasis and neuronal 
reuptake (Fig. 2) (103). Glutamate excitotoxicity, mediated 
by non‑N‑methyl‑D‑aspartate receptors, has been reported 
to cause axonopathy, including axonal swelling, cytoskeletal 
disruption and neurofilament accumulation, in the distal 
axonal segments of SC motor neurons (104). Studies suggested 
that glutamate excitotoxicity may be implicated in axonopathy, 
WM damage and long‑term cognitive deficits in patients with 
ALS. Therefore, neuroprotective agents, including vasoactive 
intestinal peptide, may attenuate excitotoxic damage, and also 
increase BDNF production to promote secondary repair and 
axonal regrowth, thus limiting WM damage and ameliorating 
motor neuron degeneration (105,106).

The cell‑specific effects of astrocytes have also been 
reported to participate in the activation of protein kinase C and 
mitogen‑activated protein kinase (MAPK) pathways to induce 
neuroprotection (105,106). These results suggested that astro-
cyte activation may differentially facilitate or prevent motor 
neuron degeneration. Further studies are required to elucidate 
the differential functions of astrocytes in the pathology of 
degenerative diseases, including ALS (107) and MS (108).

Energy metabolism deficiencies. The human brain utilizes 
glucose and monocarboxylates, such as lactate, as primary 
energy sources. Lactate accounts for ~33% of the total energy 
substrates used by the brain, representing a more impor-
tant fuel source for brain metabolism than glucose  (109). 
Monocarboxylate transporters (MCTs) are responsible for 
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lactate and pyruvate transport. In the brain, three MCT 
isoforms have been identified, namely MCT1, MCT2 and 
MCT4, which are implicated in lactate flux in the CNS (109). 
MCT1 is expressed in astrocytes and oligodendrocytes, 
whereas MCT4 is expressed exclusively in astrocytes. WM 
astrocytes and oligodendrocytes are critical for the production 
and maintenance of myelin (110), and the delivery of essential 
energy (111), thus supporting the physiological function of the 
CNS. Oligodendrocytes exhibit higher MCT1 expression, and 
increased lactate oxidation and lipid synthesis compared with 
astrocytes (13). Therefore, oligodendrocyte dysfunction may 
contribute to motor neuron degeneration and death in ALS. 
Notably, oligodendrocyte pathology becomes apparent prior to 
disease onset and persists during disease progression (45,112). 
A previous study suggested that oligodendroglia may support 
axon survival and function through a myelin‑independent 
mechanism, whereas deficiencies in energy metabolites may 
underlie neurodegeneration  (113). In human studies and 
preclinical mouse ALS models, MCT1 expression was revealed 
to be decreased in affected brain regions, resulting in insuf-
ficient energy supply to the axons, thus leading to axon loss 
and motor neuron degeneration and death (13,111,114). These 
findings suggested that the molecular mechanisms involved in 
early‑onset WM damage in ALS may also contribute to motor 
neuron death (Fig. 2). Therefore, therapeutic strategies aimed 
at attenuating early‑onset WM damage may have potential for 
the effective treatment of patients with ALS.

Unlike MTC1 or MTC4, MTC2 is highly expressed in 
the dendrites and axons of CNS neurons  (115). Notably, a 
marked downregulation in the axonal expression of glucose 
transporter 3 (GLUT3) and MCT2 has been reported in WM 
samples isolated from MS lesions, and has been suggested to 
impede the supply of essential nutrients (116). Furthermore, 
Robinet and Pellerin (117) suggested that BDNF signaling 
may be implicated in the upregulation of MCT2 expres-
sion in brain neurons following acute exercise; BDNF may 
increase neuronal MCT2 expression through the translational 
regulation of phosphatidylinositol‑4,5‑bisphosphate 3‑kinase 
(PI3K)/Akt/mechanistic target of rapamycin/S6, p38 MAPK, 
and p44/p42 MAPK pathways (117).

Axonopathy. Motor neuron axonopathy has been proposed as 
an early initiating mechanism of ALS. Motor neuron pathology 
in ALS has been suggested to begin, at distal axon sites and 
proceeds in a retrograde manner, eventually leading to motor 
neuron degeneration, a hypothesis termed the ‘dying back’ 
mechanism (27). Axonopathy has also been demonstrated in 
animal models of ALS, including zebrafish (118), mice (119) and 
rats (120). In rats carrying the SOD1‑G93A mutation, mitochon-
drial accumulation of mSOD1 was observed in motor neuron 
axons in discrete clusters located at regular intervals, instead 
of a homogeneous axonal distribution (120). Overexpression 
of mSOD1 (118), and excitotoxicity (104), have been suggested 
to trigger axonopathy. In addition, excitotoxic axonopathy 
has been associated with the aberrant colocalization of phos-
phorylated and dephosphorylated neurofilament proteins, 
which may subsequently induce axonal transport disruptions 
and swelling. In addition, axonopathy has been associated with 
abnormalities within the glial environment (121). Fast‑fatigable 
motor neurons are highly susceptible to axonal degeneration, 

which is associated with deficiencies in protein and lipid supply 
to axons (27,122). As aforementioned, oligodendrocytes regu-
late axonal myelination to maintain axonal function, whereas 
astrocytes provide structural and trophic support for neurons. 
Abnormal glial‑axonal interactions have been reported to be 
implicated in axonal swelling, neurofilament perturbations and 
microtubule transport defects during axonal degeneration (123).

Semaphorin proteins serve as axonal growth signaling 
cues and are responsible for axon guidance and neurofilament 
organization during nervous system development (124). Class 
3 semaphorins are involved in oligodendroglial migration and 
remyelination. Semaphorin (Sema) 3A is a repulsive guidance 
cue for neuronal and glial cells, and induces the redistribu-
tion and depolymerization of actin filaments that results in 
growth cone collapse. In addition, Sema3A is expressed in MS 
lesions, where it impairs the recruitment and differentiation of 
oligodendrocyte precursor cells (OPCs) and inhibits remyelin-
ation (125,126). Conversely, Sema3F is an attractive guidance 
cue, which assists OPC recruitment and promotes axonal 
remyelination (126,127). The roles of Sema3A have also been 
investigated in ALS: In an ALS mouse model, Sema3A and 
its receptor neuropilin 1 were demonstrated to induce distal 
axonopathy (128). Furthermore, in humans, Sema3A levels 
in the motor cortex were significantly upregulated in patients 
with ALS compared with in controls. These results suggested 
that the increase in Sema3A expression may be implicated 
in axonal degeneration, and may be associated with the 
axonopathy and denervation that are observed in patients with 
ALS (129). Sema3A, and other class 3 semaphorins, are impor-
tant regulators of axonal remyelination and of the immune 
responses that govern neuronal regeneration (Fig. 2) (130). 
Therefore, the inhibition of Sema3A may have potential as a 
novel therapeutic strategy for the treatment of patients with 
ALS. According to the ‘dying back’ hypothesis regarding 
motor neuron pathology (27), it may be necessary to focus on 
motor axons and nerve terminals in order to effectively delay 
or prevent motor neuron degradation (131).

Neuronal cell death. Several mechanisms, including oxidative 
stress, the aggregation of misfolded and mutant proteins, and 
excitotoxicity, may disrupt the homeostasis of motor neurons, 
ultimately causing cell death. MeCP2 is a nuclear protein 
with numerous biological functions, which serves a critical 
role in myelin damage in neurological conditions, including 
epilepsy  (132) and MS (34). MeCP2E1 and MeCP2E2 are 
the two predominant isoforms of MeCP2 that exert diverse 
biological effects on neuronal survival. Previous studies 
have revealed that MeCP2E2 promotes neuronal death 
and apoptosis; however, these effects may be inhibited by 
Forkhead box protein G1 and Akt, which enhance neuronal 
survival (133,134).

MeCP2E1 has been reported to repress BDNF transcription, 
thus resulting in the failure of myelin repair mechanisms (34). 
BDNF serves a role in myelin repair and promotes the health 
of neurons, astrocytes and oligodendrocytes; therefore, BDNF 
deficiencies have been implicated in the pathological mecha-
nisms of ALS (135,136). Notably, BDNF serum levels have 
been revealed to be significantly decreased in patients with 
ALS compared with in controls (137). Therefore, BDNF may 
have potential as a biomarker to reflect disease activity, and may 
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serve as a basis for the development of novel therapeutic strate-
gies for ALS treatment (135). Neurotrophic factors, including 
BDNF, have been reported to exert beneficial effects in mouse 
models of ALS: Treatment of SOD1‑G93A transgenic mice with 
neurotrophic factors has been reported to inhibit neuromuscular 
junction degeneration, enhance axon survival, delay the onset 
of ALS and prolong the average lifespan of the mice (138,139).

In ALS, apoptosis is the most common form of motor 
neuron death, and involves pro‑ and anti‑apoptotic gene 
expression, caspase activation, cytochrome c release and apop-
tosis‑inducing factor (AIF) nuclear translocation (140‑142). 
Notably, in patients with ALS, apoptotic processes are not 
restricted to motor neurons, but also affect other neuronal 
and non‑neuronal components of the CNS (143). A previous 
study reported increased neuronal apoptosis, accompanied 
by an increase in glial fibrillary acidic protein‑positive 
astrocytes and increased microglia activation in the white 
and grey matter of several CNS regions (144). In addition, 
astrocytes, but not microglia, cortical neurons or myocytes, 
were suggested to have an integral role in the death of motor 
neurons in ALS (145).

At least three different molecular pathways have 
been reported to participate in programed cell death: the 
mitochondrial pathway, the death receptor pathway and 
the ER pathway  (146). The present review explored only 
mitochondria‑dependent apoptosis, as it is primarily respon-
sible for neuronal and non‑neuronal cell death in ALS. The 
mitochondrial apoptotic pathway is activated during the early 
stages of ALS, and proapoptotic signaling has been revealed to 
directly induce neuronal dysfunction (147). B‑cell lymphoma 
(Bcl)‑2 family members have also been reported to serve 
critical roles during apoptosis that lead to motor neuron death, 
via controlling mitochondrial permeability in ALS models. 
The expression and distribution of Bcl‑2, Bcl‑extra large, 
Bcl‑2‑associated death promoter (Bad) and Bcl‑2‑associated 
X  protein (Bax) are altered in ALS mouse models, thus 
suggesting the presence of mitochondrial damage (143,148). 
In addition, inhibition of the PI3K/Akt signaling pathway can 
directly induce proapoptotic proteins, including Bad and Bax, 
and thus contribute to the degenerative and apoptotic path-
ways during ALS pathogenesis (149). Caspase activation and 
elevated cytosolic cytochrome c levels have also been observed 
in ALS cell lines, thus indicating that mitochondria‑dependent 
apoptosis may contribute to cell death in ALS (150). However, 
the altered expression of Bcl‑2 family proteins, the inhibition 
of PI3K/Akt signaling and the activation of caspases may not 
be the only pathways leading to motor neuron degeneration in 
ALS, as apoptosis is a complex process, and is known to be 
induced through numerous pathways (151).

AIF is a key regulator of caspase‑independent apoptosis, 
and its increased expression has been associated with the 
progression of ALS. AIF has been revealed to co‑translocate 
to motor neuron nuclei with cyclophilin A; following binding 
with cyclophilin A, AIF may induce mitochondrial membrane 
permeabilization and cell death in a model of ALS (152). 
Therefore, proapoptotic signaling may contribute to the 
neuronal and non‑neuronal degeneration that causes WM 
damage and motor neuron death in ALS. Therefore, inhibition 
of the mitochondrial apoptotic pathway may have potential as 
another novel therapeutic approach to suppress myelin damage 

and/or preserve motor neuron viability and function in patients 
with fALS (147).

Microbiome. The gut microbiome can influence host biology 
and contribute to WM damage in CNS disorders. The 
microbiome‑gut‑brain axis is responsible for the association 
between the microbiome and neuroimmune and neuropsy-
chiatric disorders (153), including MS (154,155), autism (156) 
and ALS (157). The microbiome‑gut‑brain axis refers to the 
interactions between the CNS, the gastrointestinal tract and 
the microorganisms in the gut. Several mechanisms have been 
suggested to explain the influence of the gut microbiome on 
brain health (158): Impaired intestinal barrier function has been 
suggested to promote the passage of toxins from the intestinal 
lumen into the blood circulation and the brain. A previous 
study demonstrated that Clostridium perfringens ε‑toxin may 
be responsible for WM damage in the CNS of mice. ε‑toxin 
secreted into the gut was revealed to bypass the blood‑brain 
barrier and cause mature oligodendrocyte death, demyelination 
and WM injury; these effects were dependent on the expression 
of myelin and lymphocyte protein proteolipid (25). Notably, 
ε‑toxin has been demonstrated to exert selective toxic effects 
on oligodendrocytes but not astrocytes, microglia or neurons 
in primary cultures (25). Furthermore, dysbiosis of the gut 
microbiota has been reported in patients with MS compared 
with in healthy controls (159,160), whereas gut‑derived neuro-
toxins have been proposed as a cause of ALS (161,162). In an 
ALS mouse model (SOD1‑G93A), impaired gut integrity and 
a shift in the profile of the gut microbiome have been observed 
at the early stages of the disease, and have been reported 
there to be associated with increased disease severity (163). 
These findings suggested a potential role for the microbiome 
in the progression of ALS. However, the precise alterations 
in the gut microbiome during ALS pathogenesis have yet to 
be elucidated. Numerous factors, including hygiene, antibiotic 
usage, microbiota composition, probiotics and diet, have been 
proposed to influence the link between the gut microbiome 
and the CNS (153). Understanding the relationship between 
the gut microbiome and neuroimmunology may aid the devel-
opment of novel preventative and therapeutic strategies for the 
treatment of CNS disorders, including ALS.

4. Therapeutic strategies aimed to attenuate or delay WM 
damage and disease progression

Riluzole. Similar mechanisms have been proposed concerning 
the pathogenesis of WM damage and subsequent disease 
progression for ALS and MS; however, no cure exists for these 
chronic diseases. Currently available therapeutic interventions 
mainly focus on delaying the onset of the disease, slowing its 
progression and improving the survival rates.

Riluzole is the only drug approved by the US Food and 
Drug Administration for the treatment of patients with ALS, 
and it has been clinically available since  1995. However, 
treatment with riluzole can only marginally improve the neuro-
logical symptoms of the patients and prolong their survival by 
3‑4 months (164), whereas a previous epidemiological study 
reported that riluzole exerted a beneficial effect only during 
the first 6 months of therapy, with an apparent reversal of its 
beneficial effects after the 6‑month time point (165).
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The molecular mechanisms underlying the neuroprotec-
tive effects of riluzole in ALS have yet to be elucidated. It 
has been suggested that riluzole may exert its beneficial 
effects via preventing motor neuron excitotoxicity, through 
the blockade of voltage‑dependent ion channels  (166‑168). 
However, riluzole has also been reported to act on astrocytes 
in the WM to induce neural growth factor production and 
improve the neuronal survival rate (168,169). In addition, it 
has been demonstrated to stimulate BDNF release (170,171). 
A previous study from our group suggested the importance of 
BDNF during myelin repair, as increased levels of BDNF were 
revealed to facilitate myelin repair and offer neuroprotection 
in the CNS (33). Therefore, the enhancing effects of riluzole on 
BDNF production may also contribute to its neuroprotective 
effects in patients with ALS.

Riluzole has been demonstrated to reduce inflammation, 
demyelination and axonal damage, and attenuate the clinical 
severity of the experimental autoimmune encephalomyelitis 
(EAE) model of MS, thus suggesting that riluzole may also 
be beneficial for the treatment of MS  (172). A phase II 
clinical trial is currently in progress for the use of riluzole in 
patients with MS (173); however, a previous phase II trial in 
patients with early MS revealed that riluzole was not able to 
prevent the progression of brain atrophy (174). Furthermore, 
the acute and chronic treatment of ALS mice with riluzole 
exerted opposite effects on the production of trophic factors 
in the CNS, including glial cell‑derived neurotrophic factor, 
BDNF, cardiotrophin‑1 (CT‑1) and nerve growth factor: 
Acute treatment with riluzole was revealed to induce trophic 
factor production in the SC, sciatic nerve and brain, whereas 
chronic treatment exerted inhibitory effects (169). In the study 
by Dennys et al (169), riluzole significantly increased CT‑1 
levels in the SC following 15 days of continuous treatment, 
which returned to baseline following 30 days of treatment. In 
addition, riluzole increased brain BDNF levels following 6 
and 15 days of treatment, which were significantly decreased 
following 30 days of treatment.

The levels of released BDNF appear to be a critical factor 
in ALS pathology, since BDNF has been reported to serve 
an essential role in the development of pathologic pain (175). 
Increased BDNF levels have been suggested to induce the 
development of chronic pain, whereas BDNF deficits may 
result in the failure of myelin repair mechanisms (34,176). 
These findings suggested that a delicate equilibrium in the 
endogenous BDNF levels may be required for the mainte-
nance of myelin repair without the induction of nociception. 
Therefore, therapeutic schemes that favor the acute effects of 
riluzole administration, and the close monitoring of BDNF 
levels may have the potential to improve the therapeutic 
outcomes of treatment with riluzole.

Other drugs on the market or in clinical trials. As the effi-
cacy of riluzole is only marginal, and its administration can 
increase survival by only a few months, clinicians suggest that 
treatment with riluzole should be started at the early stages 
of the disease in order to maximize its benefits. Novel agents 
with higher efficacy are currently under investigation, and 
various administration routes are being evaluated in order to 
improve the efficacy and minimize the adverse effects of the 
treatments (177).

Novel experimental drugs are currently being evaluated in 
preclinical animal models and in human clinical trials (178). 
Pramipexole (PPX), is a D2/D3‑preferring dopamine receptor 
agonist, which has been demonstrated to exert beneficial effects 
in the EAE model of MS (179): PPX blocked neuroinflamma-
tory responses, demyelination and astroglial activation in the 
SC, and it inhibited the production of proinflammatory cyto-
kines and ROS (179). In addition, dexpramipexole (RPPX), 
which is the R (+) enantiomer of PPX, has also demonstrated 
neuroprotective effects, via acting directly on mitochondria 
to stabilize mitochondrial ionic conductance and reduce 
free radical production, thus inhibiting cell death (180‑182). 
Early phase clinical trials in patients with ALS suggested that 
RPPX has a promising safety and tolerability profile, and a 
phase III clinical trial is currently underway to investigate its 
efficacy in patients with ALS (183).

Pioglitazone is a peroxisome proliferator‑activated 
receptor‑γ agonist, which has been demonstrated to exert 
anti‑inflammatory and neuroprotective actions. It has been 
suggested as a potential therapeutic agent for the treat-
ment of MS, due to its ability to reduce TNF‑α‑induced 
myelin damage and mitochondrial dysfunction  (184). In 
a phase I clinical trial in patients with relapsing remitting 
MS, treatment with pioglitazone was reported to reduce 
lesion development in WM, via inhibiting demyelination 
and axonal degeneration (185). However, pioglitazone did 
not exert beneficial effects on the survival of patients with 
ALS, as revealed by a phase II clinical trial evaluating it 
as an add‑on therapy in combination with riluzole  (186). 
However, riluzole was revealed to exert neurotoxic effects 
at concentrations between 3 and 30 µM, which may antago-
nize the neuroprotective effects of several compounds being 
evaluated in clinical trials, including resveratrol, memantine, 
minocycline and lithium (187). Therefore, further studies are 
required, using a group of patients without riluzole treatment 
to evaluate the neuroprotective potential of novel agents in 
ALS (187).

Flavonoids are bioactive compounds that are derived from 
fruit and vegetables. Epigallocatechin‑3‑gallate is a flavonoid 
that has been demonstrated to reduce neuroinflammation, and 
limit demyelination and axonal damage in the EAE model of 
MS (188) and the SOD1‑G93A mouse model of ALS (189). 
The neuroprotective effects of flavonoids suggest that they 
may have potential as alternative therapeutic agents for the 
treatment of neurodegenerative diseases, including MS and 
ALS (190).

Stem cell transplantation has also been recognized as a 
potential therapeutic strategy for the treatment of patients 
with ALS and MS (191). A previous study demonstrated that 
a neural stem cell (NSC) population isolated from human 
induced pluripotent stem cells improved the neuromuscular 
function and increased the life span of ALS mice, following 
intrathecal or intravenous administration. The results 
revealed that the transplanted NSCs migrated and engrafted 
into the CNS, where they improved the production of neuro-
trophic factors and reduced micro‑ and macrogliosis (192). 
Furthermore, a human study demonstrated that transplanta-
tion of autologous stem cells into patients with ALS delayed 
disease progression and increased survival (193). In addition, 
neural precursor cell transplantation has been reported to 
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enhance remyelination in an EAE mouse MS model of 
extensive demyelination (194). Genetically engineered bone 
marrow stem cells have also been used to deliver BDNF in 
EAE mice, and resulted in the significant delay of EAE onset, 
which was accompanied by a reduction in demyelination and 
overall clinical severity (195).

ALS is a multi‑syndrome disease, which is characterized 
by extensive genetic and phenotypic variability. Therefore, the 
discovery of a single agent that can be used for the treatment 
of all ALS patients is unlikely. Although MS and ALS differ 
in many aspects, they share a number of common pathogenic 
features, including inflammation, oxidative stress, mitochon-
drial dysfunction and WM damage (196). For this reason, 
early diagnosis, and early interventional therapies that target 
certain molecular and genetic pathways are urgently required 
for the treatment of patients with ALS and MS.

5. Conclusion

ALS is a complex multi‑system and multi‑syndrome disease 
that affects neuronal and non‑neuronal populations, and 
is characterized by the progressive degeneration of motor 
neurons. Several pathological mechanisms are involved in 
WM damage in ALS, including mitochondrial dysfunction, 
oxidative stress, neuronal apoptosis, ER stress, glutamate exci-
totoxicity, energy metabolism defects and axonopathy, which 
bear a strong similarity to other WM disorders, such as MS 
(Figs. 1 and 2). Therefore, immunomodulatory agents that are 
currently available for the treatment of MS may have potential 
as early treatment options for patients with ALS characterized 
by early‑onset WM damage.

The current review presented a comprehensive evalua-
tion of ALS, discussing motor neuron death as the principal 
cause of the disease, and examining the impact of early‑onset 
WM damage, which is a common pathology in ALS and 
MS, as confirmed by neuroimaging techniques (12,197‑199). 
The immune system has been identified as a key regulator 
of pathological neuronal‑glial interactions. However, the 
exact molecular mechanisms surrounding WM damage in 
ALS have yet to be elucidated. Although MS and ALS are 
distinct neurodegenerative CNS diseases, they share common 
pathogenic features. Therefore, understanding the molecular 
mechanisms that underlie WM damage in MS may aid the 
development of improved therapeutic strategies that address 
the early‑onset WM damage occurring in ALS. The identi-
fication of potentially important molecular targets, including 
MeCP2E1, MeCP2E2, BDNF (34) and semaphorin (200,201) 
in MS may help advance our understanding of the molecular 
mechanisms underlying the pathogenesis of ALS. Current 
agents used for the treatment of ALS, including riluzole, and 
experimental drugs currently in clinical trials do not appear 
to affect the WM damage that is associated with the disease. 
Further studies are required to elucidate the roles of WM 
damage and neuroglial pathology in the development and 
progression of ALS.
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