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Abstract 

Background:  The comprehensiveness and maintenance of the American College of Radiology (ACR) Appropriate-
ness Criteria (AC) makes it a unique resource for evidence-based clinical imaging decision support, but it is underuti-
lized by clinicians. To facilitate the use of imaging recommendations, we develop a natural language processing (NLP) 
search algorithm that automatically matches clinical indications that physicians write into imaging orders to appropri-
ate AC imaging recommendations.

Methods:  We apply a hybrid model of semantic similarity from a sent2vec model trained on 223 million scientific 
sentences, combined with term frequency inverse document frequency features. AC documents are ranked based 
on their embeddings’ cosine distance to query. For model testing, we compiled a dataset of simulated simple and 
complex indications for each AC document (n = 410) and another with clinical indications from randomly sampled 
radiology reports (n = 100). We compare our algorithm to a custom google search engine.

Results:  On the simulated indications, our algorithm ranked ground truth documents as top 3 for 98% of simple 
queries and 85% of complex queries. Similarly, on the randomly sampled radiology report dataset, the algorithm 
ranked 86% of indications with a single match as top 3. Vague and distracting phrases present in the free-text indica-
tions were main sources of errors. Our algorithm provides more relevant results than a custom Google search engine, 
especially for complex queries.

Conclusions:  We have developed and evaluated an NLP algorithm that matches clinical indications to appropriate 
AC guidelines. This approach can be integrated into imaging ordering systems for automated access to guidelines.

Keywords:  Natural language processing, Information retrieval, Appropriateness criteria, Term frequency-inverse 
document frequency
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Background
Evidence-based medicine in radiology helps ensure that 
patients undergo appropriate examinations that maxi-
mize diagnostic benefit while minimizing cost, radia-
tion exposure, and overdiagnosis [1]. A key resource that 
compiles evidence-based imaging recommendations for 

diagnostic evaluation is the American College of Radiol-
ogy (ACR) Appropriateness Criteria (AC). At the time of 
writing, the AC consist of 12 broad categories with a total 
of 205 topic documents, each giving imaging recommen-
dations for a unique symptom or disease [2]. The AC are 
reviewed and regularly updated by panels of clinicians 
who are considered experts in each listed clinical indica-
tion or disease [2]. Although the AC are comprehensive 
and carefully maintained, they are highly underutilized 
by clinicians and trainees. Only 21% of medical students 
and 2.4% of attending physicians reference the criteria 
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when ordering radiology studies [3, 4]. Clinicians pre-
fer faster and easier free-text based search methods like 
UpToDate and MD Consult [4] that are less rigorously 
vetted by radiologists, reducing the positive impact that 
the AC can have on patient care.

A major barrier to wider use of the AC is arguably the 
time and effort required to manually search for guide-
lines when ordering radiology studies. Existing AC access 
tools, such as ACR Select [5] and AC search [6], rely on 
rigid text inputs and/or clinician selection from categori-
cal lists of symptoms. A similar tool used for ordering 
cardiology studies required clinicians 137 ± 360 s to use 
on average [7]. A more automated AC access method that 
requires less clinician time and effort is likely to increase 
AC usage [8, 9].

We propose a solution to overcome the identified dis-
advantage of the time and effort required for AC use, a 
solution that is implementable within existing clinical 
workflow. Ordering clinicians document most infor-
mation relevant to determining appropriate imaging 
studies within the clinical indications section of imag-
ing study orders in the Electronic Health Record (EHR). 
We hypothesize that these digital free-text clinical indi-
cations, which are an existing part of clinical workflow, 
can be used to automatically provide ordering clinicians 
with appropriate imaging recommendations from the AC 
using natural language processing (NLP).

Existing NLP search engines offer poor performance 
on raw clinical indications from radiology reports. These 
algorithms are designed to handle short and simple que-
ries while clinical indications are often highly technical, 
poorly structured, of variable brevity, and with some 
irrelevant content. However, recent advancements in 
NLP have improved the accuracy of semantic matching, 
especially in biomedical contexts [10]. A new NLP algo-
rithm called sent2vec [11] is an extension of word2vec 
and has shown promise in biomedical semantic match-
ing [12]. Additionally, word2vec has been optimized for 
searching by incorporating Term Frequency-Inverse 
Document Frequency (TF-IDF) features, which encode 
information about a document’s relation to the corpus 
[13]. In this study, we show that these new NLP tech-
niques can be amalgamated and finetuned to interpret 
clinical indications text.

Motivation
Though the ACR Appropriateness Criteria (AC) are an 
evidence-based database for determining appropriate 
imaging, they are underused due to the time and effort of 
manually searching them. We propose an NLP approach 
for suggesting appropriate imaging at the time of ordering 
imaging. Specifically, we combine domain-specific sen-
tence embeddings and AC corpus information to allow for 

searching AC topic documents from free-text clinical indi-
cations in imaging study orders.

Methods
Data
This was an algorithm development and evaluation 
study involving simulated and clinical radiology report 
datasets. The AC corpus (n = 205 topic documents) was 
extracted from the ACR website (link). Then, text for each 
topic document was tokenized and lemmatized using 
the python nltk library [14] to create a set of document 
bodies. Separately, titles and variants for each document 
were extracted to create a set of document headers. The 
simulated evaluation dataset of 410 indications (Testing 
Dataset 1) was created by a medical student and a PGY-5 
radiology resident under the supervision of a board-cer-
tified radiologist. This testing dataset contained two indi-
cations for each AC corpus topic document, including 
pediatric topics. Radiology reports used for evaluation in 
Testing Dataset 2 were retrospectively collected following 
Institutional Review Board approval and consent waiver 
from a single tertiary academic medical institution.

Text preprocessing
In all cases, the raw query was preprocessed by solving 
abbreviations, tokenizing, and removing stop words and 
punctuations. To solve abbreviations, the Radiopedia list 
of ~ 3000 abbreviations [15] was extracted, processed, 
and edited to discard irrelevant and ambiguous abbrevia-
tions. Expanded abbreviations were added to the query.

Algorithm development
An overview of our algorithm’s backend is outlined in 
Fig. 1. All code is available at https://​bit.​ly/​3giZw​Sa. Our 
algorithm’s overall complexity is O(n), with n being the 
number of words in the search query.

AC document ranking score
The semantic similarity aspect of our algorithm uses 
sent2vec [11], an extension of word2vec [16]. We imple-
mented sent2vec with unigrams and bigrams. Our model 
was trained on the open-source PubMed and MIMIC-III 
datasets [17], mimicking the approach of the BioSentVec 
model (https://​bit.​ly/​2X7ZB​1W) [18]. After training, the 
model was used to embed each AC document into three 
vectors, one for the document’s body, one for its header, 
and one for its top 50 TF-IDF features (see below). Each 
document’s ranking score, Si , for a given query, q , was 
calculated by the following:

where β is the weight given to the TF-IDF score, and Hq,i , 
Bq,i , Tq,i are the cosine similarities between the query’s 

Si = Hq,i + Bq,i + βTq,i

https://bit.ly/3giZwSa
https://bit.ly/2X7ZB1W
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embeddings vector and document i ’s header, body, and 
TF-IDF feature vectors, respectively.

Term frequency‑inverse document frequency features
A term frequency-inverse document frequency (TF-IDF) 
model [19, 20] was created from raw AC documents 
using TfidfVectorizer in scikit-learn in python, with uni-
grams, bigrams, and trigrams. This model calculates a 
score for each word/phrase based on its frequency in a 
document relative to the corpus. Each document’s top 50 
features were embedded into one vector using the sent-
2vec model.

Testing dataset 1: simulated radiology indications dataset
To comprehensively evaluate retrieval of each AC docu-
ment, we generated a query dataset of two clinical indi-
cations for each of the 205 AC documents, one simple 
indication and one complex indication with distrac-
tors and synonymous wording similar to those in clini-
cal indications (examples in Additional file 1: Table S1). 
To quantify the quality of search result ranking from 
our simulated queries, we used normalized discounted 
cumulative gain (NDCG) [21]:

where n is number of unique AC documents, i is the 
search result rank, reli is the relevance of result i , and 
RELi is the maximum relevance of result i.

Relevance was calculated by first tagging each AC doc-
ument with one or more of the following tags: vascular 
disease, infection/inflammation, neoplasm, congenital, 
trauma, surgical, and many etiologies/topics (e.g. chest 
pain). Then, reli was calculated by number of matching 
tags between query and search result i . Maximum possi-
ble relevance ( RELi ) was calculated by sorting the query’s 
relevance for all results. An NDCG of 1 would indicate 
perfect search result ranking.

NDCG =

∑n
i=1

reli
log2(i+1)

∑n
i=1

RELi
log2(i+1)

Testing dataset 2: radiology report clinical indications 
dataset
To test the algorithm’s performance in clinical work-
flow, we extracted a dataset (n = 3731) of de-identified 
radiology notes from our department of radiology from 
01/11/2020 to 01/18/2020 (Fig.  2). Diagnostic radiol-
ogy reports from all study types except chest x-rays 
were extracted consecutively and comprehensively with 
limited exclusion criteria as specified below to mini-
mize selection bias and simulate real clinical workflow. 
Chest X-ray reports were not collected as indications 
are frequently too simple (e.g. “fever”) or not clinically 
relevant. Clinical indications section text was automati-
cally extracted from this dataset using pattern match-
ing. Some reports (n = 291; 7.8%) were excluded because 
they had blank indication text or the radiology report did 
not follow our institution’s standard format. The result-
ing n = 3440 radiology report clinical indications were 
run through our algorithm and top 10 predictions were 
aggregated. A random subset of 100 indications and 
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Fig. 1  Algorithm flow diagram. This figure is a flow diagram of the algorithm’s backend from input to output. TF-IDF (Term frequency-inverse 
document frequency); AC (Appropriateness Criteria)
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Fig. 2  Flowchart on institutional radiology report dataset. This 
figure is a flow diagram of patient indication inclusion, exclusion, 
and processing in evaluating our algorithm on the clinical radiology 
report indications
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algorithm outputs was evaluated by a radiologist who 
clinically determined whether each indication had none, 
one, or multiple appropriate AC documents, and ranked 
which (if any) of the algorithm outputs were correct.

Custom google search engine
Using Google’s Programmable Search feature, we created 
a custom Google search engine that was constrained to 
searching on the AC documents. This engine was pro-
grammed to search only on web pages with the prefix 
“https://​acsea​rch.​acr.​org/​docs/”, which corresponded to 
the 205 AC topic document pages. We ran a randomly 
chosen subset of Testing Dataset 1 (n = 100 indications) 
through the custom Google search and our algorithm.

Statistical Analysis
All values reported are means unless otherwise noted. To 
compare performance between simple and complex sim-
ulated indications, the Mann–Whitney U test was used 
for NDCG values and ground truth rank values, a chi-
squared test for Top 3 values, and a two sample Kolmog-
orov Smirnov test for the cumulative frequency curves. 
For the NDCG analysis, the non-parametric Kruskal–
Wallis H-test was used to compare performance among 
AC categories. The Friedman rank test was used to com-
pare performances between our proposed algorithm and 
a custom Google search. All statistical analyses were con-
ducted in python using the scipy package. Statistical sig-
nificance was defined as p < 0.05.

Results
Datasets and summary statistics
The training dataset for the semantic similarity model 
consisted of 223 million sentences extracted from Pub-
Med and MIMIC-III databases. The sent2vec model, a 
continuous bag-of-words algorithm, was trained using 
unigrams and bigrams from this dataset.

Testing dataset 1 consisted of 410 simulated indications 
covered all 205 documents of the AC. On average, 32% of 
words in simple indications were keywords from the doc-
ument’s title, while only 9% were keywords in complex 
indications. Additionally, all of the complex indications, 
which had been generated to resemble true radiology 
report indications, had some form of a distractor, includ-
ing one or more of: age in text form (e.g. “25 year old”), 
less relevant medical history (e.g. “hypertension, diabetes 
mellitus” for a trauma patient), less relevant social history 
(e.g. “40 pack-year smoker”), and synonymous wording 
(e.g. “kidney stones” for “Urolithiasis” document). No 
simple indication had these distractors.

Testing dataset 2 consisted of 100 manually annotated 
clinical indications from radiology reports that covered 

27% of AC topic documents. Characteristics of this data-
set are detailed in Table 1.

Algorithm evaluation results
Algorithm performance was first evaluated on simu-
lated indications in Testing Dataset 1. For simple simu-
lated indications, the algorithm ranked the ground truth 
document as within the top 3 results for 98.5% of queries 
(Fig. 3), with an average ground truth rank of 1.36 ± 1.34 
and average NDCG of 0.84 ± 0.10 (Table 2). Similarly, for 
complex indications, the algorithm ranked ground truth 
as within the top 3 for 85% of queries, with an average 
rank of 2.72 ± 4.79 and average NDCG of 0.80 ± 0.11. 
Notably, all simple queries and all but one complex 
query had ground truths ranked within the top 17 search 
results. NDCG values of complex indications were also 
significantly different from those of simple indications 
(Table 2), supporting our hypothesis that EHR-style clini-
cal indications are more difficult to query than simple 
searches. Nevertheless, the high NDCG values of above 
0.8 for both types of indications show that our algorithm 
was producing relevant search results, even for EHR-
style queries. The NDCG values were significantly differ-
ent across AC categories (Fig. 4, p = 0.013). This finding 
implies that some AC categories may produce better 

Table 1  Patient and study characteristics of annotated 
institutional radiology report dataset

Total size of the dataset was 100 indications. For age, mean ± one standard 
deviation is also reported. Ultrasound (US), Nuclear medicine (NM)

Characteristic Proportion 
of dataset

Body part scanned
 Abdomen/pelvis 0.32

 Chest/breast 0.15

 Extremity 0.08

 Head 0.30

 Spine 0.13

 Full body 0.02

Age (mean: 49.9 ± 22.1 years)

 Under 13 0.07

 13–65 0.63

 Over 65 0.30

Gender
 Male 0.44

 Female 0.56

Scan type
 CT 0.43

 MRI 0.47

 US 0.08

 NM 0.02

https://acsearch.acr.org/docs/
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search results than others, so further category-specific 
finetuning may improve algorithm performance.

Next, we evaluated our algorithm on Testing Dataset 2, 
true radiology report clinical indications from our insti-
tution. Our algorithm ranked the appropriate document 
as within the top 3 search results for 86% of indications 
for indications with one appropriate document (Table 3). 
For indications with multiple appropriate documents, 
78% had all documents ranked within the top 5. There 
were 23 indications with no matching appropriate AC 
document(s), with a roughly even split between the indi-
cation being too vague (e.g. “Trauma”) and no ACR docu-
ment existing for the indication (e.g. multiple sclerosis, 
surveillance of various malignancies). Examples of algo-
rithm performance are provided in Additional file 1.

Comparison to google search engine on AC documents
To compare our Sent2Vec algorithm’s performance to a 
more traditional free-text algorithm, we created a custom 
Google search engine constrained to searching on the 
205 AC documents. As shown in Fig.  5, Google search 

yielded results for 5% of complex simulated indications 
that resemble radiology report clinical indications, while 
our algorithm yielded results for 100% of queries, with 
top three accuracy for 90%. Similarly, for the simple sim-
ulated indications, our algorithm provided search results 
for all queries with top three accuracy of 98%, while 
Google search provided results for 78% of queries.

Error analysis
Table  4 illustrates indications with the lowest ranking 
of correct AC document(s) in our two datasets. Each of 
these errors showcases a different imperfection with the 
algorithm, AC corpus, or the input query. Error 1 in the 
simulated indications was largely due to poor seman-
tic similarity of “big toe pain” to a key clinical diagno-
sis, “gout”, which was well represented in the ground 
truth document. Replacing “big toe pain” with “podagra” 
results in a top 3 ground truth ranking.

In Error 2, the most important word was “sarcoma”, but 
it was accompanied by a significant amount of distract-
ing clinical history and symptoms that were not men-
tioned in the ground truth AC document. Therefore, the 
algorithm calculated better semantic similarity of this 
indication with other malignancy documents that do 
detail clinical symptoms. The direct word “sarcoma” does 
appear in document text, but thesent2vec attempts to 
capture a semantic approach that dilutes the direct word 
mentions.

Error 3 had a vague indication, which caused more gen-
eral Ob/Gyn documents (e.g. “Abnormal Vaginal Bleed-
ing”) to become prioritized. In contrast, error 1 from the 
radiology report dataset was from an indication too spe-
cific in detailing two different contexts, one of aortic dis-
section and one of pancreatic cancer. The algorithm was 
not able to recognize that the aortic dissection would be 
the more clinically urgent part of the indication.

Discussion
To facilitate the use of the best-practice driven AC, we 
have developed a sent2vec based search engine leverag-
ing PubMed and MIMIC-III datasets that incorporates 
semantic similarity and TF-IDF features. Our evalua-
tions on comprehensive simulated and radiology report 
datasets showed high document retrieval accuracy and 
relevance. Specifically, 98% of simple and 85% of complex 
simulated indications had ground truths ranked in the 
top 3, and 86% of clinical indications with one appropri-
ate document had the same ranking.

Unlike in other machine learning tasks, evaluat-
ing a query algorithm on the AC corpus is inher-
ently challenging because a clinical indication does 
not always have one most relevant AC document, 
as many documents overlap heavily and can only be 
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Fig. 3  Accuracy on simulated indications dataset. This figure is a 
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truths ranked as the top search result to those within the top 60 
search results. It shows a significant difference between algorithm 
performances on simple and complex simulated indications 
(p < 1e−10, two sample Kolmogorov Smirnov test)

Table 2  Simulated indications dataset results

Chi-squared test was used to calculate significance of the proportion of ground 
truth documents in top 3, and Mann–Whitney U test was used for ground truth 
rank and NDCG. All metrics show that the algorithm performed significantly 
better on simple indications than on complex ones. Normalized discounted 
cumulative gain (NDCG), Appropriateness criteria (AC)

Analysis metric Simple 
indications

Complex 
indications

P value

Proportion of ground truth 
documents in top 3

0.985 0.849 P < 0.0001

Average ground truth rank 1.36 2.66 P < 0.00001

Average NDCG 0.841 0.801 P < 0.0001
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differentiated with additional information that is often 
unavailable (e.g. “Abnormal Vaginal Bleeding” and 
“First Trimester Vaginal Bleeding”). However, a sub-
group of document(s) is obviously more appropriate 
than others. We addressed this issue of multiple docu-
ments being equally appropriate by considering a query 
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Fig. 4  Search ranking relevance on generated indications dataset. This figure is a bar graph of the average NDCG on simple and complex queries 
in all 12 categories. Error bars indicate 1 standard deviation. The number of documents (and therefore queries) for each category is in parentheses. 
There is a significant difference between the NDCG values among categories (p = 0.00054, Kruskal–Wallis H-test). Note: ‘Major Trauma’ category was 
excluded from statistical analysis due to sample size of 1. NDCG (normalized discounted cumulative gain)

Table 3  Institutional radiology report clinical indications dataset 
results

Normalized discounted cumulative gain (NDCG), Appropriateness criteria (AC)

Classifications and metrics Number of 
documents 
(proportion)

Single matching doc (n=59)

 Correct doc ranked top 3 51 (0.864)

 Correct doc ranked top 10 57 (0.966)

Multiple matching docs (n=18)

 All correct docs ranked top 5 14 (0.777)

 All correct docs ranked top 10 18 (1.0)

No matching doc (n=23)

 Inadequate indication 11 (0.478)

 No AC doc for indication 12 (0.522)

0

0.2

0.4

0.6

0.8

1

Simple
Indications

Complex
Indications

Simple
Indications

Complex
Indications

Pr
op

or
tio

n 
of

 D
at

as
et

Within Top 3 Results Lower Ranked Result
No Search Results

Custom Google 
Search

Sent2Vec-based 
Search

Fig. 5  Comparison to a custom google search. This figure shows 
the relative accuracies of our proposed Sent2Vec-based algorithm 
and a custom Google search engine on a subset of the simulated 
indications dataset (n = 100). A lower ranked search result was 
defined as the ground truth AC document being ranked 4th highest 
or worse. Document retrieval performance between search engines 
is statistically significant for both simple and complex indications 
(p < 0.0001 for both indication types, Friedman Rank Test)
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search correct if the ground truth document is in the 
top three results. Furthermore, we divided the clinical 
report dataset into indications with multiple and single 
appropriate documents at the discretion of the evalu-
ating clinical radiologist, and separately evaluated each 
subdivision.

Our algorithm performed well on institutional clini-
cal indications and simulated complex indications, both 
of which resemble true clinical indications from radiol-
ogy reports. This high performance implies that true 
radiology report clinical indications from the EHR can 
be directly input to the algorithm to provide appropri-
ate imaging guidelines. In our review, we found that no 
existing AC search methods are successful with similar 
input. Our algorithm can be integrated into EHR systems 
to automatically provide clinicians with imaging recom-
mendations when they are inputting the mandatory clini-
cal indications field in imaging orders.

Higher retrieval rate compared to a custom Google 
search engine suggests that our algorithm has been fine-
tuned for interpreting radiology report clinical indica-
tions, likely secondary to being trained on a biomedical 
corpus. In contrast, Google search is tuned to search 
shorter queries that span multiple knowledge fields. 
Therefore, the difference in performance, especially on 
EHR-style complex simulated indications, is likely attrib-
utable to our algorithm’s specialized tuning.

Among many potentially applicable semantic similar-
ity NLP tools, we chose sent2vec because it was reported 
to perform better on clinical datasets than word2vec, 
doc2vec, levenshtein distance, and universal sentence 
encoding [18]. Although it has outperformed many other 
NLP models, the Bidirectional Encoder Representations 

from Transformers (BERT) model’s training methodol-
ogy of next sentence prediction [22] was felt unlikely to 
perform well on equating the contexts of long documents 
and short queries. In contrast, sent2vec contextually rep-
resents concepts and has been successfully applied to sci-
entific sentiment analysis [12, 23]. Though its large vector 
size of 700 helps to combat dilution of information dur-
ing document averaging, we also incorporated a header 
vector based on document title and variants to ensure 
important clinical concepts are not lost. Finally, we 
improved differential document retrieval by adding TF-
IDF features that highlight each document’s key points.

Combining TF-IDF and word embeddings is consid-
ered superior to state of the art methods for text classi-
fication [24, 25] and has shown success in information 
retrieval [13]. However, disadvantages of previous imple-
mentations that used cosine distance between raw TF-
IDF vectors were that semantically equal words/phrases 
were treated as separate features and that TF-IDF mod-
els had limited features, especially in smaller datasets 
like the AC corpus (TF-IDF: ~ 50,000 vs. sent2vec: ~ 5 
million). We accounted for these issues by embedding 
each document’s top TF-IDF features using our sent2vec 
model, giving a broad semantic vocabulary to the corpus 
information.

Our algorithm had several limitations. First, the algo-
rithm’s matching performance may be decreased for 
concepts with very low frequencies in the training 
MIMIC-III and PubMed datasets. Second, the algorithm 
is inherently limited by the comprehensiveness of the 
model’s vocabulary list, albeit quite extensive currently 
at ~ 3 million words. Third, the matching ability is also 
limited by the breadth of the AC corpus. Some clinical 

Table 4  Error analysis

Dataset and indications Ground truth document Ground truth rank Main cause of error

Simulated indications dataset

1. “64yo woman with history of obesity 
and alcohol use disorder presents with 
chronic onset of progressive big toe pain 
and swelling.”

Chronic extremity joint pain, suspected 
inflammatory arthritis

10 Semantic matching of “big toe pain”

2. “60yo female with history of hyper-
tension presents with right groin 
pain, fatigue, and weight loss for past 
3 months. Concerning for sarcoma”

Soft-tissue masses 54 No clinical context in ground truth docu-
ment

3. “21yo G2P0A1 with history of recent 
termination procedure presenting with 
vaginal bleeding and vomiting for a 
week”

Gestational trophoblastic disease 15 Vague indication

Institutional radiology report indications dataset

1. “Aortic dissection suspected. Cancer 
metastatic pt with pancreatic cancer 
stage IV currently on treatment and 
needs restaging scan”

Acute chest pain–suspected aortic dis-
section

Not top 10 Overly specific indication with distracting 
medical history
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indications (12% of radiology report dataset) are not 
covered by any AC topic document, and some AC docu-
ments lack clinical context discussions that could seman-
tically match to indication queries. Fourth, the algorithm 
is optimized to match the semantic relevance of the free-
text clinical indication sentence rather than to exactly 
match each word with AC content. This was done to sup-
press the effect of distracting language within query indi-
cations, which was typical in our institutions’ imaging 
orders. However, if the query indication does not have as 
much distracting language, the exact TF-IDF matching 
of the query terms could be emphasized over semantic 
matching with sent2vec by tuning hyperparameters.

Future work would necessitate recruiting clinicians to 
use a system based on our algorithm when ordering scans 
so that we can further refine the algorithm. Furthermore, 
integrating demographic information and applying NLP 
question generation techniques to pose questions to 
users could allow for query refinement and matching to 
specific variants.

Conclusions
In summary, a natural language processing algorithm 
was developed to allow clinicians access to automatically 
searched radiology recommendations from the American 
College of Radiology’s Appropriateness Criteria when 
they order imaging. This algorithm shows promise for 
further testing and integration into clinical workflow as 
an automated decision support tool to assist clinicians 
with choosing appropriate radiological studies. Beyond 
the AC, our fully opensource algorithm can be read-
ily developed into a high-performing semantic search 
engine on other biomedical corpuses.
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