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Abstract

Several brain diseases are characterized by abnormally strong neuronal synchrony. Coordi-

nated Reset (CR) stimulation was computationally designed to specifically counteract

abnormal neuronal synchronization processes by desynchronization. In the presence of

spike-timing-dependent plasticity (STDP) this may lead to a decrease of synaptic excitatory

weights and ultimately to an anti-kindling, i.e. unlearning of abnormal synaptic connectivity

and abnormal neuronal synchrony. The long-lasting desynchronizing impact of CR stimula-

tion has been verified in pre-clinical and clinical proof of concept studies. However, as yet it

is unclear how to optimally choose the CR stimulation frequency, i.e. the repetition rate at

which the CR stimuli are delivered. This work presents the first computational study on the

dependence of the acute and long-term outcome on the CR stimulation frequency in neuro-

nal networks with STDP. For this purpose, CR stimulation was applied with Rapidly Varying

Sequences (RVS) as well as with Slowly Varying Sequences (SVS) in a wide range of stimu-

lation frequencies and intensities. Our findings demonstrate that acute desynchronization,

achieved during stimulation, does not necessarily lead to long-term desynchronization after

cessation of stimulation. By comparing the long-term effects of the two different CR proto-

cols, the RVS CR stimulation turned out to be more robust against variations of the stimula-

tion frequency. However, SVS CR stimulation can obtain stronger anti-kindling effects. We

revealed specific parameter ranges that are favorable for long-term desynchronization. For

instance, RVS CR stimulation at weak intensities and with stimulation frequencies in the

range of the neuronal firing rates turned out to be effective and robust, in particular, if no

closed loop adaptation of stimulation parameters is (technically) available. From a clinical

standpoint, this may be relevant in the context of both invasive as well as non-invasive CR

stimulation.
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Author summary

Abnormally strong neuronal synchronization is found in a number of brain disorders. To

specifically counteract abnormal neuronal synchrony and, hence, related symptoms,

Coordinated Reset (CR) stimulation was developed. CR stimulation employs basic plastic-

ity and dynamic self-organization principles of the nervous system. Its fundamental goal

is to induce long-lasting desynchronizing effects that persist cessation of stimulation. The

latter are key to reducing side effects of invasive therapies such as deep brain stimulation.

Furthermore, sustained stimulation effects pave the way for non-invasive neuromodula-

tion treatments, where a few hours of stimulation delivered regularly or occasionally may

provide substantial relief. Long-lasting CR-induced desynchronizing therapeutic effects

have been verified in several pre-clinical and clinical studies. However, we here present

the first computational study that systematically investigates the impact of key stimulation

parameters on the stimulation outcome. Our results provide experimentally testable pre-

dictions that are relevant for pre-clinical and clinical studies. Furthermore, our results

may contribute to stimulation techniques that enable to probe the functional role of brain

rhythms in general.

Introduction

Synchronization of oscillations is a generic mechanism in animate and inanimate systems [1–

6]. In fact, oscillators of qualitatively different type may share fundamental synchronization

mechanisms [1–6]. Synchronization processes may occur within as well as between different

systems of the human body [3–6], e.g. between heartbeat intervals and respiratory cycles [3].

Neuronal synchronization processes are relevant under normal as well as abnormal conditions

[7]. A number of brain disorders are associated with abnormal neuronal synchrony, for exam-

ple Parkinson’s disease [8–10], tinnitus [11–15] and epilepsy [16–18]. Neuronal dynamics and,

in particular synchronization processes crucially depend on the patterns and types of neuronal

connections [19–21]. For instance, according to computational studies it makes a significant

difference whether neurons interact through gap-junctions or synapses [20, 21]. This is rele-

vant for the emergence of different kinds of synchronization patterns [20–22] and epileptic sei-

zures [23].

Connectivity and function are strongly connected and may undergo plastic changes

throughout the life course [24]. The timing pattern of neuronal activity may strongly deter-

mine the strength of neuronal connections [25, 26]. Spike-timing-dependent plasticity (STDP)

is a pivotal mechanism by which neurons adapt the strength of their synapses to the relative

timing of their action potentials [27–31]. Based on seminal experimental studies [28–30] a

series of computational studies focused on how adaptive coupling and activity dependent syn-

aptic strength influence the collective neuronal dynamics [21, 23, 32–42]. In the presence of

STDP a plethora of qualitatively different stable dynamical regimes emerge [21, 34, 42]. Quali-

tatively different stable dynamical states may actually coexist. In fact, multistability is a typical

feature of neuronal networks and oscillator networks equipped with STDP. Multistability was

found in different neural network models comprising different STDP models, e.g. in phase

oscillator networks with both symmetric and asymmetric phase difference-dependent plastic-

ity, a time continuous approximation of STDP [32, 34] as well as in phase oscillator networks

with STDP [33] and in different types of neuronal networks with STDP [43–46] and other

types of neural network models (e.g. [47–56] and references therein).

Stimulation frequency, intensity and anti-kindling
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A number of computational studies were dedicated on desynchronizing synchronized

ensembles or networks of oscillators or neurons [57–62]. The clinical need for stimulation

techniques that cause desynchronization irrespective of the network’s initial state [63], thereby

being reasonably robust against variations of system parameters and, hence, not requiring

time-consuming calibration, motivated the design of Coordinated Reset (CR) stimulation [64,

65]. CR stimuli aim at disrupting in-phase synchronized neuronal populations by delivering

phase resetting stimuli typically equidistantly in time, separated by time differences Ts/Ns,

where Ts is the duration of a stimulation cycle, and Ns is the number of active stimulation sites

[64, 65]. The spatiotemporal sequence by which all stimulation sites are activated exactly once

in a CR stimulation cycle is called the stimulation site sequence, or briefly sequence. Taking

into account STDP [27–30] in oscillatory neural networks qualitatively changed the scope of

the desynchronization approach: Computationally, it was shown that CR stimulation reduces

the rate of coincident firing and, mediated by STDP, also decreases the average synaptic

weight, ultimately preventing the network from generating abnormally increased synchrony

[33]. This anti-kindling, i.e., unlearning of abnormally strong synaptic connectivity and of

excessive neuronal synchrony, causes long-lasting sustained effects that persist cessation of

stimulation [33, 43–45, 66, 67]. As shown computationally, anti-kindling can robustly be

achieved in networks with plastic excitatory and inhibitory synapses, no matter whether CR

stimulation is administered directly to the soma or through synapses [45, 68]. In line with

these computational findings, long-lasting CR-induced desynchronization and/or therapeutic

effects were accomplished with invasive as well as non-invasive stimulation modalities. Long-

lasting desynchronization was induced by electrical CR stimulation in rat hippocampal slices

rendered epileptic by magnesium withdrawal [69]. Electrical CR deep brain stimulation (DBS)

caused long-lasting therapeutic after-effects in parkinsonian non-human primates [70, 71].

Bilateral therapeutic after-effects for at least 30 days were caused by unilateral CR stimulation

delivered to the subthalamic nucleus (STN) of parkinsonian MPTP monkeys for only 2 h per

day during 5 consecutive days [70]. In contrast, standard permanent high-frequency deep

brain stimulation did not induce any sustained after-effects [70], see also [72]. In patients with

Parkinson’s disease electrical CR-DBS delivered to the STN caused a significant and cumula-

tive reduction of abnormal beta band oscillations along with a significant improvement of

motor function [73]. Non-invasive, acoustic CR stimulation was developed for the treatment

of patients suffering from chronic subjective tinnitus [68, 74]. In a proof of concept-study

acoustic CR stimulation caused a statistically and clinically significant sustained reduction of

tinnitus symptoms [74–76] together with a concomitant decrease of abnormal neuronal syn-

chrony [74, 77], abnormal effective connectivity [78] as well as abnormal cross-frequency cou-

pling [79] within a tinnitus-related network of brain areas.

So far, the pre-clinical [74, 80] and clinical [70, 73] proof of concept studies for invasive and

non-invasive CR stimulation were driven by computationally derived hypotheses and predic-

tions. Theoretically predicted phenomena and mechanisms, such as long-lasting stimulation

effects [33, 43, 45, 66], cumulative stimulation effects [67], and improvement by weak stimulus

intensity [81] were verified based on dedicated theory-driven study protocols for pre-clinical

and clinical proof of concepts [70, 73, 74, 80].

We here set out to investigate the impact of the CR stimulation frequency and intensity on

the effects during stimulus delivery (so-called acute effects), on transient effects emerging

directly after cessation of stimulation (so-called acute after-effects), and on effects outlasting

cessation of stimulation (so-called sustained after-effects). The ultimate goal of this study is to

improve the calibration of CR stimulation, in particular, by providing computationally gener-

ated predictions that can be tested in subsequent pre-clinical and clinical studies. The compu-

tational study presented here is organized around three hypotheses:

Stimulation frequency, intensity and anti-kindling
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Hypothesis #1: Due to the inherently periodic structure of CR stimulation the relation between
CR stimulation frequency and the spontaneous neuronal firing rates (prior to stimulation) mat-
ters. Periodic delivery of CR stimuli with fixed sequence basically constitutes a time-shifted

entrainment of the different neuronal subpopulations [64, 65]. A particular closed loop

embodiment of CR stimulation, periodic stimulation with demand-controlled length of high-

frequency pulse train, is basically a time-shifted entrainment of the different neuronal subpop-

ulations with stimulus intensities adapted to the amount of undesired synchrony [64, 65].

Accordingly, the duration of a stimulation cycle was selected to be reasonably close to the

mean period of the synchronized neuronal oscillation [64, 65]. In STDP-free networks of Kur-

amoto [82] and FitzHugh-Nagumo [83] model neurons the impact of CR stimulation intensity

and frequency on the desynchronizing outcome of CR was studied in detail [81].

Hypothesis #2: Different embodiments of CR stimulation may differ with respect to effect size and
robustness. In a series of computational studies [45, 46, 64, 65, 81, 84, 85] and in all pre-clinical

[69, 70] and clinical studies [73–78] performed so far, CR was applied either with fixed sequences

or rapidly varying sequences (RVS), where the sequence was randomly varied from cycle to cycle.

In a recent computational study, it was shown that at intermediate stimulation intensities the CR-

induced anti-kindling effect may significantly be improved by CR with slowly varying sequences
(SVS), i.e. by appropriate repetition of the sequence with occasional random switching to the next

sequence [84]. However, this study was not performed for a larger range of CR stimulation fre-

quencies. By definition, SVS CR stimulation features significantly more periodicity of the stimulus

pattern. Accordingly, the dependence of resonance and/or anti-resonance effects on the CR stim-

ulation frequency might be more pronounced for SVS CR as opposed to RVS CR.

Hypothesis #3: Pronounced acute effects might provide a necessary, but not sufficient condition
for pronounced sustained after-effects. In a pre-clinical study in Parkinsonian monkeys with

CR-DBS delivered at an optimal and a less favorable intensity, it was shown that long and pro-

nounced acute therapeutic after-effects coincide with long-lasting, sustained after-effects [74].

However, according to computational studies the relationship between acute after-effects and

sustained long-lasting effects might be more involved, at least for particular parameter combi-

nations [84].

Related to these hypotheses, to assess the robustness of CR stimulation against initial net-

work conditions we performed our numerical simulations for different network initializations,

respectively. In this study we did not systematically vary the stimulation duration. Rather,

based on a pre-series of numerical simulations, we here used a fixed stimulation duration that

is reasonably short, but nevertheless enabled to robustly achieve an anti-kindling for properly

selected values of stimulation frequency and intensity. In fact, our goal was to find stimulation

parameters enabling short, but notwithstanding effective CR stimulation. Keeping the stimula-

tion duration at moderate levels may be beneficial for applying the CR approach to different

invasive as well as non-invasive stimulation modalities. For instance, standard DBS, i.e. perma-

nent electrical high-frequency pulse train stimulation delivered to dedicated target areas

through implanted depth electrodes, used for the treatment of, e.g. Parkinson’s disease [86–88]

may cause side effects. If side effects are caused by stimulation of non-target tissue, they may

be reduced by adapting the spatial extent of the current spread to the target’s anatomical bor-

ders by appropriate electrode designs as introduced, e.g. by [89–91], in particular, to spatially

tailor stimuli by means of directional DBS [92–97]. However, some side effects may at least

partly be caused by stimulating the target region itself [98, 99]. Accordingly, no matter how

precisely stimuli are delivered to DBS targets, the amount of stimulation should be decreased

as much as possible. Another example refers to non-invasive applications of CR. In general,

non-invasive CR stimulation requires the patients’ compliance to actually pursue treatment

prescriptions. Obviously, patients might prefer shorter treatment sessions.

Stimulation frequency, intensity and anti-kindling
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To come up with favorable combinations of stimulation parameters, in our numerical anal-

ysis we used different data analysis methods, e.g. macroscopic measures assessing the average

amount of the population’s synchrony and synaptic connectivity. These measures are appro-

priate to demonstrate relevant stimulation effects, such as stimulation-induced transitions

from pronounced neuronal synchrony to desynchronized states.

In summary, in this paper we first explain the computational model and analysis methods.

We then apply RVS CR stimulation in a wide parameter range of stimulation frequencies and

intensities. We repeat the same analysis for SVS CR stimulation and investigate the differential

characteristics of RVS CR and SVS CR with respect to efficacy and robustness. Finally, we ana-

lyze the relationship between stimulation-induced acute effects and after-effects. Our results

provide the foundation for the development of novel control techniques that will be the topic

of a forthcoming study.

Materials and methods

The Hodgkin-Huxley Spiking Neuron Model

In this study we use the conductance-based Hodgkin-Huxley neuron model [100] for the

description of an ensemble of spiking neurons. The set of equations and parameters are (see

also [101, 102]):

C
dVi

dt
¼ Ii � gNam

3

i hi Vi � VNað Þ � gKn4

i Vi � VKð Þ � gl Vi � Vlð Þ þ Si þ Fi:

dmi

dt
¼ am Við Þ 1 � mið Þ � bm Við Þmi

dhi

dt
¼ ah Við Þ 1 � hið Þ � bh Við Þhi ð1Þ

dni

dt
¼ an Við Þ 1 � nið Þ � bn Við Þni

The variable Vi,with i = 1,. . .,N, describes the membrane potential of neuron i, and:

am Vð Þ ¼ ð0:1V þ 4Þ=½1 � expð� 0:1V � 4Þ�; bm Vð Þ ¼ 4 exp
� V � 65

18

� �

;

ah Vð Þ ¼ 0:07 exp
� V � 65

20

� �

; bh Vð Þ ¼
1

½1þ expð� 0:1V � 3:5Þ�
;

an Vð Þ ¼
0:01V þ 0:55

½1 � expð� 0:1V � 5:5Þ�
; bn Vð Þ ¼ 0:125 exp

� V � 65

80

� �

:

The total number of neurons is N = 200, while gNa = 120 mS/cm2, gK = 36 mS/cm2, gl = 0.3 mS/

cm2 are the maximum conductance per unit area for the sodium, potassium and leak currents

respectively. The constants VNa = 50 mV, VK = −77 mV and Vl = −54.4 mV refer to the

sodium, potassium and leak reversal potentials respectively. C is the constant membrane

capacitance (C = 1 μF/cm2), Ii the constant depolarizing current injected into neuron i, deter-

mining the intrinsic firing rate of the uncoupled neurons. For the realization of different initial

networks, we used random initial conditions drawn from uniform distributions, i.e. Ii 2 [I0 −
σI,I0 + σl] (I0 = 11.0 μS/cm2 and σl = 0.45 μS/cm2), hi,mi,ni 2 [0,1] and Vi 2 [−65,5] mV. The
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initial values of the neural synaptic weights cij are picked from a normal distribution N(μc =

0.5 μA/cm2, σc = 0.01 μA/cm2) (see also [45, 84] for more details). Hence, in this setup the neu-

rons are not identical. The Si term refers to the internal synaptic input of the neurons within

the network to neuron i, while Fi represents the current induced in neuron i by the external

CR stimulation.

Network and neuron coupling description

The N = 200 spiking Hodgkin-Huxley neurons are placed on a ring and the Ns = 4 stimulations

sites are equidistantly placed in space at the positions of neurons i = 25,75,125,175. The neu-

rons interact via excitatory and inhibitory chemical synapses by means of the postsynaptic

potential (PSP) si which is triggered by a spike of neuron i [27, 103] and modelled using an

additional equation (see also [104, 105]):

dsj
dt
¼

0:5ð1 � sjÞ

1þ exp½� ðVj þ 5Þ=12�
� 2sj: ð2Þ

Initially we draw si 2 [0,1] (randomly from a uniform distribution) and then, the coupling

term Si from Eq (1) (see [45]) contains a weighted ensemble average of all postsynaptic cur-

rents received by neuron i from the other neurons in the network and is described by the fol-

lowing term:

Si ¼ N � 1
XN

j¼1

ðVr;j � ViÞcijjMijjsj; ð3Þ

where cij is the synaptic coupling strength from neuron j to neuron i and Vr,j is the reversal

potential of the synaptic coupling (20 mV for excitatory and –40 mV for inhibitory coupling).

In accordance with previous studies [45, 84, 85] the inhibitory reversal potential was set to −40

mV. The latter makes neurons’ more susceptible to input, e.g. stimuli. We performed the same

sets of simulations for a subset of stimulation parameters with a different value of the inhibi-

tory reversal potential, -80 mV as in [106] instead of -40 mV. In this way, we obtained very

similar results. There are no neuronal self-connections within the network (cii = 0 mS/cm2).

The term Mij, which describes the spatial profile of coupling between neurons i and j, is given

by:

Mij ¼ ð1 � d2

ij=s2

1
Þ expð� d2

ij=ð2s2

2
ÞÞ: ð4Þ

It has the form of a Mexican hat [107–109] and defines the strength and type of neuronal inter-

action: strong short-range excitatory (Mij> 0) and weak long-range inhibitory interactions

(Mij< 0). Here dij = d|i − j| is the distance between neurons i and j, while

d ¼ d0=ðN � 1Þ ð5Þ

determines the distance on the lattice between two neighboring neurons within the ensemble,

d0 is the length of the neuronal chain (d0 = 10), σ1 = 3.5, and σ2 = 2.0. In order to limit bound-

ary effects, we consider that the neurons are distributed in such a way that the distance dij is

taken as: d �min(|i − j|,N − |i – j|) when the i,j> N/2.

Spike-timing-dependent plasticity

We follow the concepts described in [28, 29], regarding the synaptic coupling strengths change

dependence on the precise timing of pre- and post-synaptic spikes. Hence, we consider all the

synaptic weights cij to be dynamic variables that depend on the time difference (Δtij) between

Stimulation frequency, intensity and anti-kindling
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the onset of the spikes of the post-synaptic neuron i and pre- synaptic neuron j (denoted by ti
and tj respectively). Then the STDP rule for the change of synaptic weights is given by [29, 45]:

Dcij ¼
b1e

� Dtij
g1t ; Dtij � 0

b2

Dtij
t

e

Dtij
g2t ; Dtij < 0

; ð6Þ

8
>>>>><

>>>>>:

where β1 = 1, β2 = 16, γ1 = 0.12, γ2 = 0.15, τ = 14 ms and δ = 0.002. According to the value of

Δtij, the synaptic weight cij is updated in an event-like manner, i.e. we add or subtract an incre-

ment δ � Δcij for excitatory or inhibitory connections respectively, with learning rate δ> 0

every time a neuron spikes. Furthermore, we restrict the values of cij on the interval [0,1] mS/

cm2 for both excitatory and inhibitory synapses, ensuring in this way that their strengthening

or weakening remains bounded. The maximal inhibitory synaptic weight cmax was set to be 1

in all our stimulations. However, a more detailed investigation about the effect and variation

of this value was performed in [84] where when increasing cmax of the inhibitory neurons no

significant impact was observed regarding (de)synchronization effects accompanied with a

lower average network connectivity.

The time window of the plasticity is adjusted with respect to the intrinsic firing rate of the

neuron population in order to exhibit multistability, as also discussed in [45]. There, different

time-windows (via different choices of parameters) were selected for the STDP for two differ-

ent neuron models, i.e. one with bursting neurons (FitzHugh-Rinzel) and one for spiking neu-

rons (Hodgkin-Huxley). In our simulations, the STDP tends to simply stabilize the ongoing

ensemble evolution and does not, by itself, (de-)synchronize the network. The parameters

were, in general, chosen such that the ratio
Dtij

g1;2t
is normalized, and the plasticity takes place

within a time interval associated with the spiking period of the individual neurons. We ana-

lyzed two additional cases for small variation of the plasticity time-window (τ = 12 and τ = 16)

and obtained very similar general effects. The selected fixed value τ = 14, used throughout the

entire study, also allows us to compare our results with previously published studies.

Coordinated reset stimulation

Coordinated Reset (CR) stimulation was applied to the neuronal ensemble of N spiking Hodg-

kin-Huxley neurons. This was done sequentially via Ns (= 4 in this study) equidistantly spaced

stimulation sites [64]: one stimulation site was active during Ts/Ns, while the other stimulation

sites were inactive during that period. After that another stimulation site was active during the

next Ts/Ns period. All Ns stimulation sites were stimulated exactly once within one stimulation

ON-cycle. Therefore, the duration of each ON-cycle is Ts (in ms). The spatiotemporal activa-

tion of stimulation sites is represented by the indicator functions ρk(t) (k� {1,. . .,N}):

rkðtÞ ¼
1; kth stimulation site is active at t

0; otherwise
: ð7Þ

(

The stimulation signals induced single brief excitatory post-synaptic currents. The evoked

time-dependent normalized conductances of the postsynaptic membranes are represented by

α-functions given in [102]:

Gstim tð Þ ¼
t � tk
tstim

e� ðt� tkÞ=tstim ; tk � t � tkþ1: ð8Þ
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Here τstim = Ts/(6Ns) denotes the time-to-peak of Gstim, and tk is the onset of the kth activation

of the stimulation site. Note that the period (or frequency) through the τstim parameter of the

CR stimulation determines not only the random onset timing of each single signal but also its

temporal duration. The spatial spread of the induced excitatory postsynaptic currents in the

network is defined by a quadratic spatial decay profile (see [102] for more details) given as a

function of the difference in index of neuron i and the index xk of the neuron at stimulation

site k:

D i; xkð Þ ¼
1

1þ d2ði � xkÞ
2
=s2

d

; ð9Þ

with d the lattice distance between two neighboring neurons as defined in Eq (5) and σd = 0.8

the spatial decay rate of the stimulation current. Thus, the total stimulation current from Eq

(1) is expressed by the following equations:

Fi ¼ ½Vr � ViðtÞ� � K
XNs

k¼1

Dði; xkÞrkðtÞGstimðtÞ; ð10Þ

where Vr = 20 mV denotes the excitatory reversal potential, Vi the membrane potential of neu-

ron i, K the stimulation intensity, and ρ, G, D are given by Eqs (7), (8) and (9) respectively.

For the RVS CR stimulation, sequences are randomly chosen from a set of Ns! (= 24) differ-

ent possible sequences during each ON-cycle (an example is shown in Fig 1A for CR stimula-

tion period Ts = 10 ms for the first 90 ms of an activated CR period). Each newly drawn

sequence is indicated by a different color and lasts exactly one ON cycle. On the other hand,

for the SVS-l CR stimulation, one first randomly picks a sequence and repeats it l times before

switching to another one, as shown by the example in Fig 1B (again for Ts = 10 ms) for l = 4.

The administered stimulation protocol consists of m:n = 3:2 CR ON-OFF cycles (see [45, 81,

Fig 1. Time evolution of CR stimulation signals. (A) RVS CR stimulation signal with period Ts = 10 ms for the first 90 ms of an activated CR period. The vertical lines

indicate the successive ON- and OFF cycles and the temporal distance between two successive vertical lines correspond to the period Ts of each cycle (every stimulation

site is activated exactly once during the ON cycles). A change of color indicates a change of sequence. (B) SVS-4 CR stimulation signal with the same period but here the

total time spans up to two completed ON-and OFF cycles (~125 ms) while the color changes as a new sequence is drawn.

https://doi.org/10.1371/journal.pcbi.1006113.g001
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84]). Depending on the Ts value, more (or less) ON-cycles may be administered within a fixed

time interval. In this panel, the total time spans up to two completed ON-and OFF cycles (up

to ~125 ms in this case) and the color changes at each new sequence.

Macroscopic measurements and statistical tools

The synaptic weights, being affected by the STDP and the different intrinsic periods of the neu-

rons, change dynamically in time. One efficient way to measure the strength of the coupling

within the neuronal population at time t is given by the following synaptic weight (averaged

over the neuron population):

CavðtÞ ¼ N � 2
X

i;j

sgnðMijÞcijðtÞ; ð11Þ

where Mij is defined in Eq (4) and sgn is the sign-function. Furthermore, one may additionally

measure the degree of the neuronal synchronization within the ensemble, using the order

parameter [82, 110]:

RðtÞ ¼ N � 1
X

j

eiφjðtÞ
�
�
�
�

�
�
�
�
; ð12Þ

where φj(t) = 2π(t − tj,m)/(tj,m+1 − tj,m) for tj,m� t< tj,m+1 is a linear approximation of the

phase of neuron j between its mth and (m + 1)th spikes at spiking times tj,m and tj,m+1. R(t) is

influenced by the synaptic weights, as the latter are time dependent due to the STDP. The

order parameter R measures the extent of phase synchronization in the neuronal ensemble

and takes values between 0 (absence of in-phase synchronization) and 1 (perfect in-phase

synchronization).

In our numerical calculations, we estimate Cav [see Eq (11)] and Rav. The latter quantity is

averaged over the last 100 � Ts. Whenever we plot the order parameter versus time, we deter-

mine the moving average <R> over a time window of 400 � Ts, because of the presence of

strong fluctuations. For the statistical description and analysis of the non-Gaussian distributed

Cav and Rav data (n = 11 samples), we use the median as well as the Inter-Quartile Range (IQR)

[111]. The IQR measures the statistical dispersion, namely the width of the middle 50% of the

distribution and is represented by the box in a boxplot. It is also used to determine outliers in

the data: an outlier falls more than 1.5 times IQR below the 25% quartile or more than 1.5

times IQR above the 75% quartile. Selecting the appropriate sample size is a complex issue (see

e.g. http://www.itl.nist.gov/div898/handbook/index.htm), especially when the standard devia-

tion is unknown. Following the steps described in (http://www.itl.nist.gov/div898/handbook/

prc/section2/prc222.htm), we use the formula n ¼ ðx1� as=2 þ x1� bs
Þ

2 sd
ds

� �2

to get a first rough

estimation of the number of measurements (n) to be included in our sample, where αs refers to

the risk of rejecting a true hypothesis, and βs is the risk of accepting a false null hypothesis

when a particular value of the alternative hypothesis is true, sd the unknown standard devia-

tion, δs the confidence interval, and x the values from student’s t-distribution. Using 11 sam-

ples, as minimum sample size, one is able to reach quite small p-values, much smaller than the

significance level as = 0.05.

Simulation description

In this study, for each initial network of N = 200 non-identical-neurons and parameter condi-

tions (or simply “network”), we apply RVS and SVS CR signals (different per network). For

each network, the initial conditions for each neuron were randomly drawn from random

Stimulation frequency, intensity and anti-kindling
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distributions as given in the Hodgkin-Huxley Spiking Neuron Model subsection. We start the

simulation with an equilibration phase, which lasts 2 s. Later on, we evolve the network under

the influence of STDP (which will be present until the end of the simulation). We then inte-

grate the network for 60 s with STDP without any external stimulation yet, where a rewiring of

the connections takes place, resulting in a strongly synchronized state. Next, we apply CR stim-

ulation for 128 s (resetting the starting time to t = 0 s). During this CR-on period three stimula-

tion ON-cycles (the stimulation is on) alternated with two OFF-cycles (the stimulation is off)

as in the example stimulation signals shown in Fig 2. Each ON- and OFF-cycle lasts Ts. After

128 s the CR stimulation ceases permanently and we continue the evolution of the CR-off

period for extra 128 s.

In order to probe and chart the CR stimulation intensity and frequency parameter space,

we restrict the CR stimulation intensity to values in the interval (K 2 [0.20,. . .,0.50]). This par-

ticular choice is based on our previous experience and numerical studies (see e.g. [45, 84])

where it was found that weaker intensities were not able to sufficiently desynchronize the neu-

ron ensemble while larger intensities did not significantly improve (or sometimes even

worsen) the outcome of RVS and SVS CR stimulation signals. We then set an initial-central

value for the CR stimulation period (that defines the initial/starting frequency) which in prin-

ciple is selected close to the intrinsic firing rate of the strongly synchronized network. In this

case, and before applying the CR stimulation, the intrinsic firing rate of the network is ~71 Hz

which corresponds to Ts� 14 ms. Hence, we begin with the CR stimulation period T0 = 16 ms

Fig 2. Impact of the total CR-on time on the mean synaptic weight Cav for different initial random networks and RVS CR. (A) Time evolution of the Cav for different

total CR-on time durations, t = 64 s, (B) t = 128 s (this is the standard CR-on period used throughout the paper) and (C) t = 256 s. In all these cases, 11 different initial

networks were stimulated with different RVS CR stimulation signals during the CR-on period. The thick red horizontal lines indicate the CR-on/off stimulation periods

(the end is marked with a vertical gray line) while the horizontal gray dashed lines are visual cues for mutual comparison. (D) Boxplots of the mean synaptic weights

presented in (A)-(C), showing the median values (black lines within the boxes). The box frames depict the middle 50%, the upper and lower whiskers the first and last 25%

respectively while the outliers (black dots) are set as 1.5 times the length of the box (above/below). There is no statistically significant difference between the data sets at

t = 128 s and t = 256 s (p = 0.8955 two-sided Wilcoxon rank sum test). The total CR-on/off time is twice as long as the CR-on period. (E) An identical RVS CR stimulation

signal (the one of network 1) was used for all 11 initial networks for t = 128 s [comparison with (B)]. In all cases, the CR stimulation intensity is K = 0.20 with period Ts =

10 ms.

https://doi.org/10.1371/journal.pcbi.1006113.g002
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which gives an initial stimulation frequency f0 = 1/T0 (in a similar manner just like in [45, 84]

and adjusted to a value close to the intrinsic one). Then we define such a period interval

[Tsmin;Tsmax] in ms (Ts: integer) that allows us to create an “approximately” equidistant grid on

the frequency space: fstim2 [25%f0,. . .,175%f0]. This initial T0 − value is also well studied for

different types of signal patterns aiming to optimize the CR effect with the use of different type

of CR stimulation sequences (see e.g. [84]). Then, we define the ratio (%) of CR sequence fre-

quency per ON-cycle (fstim) over the frequency of the reference stimulation frequency (f0 =

62.5 Hz, T0 = 16 ms) as r0 = (fstim/f0) � 100 and we end up in studying the intensity and fre-

quency-ratio (K,r0) – parameter space. In Table 1, we show the conversion between the stimu-

lation frequency-ratio and period. For comparison reasons, we also give the corresponding

ratios rint (%) of CR stimulation frequency per ON-cycle (fstim) over the frequency of the

intrinsic firing rate of the network frequency (fint = 71.4 Hz, Tint = 14 ms) without any external

stimulation.

Results

Impact of CR stimulation duration and signals on different initial

networks

Before presenting the core of our findings, let us first start by discussing how the RVS CR stim-

ulation duration affects the long-lasting anti-kindling of different initial randomly chosen net-

works. In Fig 2, we show the evolution of the mean synaptic weight Cav as a function of time

for different total CR-on time durations: t = 64 s (Fig 2A), t = 128 s (Fig 2B), and t = 256 s (Fig

2C). 128 s is the standard CR-on period used throughout the paper. The CR stimulation inten-

sity is K = 0.20, and the period Ts = 10 ms. A general trend appears in this sequence of panels,

i.e. the longer the CR stimulation lasts, less spread of the Cav regarding the long-lasting anti-

kindling effect is observed after stimulation offset. This is shown in Fig 2D with boxplots. The

last box (corresponding to t = 256 s of total CR-on period) has no outliers and shows a more

“uniform” long-lasting effect (as shown in Fig 2C) for all 11 network initializations, not only

during the CR-on period but also afterwards during the CR-off period. However, there is no

statistically significant decrease of the median of the Cav from t = 64 s to t = 128 s (right-sided

Wilcoxon rank sum test [112], p = 0.0209, 5% significance level). Moreover, the median value

of the Cav does not change significantly between t = 128 s (Fig 2B) and t = 256 s (Fig 2C, both-

sided Wilcoxon rank sum test, p = 0.8955). Hence, the intermediate stimulation duration

t = 128 s provides fairly good results. Furthermore, for considerably larger stimulation dura-

tions the anti-kindling is typically, but not always more pronounced. From a clinical stand-

point, it is desirable to achieve reasonably pronounced stimulation effects without excessive

stimulation durations. Accordingly, in this computational study we choose t = 128 s as total

CR-on time, and t = 256 s as total CR-on/off time.

Table 1. Conversion between the stimulation frequency and period.

r0 = (fstim/f0) � 100 25% 40% 55% 60% 85% 100% 115% 130% 145% 160% 175%

Ts[ms] 64 40 29 23 19 16 14 12 11 10 9

rint = (fstim/fint) � 100 22% 35% 48% 61% 74% 88% 100% 117% 127% 140% 156%

In the first row, we show the ratio r0 (%) of the CR sequence frequency per ON-cycle (fstim) over the frequency of the reference stimulation frequency (f0 = 62.5 Hz, T0 =

16 ms) which is used for providing fstim –values which are distributed in an “approximately” equidistant grid on the frequency space: fstim 2 [25%f0,. . .,175%f0]. Based

on these values, we define the period Ts (second row) of the CR sequences. These are the two descriptions used broadly throughout the paper. In the last row, we show

additionally − and only for comparison reasons − the corresponding ratios rint (%) of CR sequence frequency per ON-cycle (fstim) over the frequency of the intrinsic
firing rate of the network frequency (fint� 71.4 Hz, Tint � 14ms) without any external stimulation.

https://doi.org/10.1371/journal.pcbi.1006113.t001
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For the different simulations, we use different random initial networks and CR signals. For

the sake of generality, we do not pick any optimal combination of random initial network and

RVS CR stimulation signal that would induce a favorable or biased behavior. This is to assess

whether CR effects are robust with respect to different initial conditions.

Fig 2B shows a typical example where 11 different random stimulation signals where

applied to 11 different initial networks during the CR-on period, with CR stimulation intensity

K = 0.20 and stimulation period Ts = 10 ms. The CR-on/off period lasts 128 ms respectively.

During the CR-on period the mean synaptic weights Cav evolve in a similar manner for all net-

works, with little deviations between the different curves. They reach approximately the same

small value at the end of the CR-on period. The latter corresponds to weak excitatory synaptic

connectivity and, in most cases in this paper, to globally well-desynchronized states. However,

the post-stimulation dynamics of Cav may be quite diverse. Some networks retain their weak

average connectivity while others, like network 2 and 9 (Fig 2B) relapse back to states with

strong synaptic connectivity. Next, we study what happens if we fix the CR stimulation signal

for the 11 different initial networks (Fig 2E). The results are similar to Fig 2B: The outcome at

the end of the CR-on period is fairly uniform, while the post-stimulation dynamics of Cav is

diverse. Replacing one random external stimulation signal by another one may improve the

long-term outcome in some cases (e.g. network 8 –green dotted line), but worsen the outcome

in others (e.g. network 3 –blue solid line). These plots indicate that both the random initializa-

tion of the network and the different stimulation signals during the CR-on period impact on

the final outcome at the end of the CR-off period in a complex manner.

Impact of RVS CR stimulation intensity and frequency on acute effects

Next, we investigate how stimulation intensity and stimulation frequency impact on the mean

synaptic weight and synchronization at the end of the RVS CR-on period. Fig 3A shows the

median of the mean synaptic weight Cav, and Fig 3B of the order parameter Rav (averaged over

the last 100 � Ts) as a function of stimulation intensity K and stimulation frequency fstim. The

color bars show the median values which were calculated from 11 different random initial net-

work configurations. Overall, at the end of the RVS CR-on period we observe a weak excitatory

coupling. In other words, CR stimulation shifts the networks’ couplings towards more inhibi-

tion, the inhibitory couplings get stronger, and desynchronized states emerge for most of the

(K,r0) pairs, except for the two columns at fstim = 25%f0 (Ts = 64 ms) and fstim = 145%f0 (Ts =

11 ms). For the former frequency, CR stimulation fails to weaken both the inter-neural con-

nectivity and synchrony, whereas for the latter frequency CR down-regulates synaptic connec-

tivity, but elevated levels of synchrony persist. Fig 3C and 3D show their Inter-Quartile-Range

(IQR) respectively, which gives a measure of the data dispersion around these median values.

All IQR values being close to zero indicate that the middle 50% of the distribution are very

close to the median value.

Impact of RVS CR stimulation intensity and frequency on sustained after-

effects

Fig 4 presents a global overview of the long-lasting impact of CR at the end of the CR-off

period. Fig 4A shows the median of the mean synaptic weight Cav, and Fig 4B the median of

the order parameter Rav. Fig 4C and 4D display the corresponding IQRs, showing that the dis-

persion around the median of the Cav results is very small in large parts of the parameter plane.

In contrast, small IQRs are found only for small Rav, in regions with strong desynchronization.

Fig 4A and 4B display two main bands in the (K,r0) − parameter space associated with small

dispersion: The first band is aligned along the horizontal axis, for weak stimulation intensities

Stimulation frequency, intensity and anti-kindling
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(i.e. K = 0.20 and K = 0.25) and stimulation frequencies greater than 40% of the standard f0

corresponding to a stimulation period of T0 = 16 ms. The second band runs along the vertical

stimulation intensity K axis, and for relatively high frequencies, i.e. for fstim = 160%f0 (Ts = 10

ms) and fstim = 175%f0 (Ts = 9 ms) which correspond to ~ 155% and ~ 140% of the firing rate

of the synchronized neurons, respectively. For these (bottom-horizontal and right-hand-side-

vertical bands) the dispersion around the median values is quite small for both Cav and Rav

(Fig 4C and 4D). In addition, the vertical stripe at the reference frequency value f0 ("100%",

Ts = 16 ms), studied in [84], but with a t = 64 s CR-on period, is also associated with robust

long-lasting anti-kindling and desynchronization for all CR stimulation intensity values K.

Another region with similar characteristics lies at the center of Fig 4A and 4B for intermediate

stimulation intensity and frequency values.

At a first glance, among those two bands in Fig 4A and 4B, where dark color dominates sug-

gesting long-lasting anti-kindling after cessation of CR stimulation, the horizontal band seems

especially intriguing. Along the lines of our model analysis, the horizontal band corresponds

to pronounced desynchronizing outcome at favorably weak CR stimulation intensities within

Fig 3. Global overview of the synaptic connectivity and synchronization at the end of the CR-on period using RVS CR stimulation. (A) Median of mean synaptic weight

Cav and (B) median of the order parameter Rav at the end of the CR-on period as a function of stimulation intensity K and stimulation frequency ratio r0 = (fstim/f0) � 100. Color-

bars show the median values which were calculated from 11 different random initial network configurations. Panels (C) and (D) show the corresponding IQR, which gives a

measure of the dispersion around these median values. All IQR values being close to zero indicate that the middle 50% of the distribution are very close to the median value.

https://doi.org/10.1371/journal.pcbi.1006113.g003
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a range of stimulation frequencies. However, we have to keep in mind that the discrete grid is

not very dense. Hence, in order to investigate whether this conclusion is justified, we calcu-

lated Cav and Rav for all the integer period Ts values for K = 0.20, ranging from fstim = 175%f0

(Ts = 10 ms) to fstim = 40%f0 (Ts = 40 ms). Fig 5 shows this fine-grained analysis. The boxplot

for Cav is shown in Fig 5A, and for the Rav in Fig 5B. Note, in this figure the horizontal axis

shows the CR stimulation period instead of the frequency. And it is sorted from larger to

smaller values for an easier comparison between the two representations. The red and green

dots indicate the reference stimulation period T0 = 16 ms and intrinsic firing rate period Tint =

14 ms ms respectively. For Ts 2 [9,. . .,24 ms] we observe robust anti-kindling effects. In con-

trast, for Ts 2 [25,. . .,28 ms] many networks tend to be in a synchronized state, while for Ts 2

[29,. . .,38 ms] the anti-kindling is found to be robust again, before finally reaching the largest

Ts value where the CR stimulation signals are not effective at all. In summary, at weak stimula-

tion intensities favorable stimulation outcomes are achieved within wide ranges of the stimula-

tion frequency. For further analyses of stimulation induced effects observed in particular

ranges of the stimulation intensity/frequency parameter plane, we refer to the Supporting
Information. For particular stimulation parameters, similar acute effects, as assessed with

Fig 4. Global overview of the mean synaptic weight and synchronization at the end of the CR-off period using RVS CR stimulation. (A) Median of the mean synaptic

weight Cav, (B) median of the order parameter Rav (11 different random initial network configurations and 11 different RVS CR random signals). Long-lasting anti-

kindling is achieved in all dark regions as indicated by the corresponding color-bars. Panels (C) and (D) show the dispersion around these median values by plotting their

IQR respectively. All IQR values being close to zero indicate that the middle 50% of the distribution are very close to the median value.

https://doi.org/10.1371/journal.pcbi.1006113.g004
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macroscopic quantities Rav and Cav, may lead to qualitatively different results. Neither promi-

nent features of the connectivity matrix nor the dynamical states of the individually stimulated

subpopulations at the end of the CR-on period enabled us to predict the long-term outcome

(see Supporting Information). Furthermore, this analysis revealed that CR may be effective

without causing side-effects that are time-locked to the individual stimuli (see Supporting
Information).

Fig 5. Fine-grained Ts − period grid analysis for RVS CR stimulation at intensity K = 0.20. (A) Boxplots of Cav (mean synaptic weight) and

(B) Rav (order parameter) for fixed and weak stimulation intensity K = 0.20 for a finer sample on the Ts integer value interval at the end of the

CR-off period. The red and green dots indicate the reference stimulation period T0 = 16 ms and intrinsic firing rate period Tint = 14 ms,

respectively.

https://doi.org/10.1371/journal.pcbi.1006113.g005
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Impact of SVS CR stimulation intensity and frequency on stimulation

effects

Next, we address the robustness of the long-lasting anti-kindling achieved by SVS CR stimula-

tion in the (K,r0) − parameter plane. We use SVS-100 CR stimulation, where the random

switching occurs after 100 repetitions of the CR sequence (for motivation see [84]). In Fig 6 we

show the total outcome of Cav and Rav, obtained by delivering SVS-100 CR to the same 11 ini-

tial networks as in Figs 3 and 4 and varying the CR stimulation frequency and intensity. Let us

compare these results with the results for RVS CR (Fig 3A and 3B). Regarding the medians of

the Cav, both RVS and SVS CRs (Fig 3A vs Fig 6A) overall the parameter dependence outcomes

are similar, where the outcome plots of SVS CR (Fig 6) contain more vertical stripes, associated

with greater outcome variability. Let us consider some of the differences between RVS CR and

SVS CR: For low intensity (K = 0.20) and high frequencies fstim = 175%f0, 160%f0 (correspond-

ing to Ts = 9 ms, 10 ms respectively) SVS-100 does neither cause pronounced acute desynchro-

nizing effects nor sustained long-lasting effects. For low CR frequency 25%f0 (corresponding

to Ts = 64 ms, leftmost column) it requires even stronger intensities to induce an anti-kindling

compared to RVS (Fig 3A). Regarding the median of Rav (Fig 3B vs Fig 6B) for almost all (K,r0)

Fig 6. Global overview of the mean synaptic weight and synchronization at the end of the CR-on/off period using SVS CR stimulation. (A) Median of the mean

synaptic weight Cav and (B) median of the order parameter Rav for 11 different random initial network configurations at the end of the CR-on period. (C) Median of the

mean synaptic weight Cav and (D) median of the order parameter Rav at the end of the CR-off period.

https://doi.org/10.1371/journal.pcbi.1006113.g006
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− parameters the networks are shifted to a desynchronized state at the end of the CR-on

period, with only a few exceptions, in particular (K,r0) = (0.20, 175%f0), (0.20, 160%f0) and for

25%f0. Moreover, for the frequency fstim = 145%f0 the SVS CR stimulation achieves more pro-

nounced anti-kindling effects (at the end of the CR-on period) for all intensities K compared

to the RVS CR stimulation.

In Fig 6C and 6D we present the outcome for the medians of Cav and Rav at the end of the

CR-off period for SVS-100 CR. The main differences compared to RVS CR (Fig 4A and 4B)

are the ‘stripes’ at fstim = 115%f0 and, in particular, at fstim = 145%f0 where SVS-100 neither

reduces Cav nor Rav for all K-values. Moreover, also for the lowest intensity value K = 0.20 and

frequencies fstim = 175%f0, 160%f0, 25%f0 no anti-kindling is achieved. However, there is a sub-

stantial overlap of the (K, fstim) − parameter range where both RVS and SVS-100 CR lead to

long-lasting anti-kindling, mainly for high frequencies fstim = 175%f0, 160%f0 for K� 0.25 as

well as for 40%f0 ≲ fstim ≲ 100%f0 and a wide range of K-values. Interestingly, whenever SVS

CR stimulation causes an anti-kindling, the long-term effects on the connectivity are particu-

larly robust, irrespective of different network initializations and parameters.

Let us now investigate a denser Ts period sample for the weakest intensity K = 0.20, with the

same format as in Fig 5 for RVS CR stimulation. Boxplots of Cav (Fig 7A) and Rav (Fig 7B) at

the end of the CR-off period show that SVS CR stimulation at this weak intensity is overall less

efficient in inducing long-lasting anti-kindling effects compared to RVS CR (Fig 5). In particu-

lar, there is no distinct range of Ts periods where SVS CR causes a pronounced anti-kindling.

However, for a few values of Ts for the long-term outcome for SVS is stronger than for RVS,

e.g. for Ts = 15 ms, 16 ms.

Fig 8 enables us to display the stimulation’s global performance in a more concise manner.

Namely, it shows the dependence of stimulation outcome on CR stimulation intensity and fre-

quency for the time-averaged mean synaptic weights Cav (Fig 8A and 8E) and time-averaged

order parameter Rav (Fig 8B and 8F), both at the end of the CR-off period, with values belong-

ing to the same intensity value K for RVS (top row) and SVS CR (bottom row) stimulation,

respectively. Similar plots but now for values belonging to the same frequency ratio (fstim/f0) �

100 are shown in Fig 8C and 8G and Fig 8D and 8H respectively.

Discussion

By systematically varying the CR stimulation frequency and intensity and comparing the stim-

ulation outcome of the two different CR protocols, RVS and SVS CR stimulation, RVS CR

proved to be more robust with respect to variations of the stimulation frequency. However, in

accordance with a previous computational study, restricted to a fixed value of the stimulation

frequency [84], SVS CR stimulation can induce stronger anti-kindling effects. In our study, we

obtained particular parameter ranges related to particularly favorable stimulation outcome. If

no closed loop adaptation for the stimulation frequency is available, RVS CR stimulation at

weak intensities and with stimulation frequencies in the range of the neuronal firing rates

enables to effectively and robustly achieve an anti-kindling.

To our knowledge, in our study in a plastic network the CR stimulation frequency and inten-

sity were systematically varied for the first time to investigate the impact on acute and long-last-

ing stimulation outcome. Remarkably, pronounced acute desynchronization (as measured by

means of the standard order parameter from Eq (12) [82, 110]) does not necessarily lead to

long-lasting desynchronization. On the one hand this finding might inspire future computa-

tional and pre-clinical studies aiming at specifically designing stimulation protocols for long-

lasting (as opposed to acute) desynchronization. On the other hand, this finding is significant

for the development of clinical calibration procedures for CR stimulation, see [113].
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In a previous study in networks without STDP Lysyansky and coworkers [81] considered

m:n ON-OFF CR stimulation with real rather than integer m and n and varied m and n system-

atically. For non-integer m incomplete CR stimulation cycles are delivered, intersected by

incomplete pause cycles caused by non-integer n. This type of CR stimulation has not yet been

used in pre-clinical or clinical studies and is somewhat remote to the initial CR concept that

builds on the periodicity of both neuronal firing and stimulus patterns [64, 65].

Fig 7. Fine-grained Ts –period grid analysis for SVS CR stimulation at intensity K = 0.20. (A) Boxplots of Cav (mean synaptic weight) and (B)

Rav (order parameter) for fixed and weak stimulation intensity K = 0.20 for a finer sample on the Ts integer value interval at the end of the CR-off

period. The red and green dots indicate the reference stimulation period T0 = 16 ms and intrinsic firing rate period Tint = 14 ms, respectively.

Format as in Fig 5.

https://doi.org/10.1371/journal.pcbi.1006113.g007
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For the majority of the CR stimulation parameters used in this work, no drastic change was

observed in the firing rates. The only exception was observed for very low stimulation fre-

quency combined with comparably high intensities (S2 Fig). Especially for the most relevant

cases (weak to intermediate intensities and frequencies around the reference stimulation fre-

quency) the firing rate of the neuron ensemble remains almost unchanged when compared

with initial intrinsic firing rates before CR delivery (about up to ±3% variation of the initial

intrinsic firing rate). In this study, we focused on a network of spiking Hodgkin-Huxley neu-

rons with STDP. Compared to STDP-free networks used before [81], this is a step towards

more complex and, in particular, plastic neural networks. Future studies should address yet

more complex neural networks equipped with STDP to study parameter regions and stimula-

tion protocols that are reasonably stable in different neural network models. In principle, we

have to be careful about extrapolating findings obtained in one type of neural network model

to network models of higher complexity. For instance, non-linear delayed feedback stimula-

tion was introduced in globally coupled networks of limit cycle oscillators and phase oscillators

[114]. It turned out to robustly cause desynchronization, nearly irrespective of the selected val-

ued of the delay [115]. In contrast, linear delayed feedback [116] was shown to induce desyn-

chronization only for a rather small subset of parameter pairs of delay and intensity, favoring

delays close to half the intrinsic oscillation period and weak to moderate intensities [115, 116].

However, in a more complex, microscopic neuronal network model consisting of a popula-

tion of STN and a population of external globus pallidus (GPe) neurons [105] the parameter

dependence for nonlinear delayed feedback was qualitatively different [117]. The parameter

ranges of delay and intensity values associated with desynchronization were still greater for

nonlinear delayed feedback as opposed to linear delayed feedback. However, in this micro-

scopic STN-GPe network model nonlinear delayed feedback had to be properly calibrated

and, in particular, the delay had to be adjusted to the intrinsic period of the neuronal oscilla-

tions, to enable desynchronization [117]. Note, the microscopic STN-GPe network model did

not contain STDP [105]. Incorporating STDP to a neuronal network model substantially adds

to the model’s complexity (see e.g. [34]) and might, hence, further impact on the dependence

Fig 8. Dependence of stimulation outcome on CR stimulation intensity and frequency. (A,E) Boxplots for the time-averaged mean synaptic weights Cav (at the end of

the CR-off period) with values belonging to the same intensity value K for RVS (top row) and SVS CR (bottom row) stimulation, respectively. (B,F) Boxplots for the time-

averaged order parameter Rav (at the end of the CR-off period) with values belonging to the same intensity value K for RVS (top row) and SVS CR (bottom row) CR

stimulation respectively. (C,G) Boxplots for the time-averaged mean synaptic weights Cav (at the end of the CR-off period) with values belonging to the same frequency

ratio (fstim/f0) � 100 for RVS (top row) and SVS CR (bottom row) CR stimulation respectively. (D,H) Boxplots for the time-averaged order parameter Rav (at the end of the

CR-off period) with values belonging to the same frequency ratio (fstim/f0) � 100 for RVS (top row) and SVS CR (bottom row) CR stimulation respectively.

https://doi.org/10.1371/journal.pcbi.1006113.g008
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of the stimulation outcome on key parameters of both linear and nonlinear delayed feedback.

Ultimately, we strive for using several neural networks with STDP as testbed for generating

computationally based predictions and recommendations for favorable stimulus parameters

and dosage protocols. However, different models may display similar or even identical sponta-

neous (i.e. stimulation-free) dynamics, but may have very different stimulus response proper-

ties (see e.g. [62]).

Accordingly, we cannot expect a stimulation technique to be generically effective, irrespec-

tive of the neural network model used. Nevertheless, stepwise adding further physiologically

and anatomically relevant features to the neural network models employed may help to gener-

ate specific predictions and, ultimately, to further improve stimulation protocols and dosage

regimes. In that sense, the finding that RVS CR stimulation at weak to moderate intensities

and stimulation frequencies adapted to the neurons’ intrinsic firing rates causes a desynchro-

nization in neural network models without STDP [81] and with STDP as shown in this study,

is relevant and, in fact, in accordance with pre-clinical findings [71, 74]. Furthermore, the fact

that SVS CR stimulation might even be more effective, but requires more careful parameter

adaptation may guide future development of calibration techniques as put forward in a forth-

coming study [118].

In neural networks with STDP post-stimulation transients may be complex. For instance,

for stimulation dosages just reaching the level required for an anti-kindling, a rebound of

excessive synchrony may occur immediately following cessation of CR stimulation, while later

on a full-blown, sustained desynchronization emerges [43, 67, 119]. This rebound selectively

relates to synchrony, rather than synaptic connectivity. This phenomenon occurs when after

CR delivery the neuronal population just reaches the basin of attraction of a favorable

attractor. Upon entering the basin of attraction, the synaptic connectivity is still super-critical,

so that synchrony emerges in the absence of stimulation. As the neuronal network relaxes

towards the favorable attractor, the initially up-regulated synaptic connectivity fades away

until, finally, the synaptic connectivity remains below a critical threshold, hence, preventing

the population from getting synchronized [43, 67, 119]. However, it remains to be shown to

which extent the rebound of synchrony phenomenon might be a generic after-effect occurring

for just about sufficient CR dosage or simply an epiphenomenon specific to the computational

model [120] used in those studies [43, 67, 119], comprising networks of Morris-Lecar spike

generators [120] transformed to burst mode by a slowly varying current [121, 122].

We here demonstrated that over a wide range of stimulation parameters favorable acute

effects do not automatically lead to favorable long-lasting, sustained after-effects. This is in

agreement with a computational study in the same model, but performed in only a restricted

parameter range [84], as well as with an EEG experiment performed in tinnitus patients [123].

To characterize stimulation induced effects, we here used the average synaptic weight [Eq

(11)] and the average amount of neuronal synchrony [Eq (12)]. These macroscopic quantities

enabled us to effectively investigate the impact of variations of stimulation parameters on the

stimulation outcome. However, in Supporting Information section, we have shown that pro-

nounced differences of the average synaptic weight do not necessarily lead to pronounced dif-

ferences of the average amount of synchrony (S1 Fig). Another example in this context is the

combination of weak average synaptic connectivity (Fig 3A) combined with increased levels of

average neuronal synchrony (Fig 3B) at the end of the CR-on period. To further study the rela-

tionship between connectivity pattern and synchronization processes, macroscopic quantities

may not be sufficient to grasp all relevant details of the connectivity matrix and the dynamical

features of the resulting synchronization processes.

In a number of previous studies, it was already shown that computational findings obtained

in minimal models and, in particular, in models that are even simpler than the model studied
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in this manuscript, turned out to be of high clinical significance. The following computational

predictions were obtained by studying minimal models, such as networks of phase oscillators

with and without STDP:

1. Anti-kindling: In networks with STDP, desynchronizing stimulation may induce long-last-

ing, sustained desynchronizing effects that outlast cessation of stimulation by an unlearning

of abnormally strong synaptic connectivity, see e.g. [33]. This fundamental prediction of

long-lasting desynchronization and, in turn, therapeutic effects was verified in parkinso-

nian monkeys [71, 74] as well as in Parkinson’s patients with CR-DSB [73], in Parkinson’s

patients with vibrotactile CR stimulation [124], and in tinnitus patients with acoustic CR

stimulation [70, 77, 78].

2. Cumulative effects: As shown computationally, repeated delivery of CR stimulation may

have cumulative effects [67]. Cumulative effects were clinically verified in Parkinson’s

patients with CR-DBS [73], in Parkinson’s patients with vibrotactile CR stimulation [124],

and in tinnitus patients with acoustic CR stimulation [70].

3. Optimal effects of deep brain CR stimulation at weak intensities: CR-DBS has optimal desyn-

chronizing effects at intensities that correspond to approx. a third of the intensity of stan-

dard deep brain stimulation [81]. This theoretical prediction was verified in parkinsonian

monkeys [71, 74].

The computational predictions obtained in minimal models were actually used to design

the pre-clinical and clinical studies referred to above. From a clinical standpoint, these compu-

tationally predicted and pre-clinically and/or clinically verified findings are significant and

may ultimately enable to establish superior therapies that require stimulus delivery for only a

few hours, on a regular or occasional basis.

The Mexican hat connectivity was, e.g. used by [108, 109] to study auditory responses, sen-

sorineural hearing loss and tinnitus. These studies illustrate that the comparably simple Mexi-

can hat connectivity model is able to capture relevant connectivity features. Accordingly, later

on, the same connectivity profile was used in a several studies focusing on stimulus-induced

desynchronization e.g. in the auditory cortex [45, 84, 85]

In neural networks without STDP tested so far, CR stimulation works at higher intensities

as well, see e.g. [81]. In that case, pronounced cluster states are induced, but coherent syn-

chrony is reliably suppressed [81]. This is not the case in the neural network model with STDP

studied here. For both RVS CR and SVS CR, for several parameters tested the long-term out-

come deteriorates with increasing stimulation intensity (Figs 4, 6 and 8). Accordingly, based

on our results, in pre-clinical and clinical applications stimulation at higher intensities should

be avoided. Another important aspect refers to the more pronounced periodicity of SVS CR

pattern. In previous papers (lacking a wider scan of the parameter space), SVS CR stimulation

appeared to be superior to RVS CR stimulation [84, 85]. In this paper, however, we show that

SVS CR stimulation decisively depends on the appropriate choice of the stimulation frequency

(Figs 6, 7 and 8). This sensitivity may significantly reduce the performance in the presence of

biologically realistic variations of the neuronal firing rates and might, hence, be the very rea-

son, why the outcome of SVS CR stimulation is significantly better for smaller numbers of

sequence repetitions [preliminary results presented by Wang et al., Critical parameters deter-

mining efficacy of coordinated reset stimulation of subthalamic nucleus and related changes in

primary motor cortical and subthalamic local field potentials in a parkinsonian monkey. Soci-

ety for Neuroscience (2017) Poster 210.02 / I10]. There, based on first pre-clinical data, SVS

CR stimulation at high numbers of sequence repetition appears to be inappropriate for an
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open loop application. However, its performance might be significantly improved by closed

loop approaches as, e.g. computationally shown in [118].

For the development of CR stimulation, in a number of computational studies predomi-

nantly minimal models were used [33, 43–45, 61–68, 119], as opposed to biophysically realistic

models [46, 125]. These computational studies gave rise to qualitative non-trivial predictions,

e.g. the emergence of long-lasting, sustained [33] as well as cumulative [67] effects and con-

cerning the amplitude of the stimulation amplitude [81]. These predictions were verified in

pre-clinical [71, 74] and clinical studies [70, 73, 124]. In fact, the computational findings were

used to design the study protocols and generate the underlying hypotheses. However, we have

to keep in mind that the minimal-model based approach yields qualitative rather than quanti-

tative predictions. Accordingly, we do not intend to provide “success rates” of the stimulation

outcome since we do not intend to relate particular values of Cav and Rav with successful out-

come for the following reasons. On the one hand, the mean synaptic weight Cav cannot be

assessed in living humans and, hence, so far, no correlation between Cav and the extent of

symptoms has been studied. On the other hand, the order parameter Rav cannot directly be

assessed either, but is related to the amplitude of macroscopic/mesoscopic signals like the local

field potential. However, for instance in Parkinson’s disease it is still a matter of debate

whether there is a measurable quantity that reasonably represents the extent of symptoms, in a

biomarker-like manner [126, 127]. In fact, a number of studies provided results that are in

contradiction of the biomarker notion [127–133]. Accordingly, so far, it is not possible to pro-

vide ranges of the amount of synchrony–reflected by Rav—that correspond to physiological as

opposed to abnormal, Parkinsonian states.

In recent studies, some alternative approaches have been proposed for the effective suppres-

sion of the global synchronization. In Kuramoto oscillator networks, the role of conformists,

oscillators attracted to the mean field and tending to synchronize with it, and contrarians,

repelled by the mean field and preferring a phase diametrically opposed to it, has been investi-

gated, in order to suppress explosive synchronized activity. The latter refers to the transition

from a non-synchronized state to a synchronized state in an abrupt/discontinuous manner

(see e.g. [134–137]). Different strategies have been proposed for exploiting the local (contrari-

ans) versus total information, the role of the negative versus positive coupling in order to

achieve this goal. In our work, when implementing CR stimulation, we use inhibitory and

excitatory synapses where all neurons are connected to each other. However, in [45] (Fig 12),

it was shown that CR stimulation can also desynchronize effectively such networks with topol-

ogies where a fraction of neurons is excitatory and the rest inhibitory when receiving the same

type of stimulus. The impact of the CR stimulation induces an increase in the inhibitory cou-

pling weights and a decrease in the excitatory ones via the STPD. In [33], a multi-site CR stim-

ulation, has proven to exhibit powerful long-term anti-kindling effects using a network of

coupled phase oscillators with STDP. Furthermore in [66], it was shown that with CR stimula-

tion one can achieve robust long-term curative effects, irrespectively, of the ratio between

excitatory and inhibitory impact. Hence, in principle, different types of stimulation-induced

modifications of plastic couplings may counteract synchronization.

Bistability and strong abnormal-explosive synchrony has also been studied recently in sev-

eral physical and neuronal systems without synaptic plasticity (see e.g. [137–140] and refer-

ences therein). These theoretical findings, obtained in generic networks, shed light on the

underlying mechanisms on the transition from abnormal to normal activity in networks due

to e.g. the interplay of local structure the internal dynamics or the critical role of the coupling

strength. Moreover, experimental efforts are made in implementing such ideas, showing that

conditions for explosive synchronization in the human brain could suggest a potential mecha-

nism for rapid recovery from the lightly-anesthetized state [141].
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Synaptic plasticity is another source for bistability and multistability in oscillatory networks.

In fact, bistability and multistability was found in different networks with qualitatively differ-

ent synaptic plasticity mechanisms. For example, in [32] a slow varying coupling matrix was

used in a generalized Kuramoto model of coupled phase oscillators. In that case, the synaptic

weights were governed by the time-varying phase difference of pairs of oscillators in such a

way that the coupling strength increases for synchronized oscillators and weakens for nonsyn-

chronized pairs. In [33], under spontaneous conditions two different states, a desynchronized

and a synchronized state, were found in a system of coupled phase oscillators with asymmetric

STDP. In addition, a similar bistability regime was found in a network of Morris–Lecar neu-

rons with symmetric STDP in [66]. In network of phase oscillators with simplified, time-vary-

ing STDP multistability was shown to occur only for asymmetric STDP [34]. In that case, the

coexistence of synchronized as well as desynchronized and cluster states depends on the distri-

bution of the eigenfrequencies. In the network with Hodgkin-Huxley neurons with asymmet-

ric STPD studied in this paper, a pronounced multistability was found, see also [45].

Though, not in the intended scope of our present study, the actual mechanism of action of

CR stimulation deserves attention in future studies. In neural and oscillator networks without

STDP, CR stimulation disrupts synchrony by causing phase resets of different subpopulations

at different times [64, 65, 81]. The phase reset of a single subpopulation is time-locked to the

stimulus affected that particular subpopulation [64, 65, 81]. However, in the present study we

observed that CR stimulation may not just reorder the neurons’ phases. Rather, for particular

stimulation parameters it may even cause a significant decrease of the neuronal firing rates,

intriguingly associated with a particularly pronounced anti-kindling (S2I Fig). Furthermore,

in contradiction to the results obtained in networks without STDP [64, 65, 81], CR stimulation

may cause a full-blown anti-kindling without any phase resets of the subpopulations time

locked to the corresponding stimuli (S4 Fig). This is relevant for two reasons: (i) Since effective

CR stimulation does not require phase resets time-locked to the individual stimuli, further

computational studies should elucidate whether it makes sense to calibrate CR stimuli for pre-

clinical and clinical applications by selecting stimulus parameters that favorably achieve phase

resets. Corresponding results might be relevant for the design of calibration procedures and,

in addition, challenge existing patents that are based on selecting parameters that optimally

achieve phase resets of the stimuli delivered to the individual sub-populations (e.g. [142]). (ii)

By the same token, our results do not only challenge current hypotheses on the mechanism of

CR stimulation, but also fundamental patents in the field of invasive (e.g. [143]) as well as non-

invasive (e.g. [144]) CR stimulation. Accordingly, future computational studies should focus

on the mechanism of action of CR stimulation in networks with STDP in order to actually

understand and possibly improve anti-kindling protocols.

Our goal is to accomplish an anti-kindling in a way as robust as possible, complying with

clinically motivated constraints. For instance, striving for anti-kindling induced at minimal

stimulation intensities led to the computational development of spaced CR stimulation [145]

and two-stage CR stimulation with weak onset intensity [85]. The motivation behind these

developments was to avoid side effects by substantially reducing stimulation intensities [85,

145]. Another direction is to accomplish anti-kindling at moderate stimulation duration as

computationally studied in this paper. This may be favorable from a clinical standpoint since it

might help to reduce the occurrence of side effects as well as the requirement of the treatment

on patients for their compliance, e.g. in terms of actually using non-invasive therapeutic

devices. In this context, it might turn out to be beneficial that RVS CR stimulation causes sus-

tained after-effects over a wide range of stimulation frequencies even at weak intensity (Fig 4).

Accordingly, RVS CR stimulation might provide an appropriate stimulation protocol, in par-

ticular, if applied in an open-loop manner, without the ability to calibrate the stimulation
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parameters, especially the stimulation frequency by adapting it to the dominant peaks in the

frequency spectrum of electrophysiological signals such as local field potentials or EEG signals.

However, in a forthcoming computational study [118] we will use comparably simple closed-

loop control modes to significantly improve the robustness of both RVS and SVS CR stimula-

tion and, in particular, exploit the anti-kindling potential of SVS CR stimulation.

Supporting information

S1 Fig. Boxplots for the mean synaptic weight Cav and the order parameter Rav for stimula-

tion periods with long-lasting anti-kindling at all RVS CR stimulation intensities K. (A)

Cav and (D) Rav for Ts = 9 ms. (B) Cav and (E) Rav for Ts = 10 ms. (C) Cav and (F) Rav for Ts =

16 ms. These three period values are indicated by the white arrows in the inset Cav and Rav gen-

eral median overview color-plots. The dotted horizontal line(s) (one for the Cav and two for

the Rav boxplots) are visual cues to facilitate comparison between different panels.

(TIF)

S2 Fig. Detailed analysis of the Ts = 64 ms period for different stimulation intensity values

K. (A) Boxplots of Cav for the different K values and (B) boxplots for Rav. (C)- (F) Time evolu-

tion of Cav for K = 0.20, 0.30, 0.40, 0.50 and 11 different initial networks and signals. (G) Raster

plot at the end of the CR-on period for K = 0.50 and network 1. (H) Raster plot at the end of

the CR-off period. Blue points indicate the spiking times (horizontal axis) of each neuron (ver-

tical axis), the red vertical lines point out the onset of each CR stimulation at the center of

these sub-intervals (neurons i = 25, 75, 125, 175). (I) Firing frequencies of the individual neu-

rons for K = 0.50 (network 1). The horizontal black lines (G, H and I) are visual clues to distin-

guish between the four stimulated neuronal subpopulations.

(TIF)

S3 Fig. Connectivity at the end of the RVS CR-on period and related long-term outcome.

(A) The time evolution of the mean synaptic weight Cav and the corresponding connectivity

matrices at the end of the CR-on period [panels (B) and(D)] and CR-off period [panels (C)

and (E)] for two different network initializations and random RVS CR sequences: for network

1 [red solid line in (A) and connectivity matrices (B), (C)] and network 2 [green solid line in

(A) and connectivity matrices (D), (E)] for K = 0.20, Ts = 10 ms.

(TIF)

S4 Fig. Impact of different networks/signals on the predictability of the long-lasting desyn-

chronization. (A) Moving average of the order parameter < R> (averaged over a sliding

window of 20 ms width and K = 0.20, Ts = 10 ms) for the whole network and for the four sub-

populations of networks 1 (B) [belonging to network 1 of (A)] and 2 (E) [network 2 of (A)].

The definition of the four subpopulations reflects the equidistant delivery of CR stimulation

and the corresponding order parameters are coded by different color (see inset). In the raster

plots at the end of the CR-on period (C), (F) and at the end of the CR-off period (D), (G), blue

points indicate spiking times (horizontal axis) of each neuron (vertical axis), red lines illustrate

the onset of each CR stimulus at the center of that neuronal subpopulation. Horizontal black

lines delineate the allocation of the four neuronal sub populations.

(TIF)

S5 Fig. Spiking dynamics, resonances and phase entrainment analysis. Investigation of

phase locking effects for Ts = 14 ms (1:1 resonance) Ts = 28 ms (1:2 resonance) for CR intensity

K = 0.20. Each panel is composed of four subpanels showing the time evolution of the mean

synaptic weights Cav (top left sub-panels for each (K,Ts)-parameter pairs and all 11 networks).
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The top right sub-panels show the time evolution of the Θn,m(t) while in the inset figure its dis-

tribution is plotted. The two bottom sub-panels show the raster plots (format as in S4 Fig) at

the end of the CR-on period (bottom-left panels) and at the end of the CR-off period (bottom-

right panels). Panel (E) presents a typical example for an optimal parameter pair (K,Ts) =

(0.20,10) for RVS CR in this case.

(TIF)

S1 Text. Extended caption to accompany S1 Fig.

(DOCX)

S2 Text. Extended caption to accompany S2 Fig.

(DOCX)

S3 Text. Extended caption to accompany S3 Fig.

(DOCX)

S4 Text. Extended caption to accompany S4 Fig.

(DOCX)

S5 Text. Extended caption to accompany S5 Fig.

(DOCX)
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