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Decreased conformational stability in the oncogenic
N92I mutant of Ras-related C3 botulinum toxin
substrate 1
Yuki Toyama1,2, Kenji Kontani3, Toshiaki Katada4, Ichio Shimada1*

Ras-related C3 botulinum toxin substrate 1 (Rac1) functions as a molecular switch by cycling between an in-
active guanosine diphosphate (GDP)–bound state and an active guanosine triphosphate (GTP)–bound state. An
oncogenic mutant of Rac1, an N92I mutant, strongly promotes cell proliferation and subsequent oncogenic
activities by facilitating the intrinsic GDP dissociation in the inactive GDP-bound state. Here, we used solution
nuclear magnetic resonance spectroscopy to investigate the activation mechanism of the N92I mutant. We
found that the static structure of the GDP binding site is not markedly perturbed by the mutation, but the
overall conformational stability decreases in the N92I mutant, which then facilitates GDP dissociation by low-
ering the activation energy for the dissociation reaction. On the basis of these results, we proposed the acti-
vation mechanism of the N92I mutant, in which the decreased conformational stability plays important roles in
its activation process.
INTRODUCTION
Ras-related C3 botulinum toxin substrate 1 (Rac1) is a member of the
Rho family of small guanine nucleotide-binding proteins (G pro-
teins), which plays critical roles in the maintenance of cell morphology
and cell migration (1, 2). Rac1 functions as a binary molecular switch
by cycling between two distinct functional states depending on the
bound nucleotide, an inactive guanosine diphosphate (GDP)–bound
state and an active guanosine triphosphate (GTP)–bound state. The
active GTP-bound Rac1 binds to different classes of proteins, includ-
ing kinases, scaffold proteins, and enzymes, thus leading to the activa-
tion of downstream signaling pathways. The aberrant functions of
Rac1 are closely related to diseases, especially cancer generation and
progression. Recently, extensive sequencing analyses have revealed
that gain-of-function mutations of Rac1 are frequently found in hu-
man cancers and that these mutations strongly promote cell prolifer-
ation and subsequent oncogenic activities. The oncogenic mutation,
Pro29 to Ser, was first identified from exome sequencing analyses of
sun-exposed melanomas (3, 4), and subsequently, another mutation,
Asn92 to Ile, was found from deep sequencing analyses of the HT1080
human sarcoma cell line (5). Biochemical studies of these oncogenic
mutant proteins have revealed that the intrinsic GDP dissociation re-
action is accelerated in these mutants, and hence, they are maintained
in the active GTP-bound state (5, 6).

Recently, we have investigated the activation mechanism of the
oncogenic P29S mutant by using solution nuclear magnetic resonance
(NMR) techniques (7). Our NMR results revealed that, in the P29S
mutant, the preexisting conformational equilibrium in the switch
1 region (residues 30 to 38) is shifted toward the minor conformation
that exhibits low affinity for Mg2+, a cofactor that stabilizes the GDP
binding, and that the increase in the Mg2+-unbound state greatly fa-
cilitates the overall GDP dissociation in the P29S mutant. Whereas the
activation mechanism of the P29S mutant has been well characterized,
less is known about the activation mechanism of another oncogenic
mutant, the N92I mutant. Because the Asn92 residue is distant from
the switch 1 region, the activation mechanism of the N92I mutant is
expected to be distinct from that of the P29S mutant. In the crystal
structures of the wild-type GDP-bound Rac2 in the Rho–guanine nu-
cleotide dissociation inhibitor (GDI)–bound state [Protein Data Bank
(PDB) ID: 1DS6] and Rac1 in the uncomplexed state (PDB ID:
5N6O), the side chain of Asn92 forms a hydrogen bond with the side
chain of Asp11 located on the phosphate-binding loop (P-loop; resi-
dues 10 to 17), which forms direct interactions with the bound GDP
(fig. S1) (8, 9). From the modeled structure of the N92I mutant, pre-
dicted on the basis of the wild-type structure, an original proposal was
that the N92I mutation results in a structural difference in the P-loop
region, which then causes a decrease in the binding affinity for GDP
and leads to the accelerated GDP dissociation (5). However, because
of the lack of high-resolution structural information for the N92I mu-
tant, the detailed mechanism has remained unclear.

Here, we investigated the activation mechanism of the Rac1 N92I
oncogenic mutant by using solution NMR spectroscopy. We demon-
strated that the P-loop structure is actually not markedly perturbed by
the introduction of the N92I mutation. Instead, we found that the
structure of the a3 helix is locally perturbed and that the overall con-
formational stability decreases in the mutant, which facilitates the
GDP dissociation by lowering the activation energy for the dissocia-
tion reaction. We further revealed that the hydrogen bond interaction,
formed between the Asp11 and Trp97 side chains in the wild type,
determines the overall conformational stability and the GDP binding
affinity and that this interaction is sterically blocked by the introduc-
tion of the N92I mutation. On the basis of these results, we proposed
the activation mechanism of the N92I mutant, in which the decreased
conformational stability plays important roles in its activation process.
RESULTS
The N92I mutant has a reduced affinity for GDP
First, we characterized the GDP dissociation rates in the presence of
various concentrations of Mg2+, which is known to be critical for
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maintaining stable GDP binding (10). The GDP dissociation rates were
measuredbymonitoring the reduction in the fluorescence intensity caused
by the dissociation of preloaded 2′-(or-3′)-O-(N-methylanthraniloyl)–
GDP (mant-GDP), in the presence of an excess amount of GTP. In
the N92I mutant, the dissociation rates of mant-GDPwere significantly
faster than those of the wild type, in both the presence and absence of
Mg2+, and up to 30-fold faster than those of the wild type in the phys-
iological range ofMg2+ concentration (0.2 to 1.2mM) (Fig. 1A and table
S1) (11). Whereas the apparent dissociation constant (Kd) of Mg2+ in
the N92I mutant (26.6 ± 3.5 mM) was only threefold weaker than that
that of the wild type (8.9 ± 0.7 mM), the mant-GDP dissociation rate in
the absence of Mg2+ was about 11-fold faster in the N92I mutant (Fig.
1B). These results indicate that the accelerated GDP dissociation in the
N92I mutant is largely caused by the reduced binding affinity for GDP
itself rather than the reduced binding affinity for Mg2+. We note that
this hyperactivation mechanism is in contrast to that of another onco-
genicmutant, the P29Smutant. Recently, we revealed that the wild-type
Rac1 exists in a conformational equilibrium between themajor substate
(A state) with high affinity for Mg2+ and the minor substate with low
affinity for Mg2+ (B state), exchanging on the microsecond time scale
(7). We showed that, in the P29S mutant, the equilibrium is shifted
toward the B state and thus exhibits lower affinity for Mg2+, which is
responsible for the accelerated GDP dissociation under physiological
conditions. In the case of the N92Imutant, this conformational equilib-
rium is not markedly different from that in the wild type, as supported
by the results that the 13C and 1H relaxation dispersion (RD) profiles
were not largely different from those observed in the wild type (fig. S2).
These results support the hypothesis that the activation mechanism of
the N92I mutant is distinct from that of the P29S mutant.

Structural differences in the a3 helix of the N92I mutant
To investigate the structural mechanisms underlying the reduced af-
finity for GDP in the N92I mutant, we prepared u-[2H, 15N]–labeled
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Rac1 samples and compared the 1H-15N transverse relaxation opti-
mized spectroscopy (TROSY) spectra between the wild type and the
N92I mutant (12). In all of the NMR experiments, we introduced the
R66E mutation to suppress the self-association. We previously dem-
onstrated that the introduction of the R66E mutation did not largely
affect the apparentKd for Mg2+ and that the chemical shift differences
between the wild type and the R66Emutantwere observed only for the
residues that are in close vicinity to Arg66 (7). When we compared the
NMR spectra between the wild type and the N92I mutant, significant
chemical shift differences greater than the SD [0.15 parts per million
(ppm)] were observed for the residues from the entire a3 helix, on
whichAsn92 is located, indicating that notable changes in the chemical
environments occur on the a3 helix in the N92I mutant (Fig. 2). We
also compared the secondary structure populations between the wild
type and theN92Imutant, using the backbone chemical shifts with the
d2D software (13). We found that differences in the helix population
greater than 2 SDs (0.054) were observed mainly in the residues
forming the a3 helix (residues 91 to 96) and that relatively small dif-
ferences were observed for the residues around the a4 helix as well
(residues 145, 149, 150, and 151) (fig. S3). These results indicate that
the structural differences between the wild type and the N92I mutant
are highly localized to the region around the a3 helix and that these
structural differences allosterically perturb the structure of the adja-
cent a4 helix.

Notably, the residues from the P-loop region showed smaller
chemical shift differences up to 0.2 ppm than those observed in the
a3 helix (Fig. 2), suggesting that the P-loop structure is not markedly
perturbed by the introduction of the N92I mutation. To further char-
acterize the differences in the P-loop structure, we measured nuclear
Overhauser spectroscopy (NOESY) spectra and compared the results
between the wild type and the N92I mutant. The cross peaks were ob-
served between the same atomic pairs in the wild type and the N92I
mutant, and the observed NOE patterns were compatible with the
crystal structures of the Rac2-RhoGDI complex (PDB ID: 1DS6)
and of the uncomplexed Rac1 (PDB ID: 5N6O; figs. S1 and S4, A
and B) (8, 9). We further compared the backbone amide 1H-15N
residual dipolar couplings (RDCs) between the wild type and the
N92I mutant. The observed RDC patterns were not very different be-
tween them, and their values were compatible with the calculated
RDCs obtained from the crystal structure (fig. S4C). We also found
that the 31P chemical shifts of the bound GDP were almost the same
between the wild type and the N92I mutant, reflecting that the inter-
actions formed between the bound GDP and the P-loop residues are
not largely affected (fig. S4D). Collectively, these results indicate that
neither the structure of the P-loop nor the interactions formed be-
tween the P-loop and the bound-GDP are markedly different be-
tween the wild type and the N92I mutant and that the local structural
differences in the a3 helix are responsible for the increased GDP disso-
ciation rate in the N92I mutant.

Decreased conformational stability in the N92I mutant
To characterize how the structural differences in the a3 helix affect the
thermal stability and theGDP binding property, we first compared the
thermal denaturation temperatures (Tm) between the wild type and
the N92Imutant. The Tm values of the wild type and the N92Imutant
were 64.8° and 53.6°C, respectively, showing that the conformational
stability greatly decreases in the N92I mutant (Fig. 3A). We also
measured the Tm value of another oncogenic mutant, the P29S mu-
tant, and found that the Tm value of the P29S mutant (65.0°C) was
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Fig. 1. Mant-GDP dissociation rates of the wild type and the N92I mutant
Rac1. (A) Mant-GDP dissociation rates of the wild type (left) and the N92I mutant
(right). The data depicted as EDTA were measured in the presence of 1 mM EDTA.
(B) Apparent Kd of Mg2+ of the wild type (left) and the N92I mutant (right). Kd values
were calculated by using the equation, koff,GDP([Mg2+]) = A × Kd/([Mg2+] + Kd) + B,
where A and B are constants. Each point reflects means ± SE of three independent
experiments. The data for the wild type were originally reported in (7).
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almost the same as that of the wild type, indicating that the decrease in
thermal stability is the characteristic feature of the N92I mutant. We
then quantitatively evaluated the difference in the activation free
energy of unfolding by measuring the unfolding rate constants in
the presence of various concentrations of a denaturant, guanidine hy-
drochloride (14). By linear extrapolation, we found that the unfolding
rate constant of the N92I mutant is about 10.5-fold faster than that of
the wild type in the absence of guanidine hydrochloride, which
corresponds to a difference in the activation free energy of unfolding,
DDG‡

unfold, of 1.39 kcal/mol (Fig. 3B). Notably, this free energy
difference was consistent with the difference in the activation free
energy of GDP dissociation, DDG‡

GDP,off, of 1.22 kcal/mol. This
DDG‡

GDP,off value was calculated from the differences in the mant-
GDP dissociation rates between the wild type and the N92I mutant
in the absence of Mg2+ to estimate the energetic contributions to the
GDP binding free energy and not to the Mg2+ binding free energy.
These results strongly suggest that the Rac1 unfolding and the GDP
dissociation events share part of their energetic landscapes and that
the decreased conformational stability lowers the activation energy
barrier for the GDP dissociation reaction. In these energetic land-
Toyama et al., Sci. Adv. 2019;5 : eaax1595 7 August 2019
scapes, note that the conformational substates with different affinities
for Mg2+ (states A and B), which are exchanging on the microsecond
time scale, are not markedly altered by the introduction of the N92I
mutation (Fig. 3C) (7). We also found that the mant-GDP dissocia-
tion rate greatly increased in the presence of low concentrations of
guanidine hydrochloride, which facilitates the unfolding of wild-type
Rac1 (fig. S5).

The a3 helix–P-loop interaction determines the
conformational stability
To identify the key structural elements that play critical roles in
determining the overall conformational stability and the GDP binding
affinity, we analyzed the temperature-dependent changes in the amide
NH and Trp e-NH chemical shifts, which not only define the intra-
molecular hydrogen bonding but also serve as sensitive reporters for
both the local and global structural stabilities of proteins (15–18). We
measured 1H-15N TROSY spectra at 20° to 35°C and calculated the 1H
chemical shift changes per degree of temperature, hereafter referred to
as the temperature coefficient Dd/DT. We then compared the Dd/DT
values of the wild type with those of the N92I mutant (Fig. 4A and
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fig. S6). The Dd/DT values of the wild type and the mutants were
very similar for most of the residues, indicating that the structural
reorganizations in the N92I mutant are restricted to local regions.
The notable decrease in Dd/DT, up to −5.3 parts per billion/°C, was
observed in the side chain of Trp97 in the N92I mutant, indicating
that the hydrogen bond interaction involving the side chain of
Trp97 is lost in the mutant. Small but significant differences in Dd/DT
were also observed in the main chains of Ala95, Lys96, and Trp97, reflect-
ing the stretching or shortening of hydrogen bonds caused by the
local structural differences of the a3 helix. In the crystal structures
(PDB IDs: 1DS6 and 5N6O), the side-chain e-NH of Trp97, located
on the a3 helix, forms a hydrogen bond with the carboxyl oxygen
of Asp11, located on the P-loop region (Fig. 4B and fig. S1). To test
whether the loss of the hydrogen bond formed between the Asp11 and
Trp97 side chains is responsible for the accelerated GDP dissociation,
we prepared a W97A mutant protein. We confirmed that the chem-
ical shift differences between the wild type and the W97A mutant
were mainly observed for the residues in the close vicinity of Trp97

and that the overall structure is minimally affected by the introduction
of the W97A mutation (fig. S7, A to C). Notably, when we measured
its mant-GDP dissociation rate, the mant-GDP dissociation rate
markedly increased in the W97A mutant, as compared to the mutants
of other residues on the a3 helix (Fig. 4, B and C, and table S2). In
addition, the Tm value of the W97A mutant was 50.0°C, as compared
to 64.8°C in the wild type, showing that the conformational stability
greatly decreased in the W97A mutant (fig. S7D). These results indi-
cate that the side chain of Trp97 is a critical factor that determines the
stability of GDP binding. As stated above, the side chain of Trp97 par-
ticipates in the hydrogen bond with the side chain of Asp11. Thus, these
results strongly suggest that the loss of this hydrogen bond in the
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N92I mutant is responsible for the decreased overall conformational
stability in the mutant.

We also investigated the structural mechanism for the loss of the
Asp11-Trp97 hydrogen bond in the N92I mutant by replacing Asn92

with other amino acids with different properties (Fig. 4D and table
S3). When we mutated Asn92 to charged amino acids, the mant-
GDP dissociation rates changed slightly. In contrast, when we replaced
Asn92 with hydrophobic amino acids with different steric bulkiness,
the mant-GDP dissociation rate increased as the side-chain volume
increased, indicating that the formation of the Asp11-Trp97 hydrogen
bond is hampered by the steric hindrance with the side chain of the
residue at position 92 (Fig. 4E). This proposed mechanism is also sup-
ported from the molecular dynamics simulations of Rac1 (Fig. 5).
During the 50-ns simulation using the wild-type structure, the hydro-
gen bond formed between the Trp97 e-NH and the carboxyl oxygen of
Asp11 remained stable. In contrast, when we conducted the simula-
tions using the N92I mutant structure, the distance between the
Trp97 e-NH and the carboxyl oxygen of Asp11 was mainly distributed
around 4 Å, indicating that the hydrogen bond is not stably formed
between these atoms. The trajectory of the N92I mutant revealed that
the Asp11 side-chain conformer exclusively adopts the trans confor-
mation because of steric hindrance with the g2 methyl group of
Ile92. In the trans conformation, the carboxylic group of Asp11 is fur-
Toyama et al., Sci. Adv. 2019;5 : eaax1595 7 August 2019
ther away from the side chain of Trp97, and thereby, the hydrogen
bond cannot be formed between them.
DISCUSSION
In this study, we investigated the activation mechanism of the on-
cogenic N92I mutant of Rac1. We found that, whereas the structure
of the P-loop is not markedly perturbed, the structure of the a3
helix is locally perturbed, and the overall conformational stability
decreases in the N92I mutant. We also revealed that the hydrogen
bond interaction formed between the Asp11 and Trp97 side chains
determines the overall conformational stability and that the repla-
cement of Asn92 with Ile sterically blocks this interaction and thus
substantially decreases the overall conformational stability. Considering
that both the decrease in the conformational stability and the loss of
the hydrogen bond interaction in the N92I mutant were observed in
the GDP-bound state, we propose that the decreased conformational
stability increases the ground-state free energy of the GDP-bound state,
and hence, lowers the activation energy along the GDP dissociation
reaction coordinate, leading to faster GDP dissociation in the mutant
(Fig. 6). This mechanism is consistent with the observation that, in the
structure of the GDP-bound Rac1, the bound GDP forms an extensive
hydrogen bond network that stabilizes the ternary complex and the
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dissociation of GDP is expected to involve the relaxation of the
Rac1 structure (8). Several lines of evidence have shown that the
nucleotide-free states of G proteins represent partially unfolded
structures and that the GDP dissociation occurs via partially un-
folded intermediates (19–21). We note that our conclusion is in con-
trast to the originally proposed mechanism, in which GDP binding is
affected in the N92I mutant through an effect on the P-loop structure
by the loss of the hydrogen bond interaction formed between the side
chains of Asp11 and Asn92 in the wild type (5). We presume that the
interaction formed between Asp11 and Asn92 does not greatly contrib-
ute to maintaining the P-loop structure in the wild type because the
simple loss of this interaction in the N92A mutant hardly affected the
mant-GDP dissociation rate (Fig. 4D) and that the P-loop structure is
highly preserved in the structural model of the N92I mutant despite
the absence of this interaction (Fig. 5). The decrease in the conforma-
tional stability would also affect the GTP dissociation rate; however,
the difference in the GTP dissociation rate is expected to be smaller
than that observed in the GDP dissociation rate. This is because the
GTP dissociation rate is about 25-fold slower than the GDP dissoci-
ation rate (22) and because the activation energy barrier is higher for
the GTP dissociation reaction than that for the GDP dissociation. This
notion is fully supported by the previous observation that the GTP
dissociation rates were not markedly different between the wild type
and the N92I mutant (5).

Our results have established that the local structural differences
around the a3 helix, which is distant from the GDP binding pocket,
markedly alter the binding affinity for GDP by affecting its overall
conformational stability. This mechanism indicates that, in the
N92I mutant, the acceleration of the GDP dissociation and the sub-
sequent stabilization of the GTP-bound state are achieved in an al-
losteric manner without perturbing the structures and dynamics of the
P-loop and the switch regions. Because the interactions with down-
stream effector proteins occur exclusively on the switch regions, and
not on the a3 helix (23–26), the interactions with the effector proteins
Toyama et al., Sci. Adv. 2019;5 : eaax1595 7 August 2019
are expected to be highly preserved in the N92I mutant. This property
would explain the strong oncogenic activity of the N92I mutant, as
previously observed in cellular experiments (5).

Recently, a growing amount of evidence has shown that the for-
mation of unfolded states plays important roles in a wide variety of
biological processes, such as ligand binding and enzymatic reac-
tions (27, 28). Our findings have established that the decrease in the
conformational stability can be induced by disease-related mutations
and that the aberrant functions of proteins caused by the decreased
stability actually play critical roles in pathogenic processes. Therefore,
the present study may open the possibility of designing drugs that can
modulate the activities of proteins by regulating their conformational
stability.
METHODS
Protein expression and purification
The Rac1 protein (human Rac1, residues 1 to 184) was expressed in
Escherichia coli cells as a glutathione-S-transferase (GST) fusion pro-
tein, as described previously (5, 7). To suppress the self-association into
a dimer at concentrations more than 102 mM, we used an R66E mutant
in all of the NMR experiments (7). The Rac1 mutants were constructed
with the QuikChange II Site-Directed Mutagenesis Kit (Agilent Tech-
nologies). E. coli BL21-CodonPlus(DE3)-RP cells (Agilent Technolo-
gies), transformed with the pGEX-6P-1 plasmid encoding Rac1, were
grown at 37°C in LBmedia for preparing nonlabeled samples or in deu-
terated M9 media for preparing isotopically labeled NMR samples.
When 15N labeling was required, 15NH4Cl was used as the sole nitrogen
source. For the selective 13CH3 labeling ofmethyl groups, [3-13C, 2-2H]-
L-alanine (200 mg/liter, for Alab), [methyl-13C, 3,3-2H2]-a-ketobutyric
acid [50 mg/liter, for Iled1; Cambridge Isotope Laboratories (CIL)],
[3-methyl-13C, 3,4,4,4-2H4]-a-ketoisovaleric acid (80 mg/liter, for
Leud1, Leud2, Valg1, and Valg2; CIL), [methyl-13C]-L-methionine
(100mg/liter, forMete; CIL), and [2,2,3,3-2H4]-succinic acid (2.5 g/liter;
CIL)were added 1 hour before the induction. The production of the Rac1
protein was inducedwith 0.1mM isopropyl b-D-1-thiogalactopyranoside
at 20°C for 16 hours. The protein was purified to homogeneity by
chromatography onGlutathione Sepharose 4B resin (GE). After cleav-
age of the GST-tag with PreScission protease (GE), the protein was
further purified by size exclusion chromatography using the HiLoad
26/60 Superdex 75 pg (GE) in buffer containing 20 mM tris (pH 7.5),
150 mMNaCl, 5 mMMgCl2, and 1 mM dithiothreitol (DTT). To ob-
serve the amide signals, the purified protein was incubated at 37°C for
36 hours in MgCl2-free buffer to exchange the amide hydrogen atom
from 2H to 1H. NMR samples were prepared by changing the buffer to
20mMHepes-NaOH (pH7.0), 0.5mMGDP, 5mMMgCl2, and 5mM
DTT by sequential dilution and concentration with an Amicon Ultra
Centrifugal Filter Unit, NMWL (nominal molecular weight limit)
10 kDa (Merck Millipore).

Mant-GDP dissociation rate measurements
The dissociation rate of mant-GDP was measured by monitoring the
reduction in the fluorescence intensity due to the dissociation of mant-
GDP preloaded in Rac1 (10). The purified Rac1 protein (20 mM) was
incubated at 30°C for 30 min in buffer containing 50 mM tris-HCl
(pH 7.5), 100 mM NaCl, 0.1 mM MgCl2, 1 mM DTT, and 50 mM
mant-GDP (Invitrogen). The dissociation reaction was initiated by a
100-fold dilution in buffer containing 200mMGTPand various concen-
trations of MgCl2. The excitation and emission wavelengths were set to
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355 and448nm, respectively,with slitwidths of 5nm.Themeasurements
were performed at 30°C. The difference in the activation free energy was
calculated according to DDG‡

GDP,off = –RTln(koff,WT/koff,N92I), in which
R denotes the gas constant and T represents the absolute temperature.

Circular dichroism measurements
The Tm values were obtained from the temperature-dependent changes
in themolar ellipticity. The purified Rac1 protein (10 mM)was prepared
in buffer containing 50 mM tris-HCl (pH 7.5), 100 mM NaCl, 5 mM
MgCl2, 10 mMGDP, and 1mMDTT, and itsmolar ellipticity at 222 nm
was monitored. The temperature was changed from 30° to 90°C in
1.5°C increments, with 30 s of equilibration time. The Tm values were
obtained by fitting the temperature-dependent changes in molar
ellipticity by using the Gibbs-Helmholtz equation (29).

Measurements of unfolding rates
The unfolding rate of Rac1 was measured by monitoring the reduc-
tion in the tryptophan fluorescence caused by protein unfolding (14).
The purified Rac1 protein (1 mM) was prepared in buffer containing
50 mM tris-HCl (pH 7.5), 100 mM NaCl, 5 mM MgCl2, 5 mM GDP,
and 1 mM DTT. Then, the protein solution was rapidly mixed with
an equivalent volume of buffer containing various concentrations of
guanidine hydrochloride, and the time-dependent changes in the flu-
orescence were monitored. The unfolding rate under native conditions
was determined by linear extrapolation to 0 M guanidine hydro-
chloride. The excitation and emission wavelengths were set to 281
and 340 nm, respectively, with slit widths of 5 nm. The measurements
were performed at 25°C. The difference in the activation free energy
was calculated according to DDG‡

unfold = –RTln(kunfold,WT/ kunfold,N92I),
in which R denotes the gas constant and T represents the absolute
temperature.

NMR analyses
All 1H-detected experiments were performed on Bruker AVANCE
500, 600, or 800 spectrometers equipped with cryogenic probes.
31P-detected experiments were performed on a Bruker AVANCE
400 spectrometer equipped with a BBFO probe. All spectra were
processed by the Bruker TopSpin 2.1 or 3.1 software, and the data
were analyzed using Sparky (T. D. Goddard and D. G. Kneller,
Sparky 3, University of California, San Francisco, CA). Backbone
resonance and side-chain methyl resonance assignments were ob-
tained by combining out-and-back type triple-resonance experiments
(30), NOE analyses based on the crystal structure, and mutagenesis
approaches.

[1H-1H] NOESY-[15N-1H]-TROSY spectra were obtained using
u-[2H, 15N] Rac1 samples at 25°C with a Bruker AVANCE 600 spec-
trometer. The mixing time was set to 200 ms.

The 1H-15N RDCs were obtained from the difference in the 15N-1H
J-coupling constants in aligned (pentaethylene glycol monododecyl
ether/hexanol) and isotropic media. The J-coupling constants were
measured from the differences between the TROSY and heteronuclear
single-quantum coherence peak positions. The measurements were
performed at 20°C with a Bruker AVANCE 600 spectrometer, using
u-[2H, 15N] Rac1 samples. The alignment tensors and the calculated
RDCs were obtained by singular value decomposition with the dipolar
coupling computation server developed by the Ad Bax group
(National Institutes of Health) (https://spin.niddk.nih.gov/bax/
nmrserver/dc/svd.html) by using the coordinates of the Rac1
structure modeled from the crystal structure of the Rac2-RhoGDI
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complex (PDB ID: 1DS6). In these analyses, the region with
structural changes upon the binding of RhoGDI (residues 34 to
42) was not used.

To obtain the backbone 1H (amide NH), 13C (Ca, Cb, and CO),
and 15N (amide N) chemical shifts for d2D analyses (13), we prepared
u-[13C, 15N] Rac1 samples and conducted triple-resonance experi-
ments at 35°C (for the N92I mutant) or 40°C (for the wild type) with
a Bruker AVANCE 500 spectrometer.

The 13C single-quantum (SQ) and 1H triple-quantum (3Q) Carr-
Purcell-Meiboom-Gill (CPMG) RD analyses were recorded at 25°C
with Bruker AVANCE 600 and 800 spectrometers, using {u-[2H, 15N];
Alab, Iled1, Mete-[13CH3], Leu, and Val-[

13CH3,
12C2H3]} Rac1 samples

(31, 32). The constant-time CPMG relaxation period T was set to
20 ms for the 13C SQ experiments and 5ms for the 1H 3Q experiments.
The nCPMG values were varied between 50 and 1500 Hz for 13C SQ and
between 200 and 3000Hz for 1H 3QRD experiments. The values of the
effective relaxation rates measured in the presence of a nCPMG Hz
CPMG pulse train, R2,eff (nCPMG), were calculated using Eq. 1, where
I (nCPMG) and I (0) represent the peak intensities with and without
the relaxation period T, respectively.

R2;eff ðnCPMGÞ ¼ � 1
T
ln

IðnCPMGÞ
Ið0Þ

� �
ð1Þ

For residue-specific fitting, the 13C SQ and 1H 3Q RD curves ob-
tained with two static magnetic fields were simultaneously fitted to
the Luz-Meiboom equation (Eq. 2) (33), whereFX (X = 13C or 1H) de-
notes the dispersion amplitude parameter, R2,0 denotes the intrinsic
transverse relaxation rate, kex denotes the exchange rate, DwX

(X = 13C or 1H) denotes the chemical shift difference, and pB denotes
the B state population (7)

R2;eff ¼ R2;0 þ FX

kex
1� 4nCPMG

kex
tanh

kex
4nCPMG

� �� �

FC ¼ pBð1� pBÞDw2
C

FH ¼ pBð1� pBÞð3DwHÞ2 ð2Þ

Backbone amide NH and Trp e-NH 1H temperature coefficients
were calculated from the 1H-15N TROSY spectra obtained at 293,
298, 303, and 308 K with a Bruker AVANCE 500 spectrometer, using
u-[2H, 15N] Rac1 samples.

Molecular dynamics simulations
The all-atom model of Rac1 was constructed with CHARMM-GUI
(34), using the crystal structure of the Rac2-RhoGDI complex
(PDB ID: 1DS6), on the basis of our previous result that this struc-
ture well represents the ground-state structure of GDP-bound Rac1
in the uncomplexed state (7, 8). The Rac2 sequence was converted
to that of Rac1 with or without the N92I mutation, and the struc-
ture including the bound GDP and Mg2+ was solvated in a periodic
water box with a size of 74 Å by 74 Å by 74 Å, using TIP3P water
molecules. The system was then neutralized with about 150 mM KCl.
Molecular dynamics simulations were performed using theNAMD2.12
software (35) and the CHARMM36 parameter set (36). A cutoff dis-
tance of 12 Å was used for the van der Waals and short-range
electrostatic interactions, and the long-range electrostatic interactions
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were computed with the particle mesh Ewald method (37). Bonds
containing hydrogen atoms were restrained with the SHAKE algorithm
(38). Bonded and short-range electrostatic interactions were computed
every 2 fs, and long-range electrostatic interactions were computed
every 4 fs. The system was first energy-minimized for 500 steps and
then equilibrated under isothermal-isobaric (NPT) conditions for 5 ns
at 1 atm and 310 K. The production simulations were performed for
50 ns at 1 atm and 310 K. The trajectories were analyzed using the
Visual Molecular Dynamics 1.9.3 software (39).
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