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Abstract. Complex communities of microorganisms play 
important roles in human health, and alterations in the 
intestinal microbiota may induce intestinal inflammation 
and numerous diseases. The purpose of this study was to 
identify the key genes and processes affected by depletion of 
the intestinal microbiota in a murine model. The Affymetrix 
microarray dataset GSE22648 was downloaded from the 
Gene Expression Omnibus database, and differentially 
expressed genes (DEGs) were identified using the limma 
package in R. A protein‑protein interaction (PPI) network 
was constructed for the DEGs using the Cytoscape software, 
and the network was divided into several modules using the 
MCODE plugin. Furthermore, the modules were function-
ally annotated using the PiNGO plugin, and DEG‑related 
pathways were retrieved and analyzed using the GenMAPP 
software. A total of 53 DEGs were identified, of which 26 were 
upregulated and 27 were downregulated. The PPI network 
of these DEGs comprised 3 modules. The most significant 
module‑related DEGs were the cytochrome P450 (CYP) 4B1 
isozyme gene (CYP4B1) in module 1, CYP4F14 in module 2 
and the tachykinin precursor 1 gene (TAC1) in module 3. The 
majority of enriched pathways of module 1 and 2 were oxida-
tion reduction pathways (metabolism of xenobiotics by CYPs) 
and lipid metabolism‑related pathways, including linoleic acid 
and arachidonic acid metabolism. The neuropeptide signaling 
pathway was the most significantly enriched functional 
pathway of module 3. In conclusion, our findings strongly 
suggest that intestinal microbiota depletion affects cellular 
metabolism and oxidation reduction pathways. In addition, 
this is the first time, to the best of our knowledge, that the 

neuropeptide signaling pathway is reported to be affected by 
intestinal microbiota depletion in mice. The present study 
provides a list of candidate genes and processes related to the 
interaction of microbiota with the intestinal tract.

Introduction

There are >1,000 species of bacteria in the intestinal tract, known 
as intestinal microbiota. The genomes of these species encode 
>100‑fold unique genes compared to the human genome (1). 
The intestinal microbiota is dominated by five bacterial phyla 
(Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria and 
Verrucomicrobia) and one Archaea (Euryarchaeota) (2). These 
complex communities of microorganisms play an important 
role in metabolic, nutritional, physiological and immunological 
processes in the human body (3). Molecular characterization 
of the intestinal microbiota by phylogenetic approaches has 
received considerable attention in recent years and revealed a 
remarkable compositional stability and resilience in adult life, 
even after pervasive treatments with antibiotics (4). Species 
of the genera Bifidobacterium and Lactobacillus are particu-
larly present in the colon of healthy individuals, and they are 
generally regarded as desirable, owing to the reduction of the 
neutral pH to a more acidic pH that they cause (5). Changes 
in microbial community composition are closely associated 
with various diseases, such as allergic disease (6), colorectal 
cancer (7) and intestinal inflammatory disease (8).

Our understanding of intestinal microbiota and their 
importance for the human physiology has increased, owing 
to international research initiatives such as the MetaHIT 
project (1) and the Human Microbiome Project (9). However, 
the development of simple protocols for the manipulation of 
intestinal microbiota in experimental animal models is still 
needed. Recently, a study focusing on the effects of intestinal 
microbiota depletion on the gut mucosa and epithelial gene 
expression was performed; depletion of the intestinal micro-
biota was achieved in mice by administering broad‑spectrum 
antibiotics in drinking water  (10). The study reported that 
antibiotic treatment significantly reduced the expression of 
antimicrobial factors to a level similar to that of germ‑free 
mice, and altered the expression of a total of 517 genes in the 
colonic epithelium. The expression of genes involved in the 
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cell cycle was significantly altered, concomitant with reduced 
epithelial proliferative activity in situ, as assessed by Ki‑67 
expression, which suggested that commensal microbiota drives 
cellular proliferation in the colonic epithelium (10). Metabolites 
produced by the gut microbiota community from processes 
such as oxidation reduction and lipid metabolism have been 
reported to considerably affect intestinal functions (1).

The present study used a previously released microarray 
dataset (10) to assess the effects of intestinal microbiota deple-
tion in mice, by focusing on the gene expression profiles of 
colonic intestinal epithelial cells in the presence and absence 
of intestinal microbiota. These profiles were analyzed using 
a series of bioinformatic methods, including protein‑protein 
interaction (PPI) network construction, module functional 
annotation and pathway enrichment analyses. Further research 
on the mechanisms identified here as affected by the intestinal 
microbiota depletion is planned for a future study.

Materials and methods

Affymetrix microarray analysis. The raw data and the probe 
annotation files from the gene expression profiling dataset 
GSE22648 (10; accession no. GDS3921) were downloaded 
from the Gene Expression Omnibus database (the National 
Center of Biotechnology Information; http://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE22648). These data were 
obtained on a GPL6887 platform using MouseWG‑6 v2.0 
expression beadchips (Illumina, Inc., San Diego, CA, USA). 
Data from a total of 11 chips were analyzed, corresponding 
to colonic intestinal epithelial cell gene expression profiles 
of 5 replicates from mice with depleted intestinal microbiota 
and 6 replicates from control mice that were not treated with 
antibiotics (germ-free).

Identification and clustering analysis of differentially 
expressed genes (DEGs). The raw data were preprocessed 
using the Affy package in R  (11). Differential expression 
analysis between the 5  intestinal microbiota-depleted and 
the 6 control samples was performed using limma, a linear 
regression model software package available in R (12), and 
multiple testing correction was performed using a Bayesian 
method  (13). The DEGs between intestinal microbiota-
depleted and control samples were defined as these genes 
showing a |log fold change (FC)| >1 and a false discovery 
rate  (FDR)  <0.05. To visualize the expression profiles of 
DEGs and all genes, unsupervised hierarchical clustering 
analysis was performed (14).

PPI network construction. The search tool for the retrieval 
of interacting genes (STRING)  (15) database was used to 
retrieve the predicted interactions for the identified DEGs; the 
version 9.0 of STRING covers >1,100 completely sequenced 
species. All associations available in STRING are provided 
with a probabilistic confidence score, which was derived by 
separately benchmarking groups of associations against the a 
manually curated functional classification scheme (15). Each 
score represents a rough estimate of how likely a given associa-
tion describes a functional linkage between two gene products. 
The DEGs with a confidence score >0.8 were selected to 
construct the PPI network, using the open‑source Cytoscape 

software (16). Cytoscape (http://cytoscape.org/) allows visual-
izing complex networks and integrating these networks to any 
type of attribute data.

Functional analysis of modules from the PPI network. The 
MCODE (17) plugin in Cytoscape was used to further divide 
the PPI into modules, using a cutoff value for the connectivity 
degree of nodes (proteins in the network) >2. Gene Ontology 
(GO) functional annotation and enrichment analysis of genes 
in the resulting modules was performed using the PiNGO 
plugin in Cytoscape (18) with a threshold P<0.05 based on a 
hypergeometric test.

Pathway analysis. Information on the biological pathways in 
which the module‑related DEGs are involved was retrieved 
from the Kyoto Encyclopedia of Genes and Genomes pathways 
database (http://www.genome.jp/kegg/pathway.html) (19,20). 
Visualization of these pathways and enrichment analysis was 
performed using the GenMAPP software (19). GenMAPP is a 
powerful tool for graphically viewing microarray data in the 
context of pathway analysis in an intuitive manner for biolo-
gists, and it was previously used in the analysis of microarray 
data related to allergic disease (21). P<0.05 was set as the 
threshold used for enrichment analysis of KEGG pathways.

Results

Identification of DEGs. The normalized expression values 
following preprocessing of the raw data are shown in Fig. 1. 
Differential expression analysis on these values using 
FDR<0.05 and |log FC|>1 as cutoff criteria identified a total of 
53 genes differentially expressed between depleted intestinal 
microbiota and control mice. Among these DEGs, 26 were 
upregulated and 27 were downregulated upon microbiota 
depletion.

Clustering analysis of DEGs. Hierarchical clustering 
analysis was performed on the expression values of all genes 
and of the 53 DEGs. Clearly distinct expression patterns were 
observed between the microbiota-depleted and the control 
mice in both the total gene and DEG clustering analysis 
(Fig. 2).

PPI analysis and module functional annotation. The PPI 
network was constructed (Fig. 3A) based on the predicted 
interactions of 14 DEGs showing a confidence score >0.8. 
Using the MCODE plugin in Cytoscape, the PPI network 
was divided into three modules (Fig. 3B-D). Modules 1, 2 
and 3 were found to be significantly enriched (P<0.05) for 
12, 14 and 14 Gene Ontology (GO) terms, respectively (Table 
I). The two most significant GO terms in module 1 were 
oxidation reduction (P=1.9321E‑21) and metabolic process 
(P=1.1226E‑12). The DEGs in module 1 (Fig. 3B), i.e., the 
cytochrome P450 (CYP) 4B1 isozyme gene (CYP4B1), 
CYP2D10 and CYP2D26, which were upregulated (Table II), 
and CYP2C55, which was downregulated, were all involved 
in these two processes (Table I). In addition, CYP4B1 was 
found to be involved in all enriched GO term functions of 
module 1. The terms unsaturated fatty acid, lipid, cellular lipid 
and fatty acid metabolic process were the most significantly 
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enriched functions in module 2, and the upregulated gene 
CYP4F14 (Fig. 3C, Table II) was predicted to be involved 
in all these functions (Table I). Notably, the neuropeptide 
signaling pathway was the most significantly enriched 
function (P=2.5213E‑11) in module 3, and the upregulated 
gene tachykinin precursor 1 (TAC1) (Fig. 3D, Table II) was 
predicted to be involved in this function (Table I). The top 5 

DEGs in terms of significance (Table II) were all upregulated 
upon microbiota depletion.

Pathway analysis. Pathway enrichment analysis using the 
GenMAPP software was performed on the list of DEGs 
the products of which are parts of the three PPI modules. 
Module 1 was found to be significantly enriched for a total of 

Figure 1. Boxplot of normalized expression values for the dataset (accession no. GDS3921). The data for the six control samples are presented on the left, and 
for the five samples with microbiota depletion on the right. The dotted line in the middle of each box represents the median of each sample, and its distribution 
among samples indicates the level of normalization of the data, with a nearly straight line revealing a fair normalization level.

Figure 2. Clustering analysis of gene expression values of (A) all genes and (B) of differentially expressed genes. The change of color from green to red 
represents the change in |log FC| from low to high. FC, fold change.

  A   B
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Table I. Functional annotation of the genes in the three modules using Gene Ontology (GO) terms.

A, Significantly enriched GO terms (n=12) and associated DEGs in module 1

GO id	 Corr. P	 Genes in test set	 Functional description

55114	 1.9321E‑21	 CYP2J5, CYP2C70, CYP2D9, CYP2D10, CYP2C37,	 Oxidation reduction
		  CYP2C55, CYP3A25, CYP2C54, CYP3A13, CYP2C44,
		  CYP3A11, CYP2C29, CYP2C40, CYP2E1, CYP1A2,
		  CYP4B1, CYP2D26
8152	 1.1226E‑12	 CYP2J5, CYP2C70, CYP2D9, CYP2D10, CYP2C37,	 Metabolic process
		  CYP2C55, CYP3A25, CYP2C54, CYP3A13, CYP2C44,
		  CYP3A11, CYP2C29, UGT2B1, CYP2C40, CYP2E1,
		  CYP1A2, UGT1A1, UGT3A2, CYP4B1, CYP2A12,
		  UGT2B35, UGT2B5, CYP2D26
42537	 9.6276E‑10	 UGT2B1, CYP1A2, UGT1A1, CYP4B1	 Benzene and derivative metabolic process
6805	 2.6493E‑08	 UGT2B1, CYP1A2, UGT1A1, CYP4B1	 Xenobiotic metabolic process
71466	 2.6493E‑08	 UGT2B1, CYP1A2, UGT1A1, CYP4B1	 Cellular response to xenobiotic stimulus
6725	 2.6493E‑08	 CYP2A12, UGT2B35, UGT2B1, CYP1A2,	 Cellular aromatic compound metabolic
		  UGT1A1, CYP4B1	 process
9410	 3.7437E‑08	 UGT2B1, CYP1A2, UGT1A1, CYP4B1	 Response to xenobiotic stimulus
70887	 4.26E-04	 UGT2B1, CYP1A2, UGT1A1, CYP4B1	 Cellular response to chemical stimulus
44248	 1.01E-03	 UGT2B35, UGT2B1, CYP1A2, UGT1A1, CYP4B1	 Cellular catabolic process
9056	 3.27E-03	 UGT2B35, UGT2B1, CYP1A2, UGT1A1, CYP4B1	 Catabolic process
42221	 7.25E-03	 UGT2B1, CYP2D26, CYP1A2, UGT1A1, CYP4B1	 Response to chemical stimulus
51716	 9.66E-03	 UGT2B1, CYP1A2, UGT1A1, CYP4B1	 Cellular response to stimulus

B, Significantly enriched GO terms (n=14) and associated genes in module 2

GO id	 Corr. P	 Genes in test set	 Functional description

33559	 2.0285E‑08	 PTGS2, PTGS1, CYP4F14, ALOX5	 Unsaturated fatty acid metabolic process
6629	 1.1496E‑07	 PTGS2, PLB1, PTGS1, PLA2G2A, CYP4F14, ALOX5	 Lipid metabolic process
44255	 1.2555E‑06	 PTGS2, PTGS1, PLA2G2A, CYP4F14, ALOX5	 Cellular lipid metabolic process
6631	 2.1203E‑06	 PTGS2, PTGS1, CYP4F14, ALOX5	 Fatty acid metabolic process
32787	 9.1722E‑06	 PTGS2, PTGS1, CYP4F14, ALOX5	 Monocarboxylic acid metabolic process
43436	 5.05E-05	 PTGS2, PTGS1, CYP4F14, ALOX5	 Oxoacid metabolic process
19752	 5.05E-05	 PTGS2, PTGS1, CYP4F14, ALOX5	 Carboxylic acid metabolic process
6082	 5.05E-05	 PTGS2, PTGS1, CYP4F14, ALOX5	 Organic acid metabolic process
42180	 5.26E-05	 PTGS2, PTGS1, CYP4F14, ALOX5	 Cellular ketone metabolic process
55114	 8.20E-05	 PTGS2, PTGS1, CYP4F14, ALOX5	 Oxidation reduction
44281	 1.02E-03	 PTGS2, PTGS1, CYP4F14, ALOX5	 Small molecule metabolic process
44238	 1.89E-03	 PTGS2, PLB1, PTGS1, PLA2G2A, CYP4F14, ALOX5	 Primary metabolic process
8152	 3.03E-03	 PTGS2, PLB1, PTGS1, PLA2G2A, CYP4F14, ALOX5	 Metabolic process
44237	 9.30E-03	 PTGS2, PTGS1, PLA2G2A, CYP4F14, ALOX5	 Cellular metabolic process

C, Significantly enriched GO terms (n=14) and associated genes in module 3

GO id	 Corr. P	 Genes in test set	 Functional description

7218	 2.5213E‑11	 GRP, TACR3, TACR2, TACR1, TAC1, TAC2	 Neuropeptide signaling pathway
8015	 1.8064E‑10	 NTS, TACR3, TACR1, AGT, TAC1, TAC2	 Blood circulation
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12 pathways, module 2 for 5 and module 3 for 2 (Table III). The 
most significant pathways in module 1 included metabolism of 
xenobiotics by P450s (P=2.20E‑26), linoleic acid metabolism 
(P=6.54E‑24) and arachidonic acid metabolism (P=1.49E‑10). 
Significant pathways in module 2 also included arachidonic 
acid metabolism (P=5.61E‑10) and linoleic acid metabolism 
(P=3.95E-02). Two pathways were significantly enriched in 
module 3, the calcium signaling pathway (P=3.23E-03) and 
neuroactive ligand‑receptor interaction (P=5.95E-03).

Discussion

The collective genome of the human intestinal microbiota 
was estimated to contain 3.3 million microbial genes, which 
is ~150 times more genes than the human genome. Intestinal 
microbiota mostly use fermentation to generate energy, 
converting sugars, in part, to short‑chain fatty acids, which are 
used by the host as an energy source (1). To understand the 

impact of intestinal microbiota on human health, it is crucial 
to assess their potential function. The present study identified 
a total of 53 DEGs, comprising 26 upregulated and 27 down-
regulated genes upon depletion of the intestinal microbiota in 
mice. Important differences in gene expression were observed 
between intestinal microbiota-depleted and control mice in 
hierarchical clustering analysis. The PPI network of DEGs 
was constructed and divided into 3 modules, with the most 
significant module-related DEGs being CYP4B1 in module 1, 
CYP4F14 in module 2 and TAC1 in module 3. The majority of 
enriched pathways of module 1 and 2 were oxidation reduction 
(metabolism of xenobiotics by CYPs) and lipid (e.g., linoleic 
and arachidonic acid) metabolism pathways. In addition, the 
neuropeptide signaling pathway was the most significantly 
enriched pathway in module 3.

Two types of functions of intestinal microbiota have been 
identified in a previous study, those required in all bacteria 
and those potentially specific to the gut  (1). Functions of 

Table I. Continued.

GO id	 Corr. P	 Genes in test set	 Functional description

3013	 1.8064E‑10	 NTS, TACR3, TACR1, AGT, TAC1, TAC2	 Circulatory system process
7186	 1.1712E‑07	 GRP, TACR3, TACR2, TACR1, AGT, TAC1, GAST, TAC2	 G‑protein coupled receptor
			   protein signaling pathway
7166	 8.8661E‑07	 GRP, TACR3, TACR2, TACR1, AGT, TAC1, GAST, TAC2	 Cell surface receptor linked
			   signaling pathway
23033	 4.6021E‑06	 GRP, TACR3, TACR2, TACR1, AGT, TAC1, GAST, TAC2	 Signaling pathway
51239	 4.8121E‑06	 GRP, TACR3, TACR2, TACR1, AGT, TAC1	 Regulation of multicellular
			   organismal process
3008	 4.9678E‑06	 NTS, TACR3, TACR2, TACR1, AGT, TAC1, TAC2	 System process
65008	 1.24E-05	 NTS, TACR3, TACR1, AGT, TAC1, TAC2	 Regulation of biological quality
23052	 1.33E-05	 GRP, TACR3, TACR2, TACR1, AGT, TAC1, GAST, TAC2	 Signaling
65007	 4.55E-05	 GRP, NTS, TACR3, TACR2, TACR1, AGT, TAC1, GAST, TAC2	 Biological regulation
32501	 4.32E-04	 NTS, TACR3, TACR2, TACR1, AGT, TAC1, TAC2	 Multicellular organismal process
50794	 2.08E-03	 GRP, TACR3, TACR2, TACR1, AGT, TAC1, GAST	 Regulation of cellular process
50789	 2.69E-03	 GRP, TACR3, TACR2, TACR1, AGT, TAC1, GAST	 Regulation of biological process

Corr. P, corrected p-value; CYP, cytochrome P450 gene; TAC1, tachykinin precursor 1 gene.

Table II. Characteristics of the most significant differentially expressed genes in the 3 modules.

Id	 Gene symbol	 FDR	 |log FC|	 GO termsa	 Regulation

ILMN_2790496	 CYP4B1	 0.0023580	 2.64	 All in Table IA	 Up
ILMN_1229535	 CYP2D10	 0.0234023	 1.42	 55114, 8152	 Up
ILMN_2704777	 CYP2D26	 0.0190232	 1.92	 55114, 8152, 42221	 Up
ILMN_1231625	 CYP4F14	 0.0055720	 1.31	 All in Table IB	 Up
ILMN_1251000	 TAC1	 0.0257095	 1.09	 All in Table IC	 Up

aThe numbers denote Gene Ontology (GO) ids shown in Table I. FC, fold change; CYP, cytochrome P450; TAC1, tachykinin precursor 1; FDR, 
false discovery rate.
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the first category relate to central metabolic pathways (for 
example, carbon metabolism and amino acid synthesis) and 
to important protein complexes (RNA and DNA polymerase, 
ATP synthase, general secretory apparatus) (1). The putative 
gut‑specific functions include those involved in adhesion to 
host proteins (collagen, fibrinogen, fibronectin), or in harvesting 
sugars of the globo-series glycolipids, which are carried on 
blood and epithelial cells (1). In the present study, most of 
module 1‑related DEGs were involved in oxidation reduction 
and metabolic processes such as metabolism of xenobiotics 
by CYPs, and the majority of module 2‑related DEGs were 
involved in lipid metabolic processes, such as lipid metabolic 
process and arachidonic acid metabolism. These results 
suggest that the intestinal microbiota is involved in numerous 
metabolic and biosynthetic processes, but has particularly 
important roles in the regulation of lipid biosynthesis and in 
oxidation‑reduction processes, as also indicated by previous 
studies (22‑24).

Further analysis of the most significant DEGs CYP4B1, 
CYP2D10, CYP2D26 (module 1) and CYP4F14 (module 2) 
revealed that CYP4B1 and CYP4F14 are involved in almost 
all of the functions of each PPI module. In rats and rabbits, 
the CYP4B1 protein was shown to play an important role in 
mutagenic activation of procarcinogens in the organs (25). 
Most of organic xenobiotics require metabolic activation to 
electrophilic intermediates to produce adverse carcinogenic 
effects. Specific enzymes of the CYP superfamily are involved 
in the formation of reactive metabolites from certain substrates 
that are predicted or known occupational and environmental 
carcinogens (26). A new prodrug‑activating enzyme system for 
pharmacogenic therapy of experimental brain tumors based 
on the rabbit CYP4B1 protein was previously described (27). 
CYP4Fs are a subfamily of enzymes involved in arachidonic 
acid metabolism and showing the highest catalytic activity 
towards leukotriene (LT)B4, a potent chemoattractant involved 
in inflammation. CYP4F‑mediated metabolism of LTB4 leads 

Figure 3. Primary protein‑protein interaction (PPI) network and selected modules. (A) PPI network for products of differentially expressed genes (DEGs). 
(B‑D) Modules including significant DEGs (confidence score >0.8). Red- and green-color nodes represent products of up‑ and downregulated DEGs, respec-
tively. Purple nodes denote products of genes predicted to interact with the DEGs.

  A

  B   C   D
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to inactive ω‑hydroxy products, incapable of initiating chemo-
taxis and the inflammatory stimuli that result in the influx of 
inflammatory cells (28). The CYP4B1 and CYP4F14 genes 
were identified as significantly upregulated in the present 
study, which, in combination with previous reports, suggests 
that intestinal microbiota depletion may lead to inflammation 
and cancer in the body.

It is notable that modules 1 and 2 were both enriched for 
the processes of arachidonic and linoleic acid metabolism. 
Arachidonic acid is a polyunsaturated ω‑6 fatty acid that is 
released in response to tissue injury. Arachidonic acid is a 
pivotal signaling molecule, involved in the initiation and prop-
agation of diverse signaling cascades regulating inflammation, 
pain and homeostatic functions (29). It is metabolized by three 
enzymatic pathways: the cyclooxygenase pathway produces 
prostanoid, the lipoxygenase pathway yields monohydroxy 
compounds and LTs, while the CYP epoxygenase pathway 
generates hydroxy and epoxyeicosanoids. There is increasing 
evidence that some of these metabolic products play critical 
roles in cardiovascular disease (29). Linoleic acid is predomi-
nant in dairy products and plant oils such as flax seed, and 
animal studies have reported a reduction in intra‑abdominal 
fat and an enhanced gain in fat‑free mass upon linoleic acid 
supplementation; another study reported linoleic acid‑medi-
ated whole-body fat loss in overweight men and women; there 
have also been some concerns that linoleic acid can promote 
oxidative stress and induce hepatic lipid accumulation (30‑32). 
Based on these studies and the present findings on arachidonic 

and linoleic acid metabolism, the two processes appear to 
play a key role in human health and to be closely linked to 
the balance of intestinal microbiota.

In contrast to the reported effects of intestinal microbiota 
on oxidation reduction and lipid metabolism (30‑32), an asso-
ciation between intestinal microbiota and the neuropeptide 
signaling pathway has not been previously reported. In our 
study, it is notable that the neuropeptide signaling pathway 
was the most significantly enriched pathway in module 3. 
Among the here-identified DEGs, TAC1 is predicted to be 
involved in this pathway. This gene encodes a neurotrans-
mitter of the central and peripheral nervous system (33), and 
the protein has additionally been associated with immuno-
logic and inflammatory processes (34). The gut and the brain 
are closely connected organs, and their interaction plays an 
important role not only in gastrointestinal function, but also 
in certain feeling states and in intuitive decision making (35); 
alterations in this interaction have been associated with a 
wide range of disorders, including functional, inflammatory 
gastrointestinal, and eating disorders. It has been reported 
that healthy humans and rats produce autoantibodies 
directed against appetite‑regulating peptide hormones and 
neuropeptides, suggesting that these autoantibodies may 
play physiological roles in hunger- and satiety-related path-
ways (36). Gut‑related antigens including those produced by 
the intestinal microflora, may affect the production of these 
autoantibodies, which might represent a new link between 
the gut and the regulation of appetite. We thus argue that 

Table III. Pathway enrichment analysis of differentially expressed genes in the three modules based on information from the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways database for Mus musculus (mmu).

Module	 KEGG id	 P

1	 mmu00980: Metabolism of xenobiotics by cytochrome P450	 2.20E‑26
	 mmu00830: Retinol metabolism	 3.63E‑26
	 mmu00591: Linoleic acid metabolism	 6.54E‑24
	 mmu00983: Drug metabolism	 1.30E‑10
	 mmu00590: Arachidonic acid metabolism	 1.49E‑10
	 mmu00140: Steroid hormone biosynthesis	 5.88E‑09
	 mmu00053: Ascorbate and aldarate metabolism	 1.18E-03
	 mmu00040: Pentose and glucuronate interconversions	 1.52E-03
	 mmu00860: Porphyrin and chlorophyll metabolism	 4.74E-03
	 mmu00150: Androgen and estrogen metabolism	 4.74E-03
	 mmu00500: Starch and sucrose metabolism	 6.77E-03
	 mmu00232: Caffeine metabolism	 3.10E-02
2	 mmu00590: Arachidonic acid metabolism	 5.61E‑10
	 mmu04370: Vascular endothelial growth factor signaling pathway	 1.69E-03
	 mmu00592: α‑linolenic acid metabolism	 1.56E-02
	 mmu00565: Ether lipid metabolism	 3.01E-02
	 mmu00591: Linoleic acid metabolism	 3.95E-02
3	 mmu04020: Calcium signaling pathway	 3.23E-03
	 mmu04080: Neuroactive ligand‑receptor interaction	 5.95E-03
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the depletion of the intestinal microflora in mice may lead to 
impaired neuropeptide signaling.

In conclusion, our findings strongly suggest that intestinal 
microbiota depletion affects metabolism, oxidation reduction 
and neuropeptide signaling pathways in mice, involving a 
number of genes and interactions. Numerous diseases, as well 
as aging, can be induced by depletion of the intestinal micro-
flora, and therefore, the dynamic equilibrium of the intestinal 
microflora plays a key role in human health. The neuropeptide 
signaling pathway was first reported in the present study to be 
affected by the depletion of the intestinal microflora, a result 
which reveals a potential link between the intestinal bacteria 
and the nervous system. However, further experimentation and 
additional studies are needed to confirm this link; such studies 
are expected to enhance our understanding of the interactions 
between the bacteria of the intestinal microflora and their host 
environment.
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