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LncRNAs act as part of non-coding RNAs at high levels of complex and stimulatory

configurations in basic molecular mechanisms. Their extensive regulatory activity in

the CNS continues on a small scale, from the functions of synapses to large-scale

neurodevelopment and cognitive functions, aging, and can be seen in both health

and disease situations. One of the vast consequences of the pathological role of

dysregulated lncRNAs in the CNS due to their role in a network of regulatory pathways

can be manifested in Alzheimer’s as a neurodegenerative disease. The disease is

characterized by two main hallmarks: amyloid plaques due to the accumulation of

β-amyloid components and neurofibrillary tangles (NFT) resulting from the accumulation

of phosphorylated tau. Numerous studies in humans, animal models, and various cell

lines have revealed the role of lncRNAs in the pathogenesis of Alzheimer’s disease.

This scoping review was performed with a six-step strategy and based on the Prisma

guideline by systematically searching the publications of seven databases. Out of 1,591

records, 69 articles were utterly aligned with the specified inclusion criteria and were

summarized in the relevant table. Most of the studies were devoted to BACE1-AS,

NEAT1, MALAT1, and SNHG1 lncRNAs, respectively, and about one-third of the studies

investigated a unique lncRNA. About 56% of the studies reported up-regulation, and 7%

reported down-regulation of lncRNAs expressions. Overall, this study was conducted

to investigate the association between lncRNAs and Alzheimer’s disease to make a

reputable source for further studies and find more molecular therapeutic goals for

this disease.
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INTRODUCTION

Alzheimer’s disease (AD) is a disease known for its clinical
symptoms, including gradual memory loss and language
problems and cognitive impairments such as the inability to solve
problems and spatial cognition and difficulty changing to mood
(Cacace et al., 2016; Zhang and Wang, 2021). Accumulation of
dense and insoluble beta-amyloid (Aβ) fragments outside and
around neurons and neurofibrillary tangles (NFTs) resulted from
the accumulation of hyper-phosphorylated Tau proteins inside
cells are neuropathological symptoms of AD (Tiraboschi et al.,
2004; McKhann et al., 2011). These lesions lead to neuronal
degeneration, loss of synapses, and reduced neurotransmitter
transport (Graham et al., 2017). AD dementia may affect 13.8
million Americans aged 65 and up by the middle of the century
(Alzheimer’s Association, 2020), and causes 50–75% of dementias
(Association As, 2019). In terms of the time of onset, the
disease is divided into two forms of early-onset AD (EOAD) and
late-onset AD (LOAD). EOAD is diagnosed in patients under
the age of 65, with a more significant genetic influence being
reported for this form. LOAD accounts for 90% of cases seen
in patients over 65 (Dursun et al., 2008; Wingo et al., 2012;
Cacace et al., 2016). The genetic and etiological dimensions of
the disease, focus on several specific genes, including amyloid
precursor protein (APP), presenilin-1 (PSEN1), and presenilin-2
(PSEN2). Highly influential mutations in these genes can increase
the susceptibility to AD, particularly the EOAD (Atri, 2019).
Meanwhile, we should not forget the effect of non-coding RNAs
in the pathogenesis of the disease.

Long non-coding RNAs (lncRNAs) are part of non-coding
RNAs with sizes between 200 nucleotides and several kbs
and high tissue specificity. They have fundamental role in
regulation of gene expression (Zhou et al., 2021). According
to the Annotations of the FANTOM5 project, about 28,000
lncRNA genes have been identified so far (Hon et al., 2017). Like
mRNAs, lncRNAs are capped and polyadenylated and undergo
the splicing process (Derrien et al., 2012). At the molecular level,
lncRNAs play an essential role in transcription, translation, and
regulation of gene expression, and chromatin remodeling and
genomic imprinting (Statello et al., 2021), and at the biological
level, they are one of the significant factors in the regulation of
proliferation (Ponting et al., 2009), survival (Shen et al., 2015),
and differentiation (Cesana et al., 2011). These non-coding RNAs
are also involved in the pathogenesis and progression of AD due
to their structural diversity and important biochemical properties
(Idda et al., 2018).

Of the thousands of lncRNAs encoded in organs, around 40%
of these lncRNAs are specifically expressed in brain tissue (Briggs
et al., 2015). Many studies have shown an association between
their expression dysregulation and many neurodegenerative
diseases, including AD (Ni et al., 2017; Lyu et al., 2019).
Studies performed on the 3xTg-AD model mice brain show
that the expression of hundreds of lncRNAs is significantly
changed compared with the control group (Zhou and Xu, 2015).
Transcriptome analysis studies on human post-mortem brain
tissues show changes in the expression levels of several lncRNAs
in AD patients (Cao et al., 2019). Overall, both animal and human

studies confirm the potential effect of lncRNAs on AD. To date,
many studies have been done on AD and the physiopathology
of the disease. On the other hand, more and more attention has
been paid to lncRNAs, their structure, and their effect on AD
development, progression, or treatment. In the present study, our
focus has been on conducting a systematic scoping review of all
clinical studies to summarize these studies and strengthen the
link between the effect of lncRNAs on AD.

METHODS

The General Framework for Review
The strategy for writing this article is based on the method
proposed by Arksey and O’Malley (2005). This strategy was later
improved by Levac et al. (2010) and Colquhoun et al. (2014).
In this review, five steps of the 6-step framework are followed,
which include:

1. Identifying the research question.
2. Search strategy.
3. Study selection.
4. Charting the data.
5. Collating, summarizing, and reporting the results.

Consultation is the optional sixth step and is not included
in this article. The Preferred Reporting Items for Systematic
Reviews and Meta-Analysis Extension for Scoping Reviews
(PRISMA-ScR) Checklist is used to consider and observe two
essential factors of clarity transparency in writing the article
(Tricco et al., 2018).

Identifying the Research Question
Our article was guided by the following questions in order to
study, review, and discuss all original studies on lncRNAs in AD:

• What studies have been done on lncRNAs in AD?
• What are the results and findings of these studies?

Search Strategy
Seven databases were searched for access to the publications:
Pubmed, Scopus, Cochrane, Google Scholar, Embase, Web
of Science, and ProQuest. The search did not apply a
filter restricting the date, language, subject, or publication
type. Review publications were also revised to reduce the
possibility of missing related articles. “Alzheimer Disease”
and “RNA, long non-coding” keywords were medical
subject heading (MeSH) used in search strategy in PubMed
and Embase database. The last search was conducted
on APR 19, 2021. The references were managed using
EndNote X8.1.

Study Selection
Studies of AD concerning lncRNAs in humans, cell lines, and
animal model studies were screened from publications obtained
during the search process. All publication types were assessed,
including journal articles, conference presentations, Erratum,
conference abstracts, and reports. The screening was done in two
stages by two reviewers (MRA, MH) separately. At this stage, the
titles and abstracts of the articles were examined according to
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Table 1. The article’s full text was reviewed, and irrelevant articles
were deleted, and the articles remained utterly consistent with
the research questions. Any contradiction in agreement with the
opinion of the third person was resolved.

Charting the Data
After reaching the final articles that fulfill the research questions,
we developed the data-charting. Study variables were created
using the following headings: author’s name, year of publication,
country, type of study, human samples, animal models, cell
lines, lncRNAs, methods, major findings, and references. Two
reviewers (MRA, MH) separately extracted data from articles
based on charts.

Collating, Summarizing, and Reporting the
Results
Quantitative and qualitative analysis was accomplished on the
findings from the publications represented in tables and charts.
A descriptive numerical summary of the extent, nature, and
distribution of the studies was reviewed in the quantitative
analysis section, and the presented data affirmation on the
broader context suggested by Levac et al. (2010), conducted in
a narrative review.

TABLE 1 | Inclusion and exclusion criteria.

Criterion Inclusion Exclusion

Topic (disease,

validating)

Alzheimer’s disease Non-Alzheimer’s or

unspecified dementia

Using validating molecular

techniques

Not-using validating

molecular techniques

Study design All study designs (original

research)

Cross-sectional studies and

commentaries

Language English Non-English

Time limit All up to May 2021 —

RESULTS

A keyword search in seven databases yielded 1,591 records. In
the meantime, three records were identified from other sources
and added to the total number of articles. A total of 951 duplicate
records were identified and deleted by Endnote software, and the
total number of articles reached 643. After reviewing the titles
and abstracts of the articles, 104 articles based on the research
question were selected. Since it is impossible to select the exact
desired studies from the abstract and the title alone, and the
full text of the articles needs to be inspected, at this stage, by
reviewing the full text of 104 articles, 69 articles were eligible to
be included in Table 2 for the charting data stage. The process
of selecting eligible articles and studies is described in detail in
Figure 1. Eligible studies have been published from 2008 to 2021.
Table 2was designed to rank studies from top to bottom for faster
access to article division based on the frequency of studies. Based
on the mentioned number, 744 samples of AD patients and 771
healthy controls were included in these studies. In most cases,
the sex of patients and controls is not mentioned. Mice were
used as the model in 36 animal studies, and zebrafish was used in
one study. There are 16 different cell lines used in these studies,
including SH-SY5Y in 16 studies (Massone et al., 2011; Vaure and
Liu, 2014; Huang et al., 2017, 2020; Cai et al., 2018; Li H. et al.,
2018; Ke et al., 2019; Ma et al., 2019; Wang X. et al., 2019; Zeng
et al., 2019; Zhang M. et al., 2019; Chen et al., 2020; Qasim et al.,
2020; Wang Q. et al., 2020; Xu et al., 2020; Yan et al., 2020; Zhao
et al., 2020; Zhou Y. et al., 2020; Zhang andWang, 2021), HEK293
in 12 studies (Faghihi et al., 2008; Cai et al., 2017; Ghanbari et al.,
2019; Ke et al., 2019; Zeng et al., 2019; Zhang et al., 2019; Zhu
et al., 2019; Ge et al., 2020; Huang et al., 2020; Zhou B. et al., 2020;
Zhang and Wang, 2021), PC12 in seven studies (Guo et al., 2018;
Wang J. et al., 2018; Ma et al., 2019; Zhao et al., 2019; Bastard
et al., 2020; Zhou B. et al., 2020; Zhang et al., 2021), SK-N-SH
in 5 studies (Ke et al., 2019; Gao et al., 2020; Ge et al., 2020;
He et al., 2020; Xu et al., 2020), N2A in five studies (Cai et al.,
2017; Li D. et al., 2018; Butler et al., 2019; Huang et al., 2020;

TABLE 2 | Articles division.

Type of studies Percentage References

Cell culture, animal study 26.4% Li D. et al., 2018; Wang X. et al., 2018; Butler et al., 2019; Lin et al., 2019; Ma et al., 2019; Zeng et al.,

2019; Zhang et al., 2019, 2021; Bastard et al., 2020; Hong et al., 2020; Huang et al., 2020; Li et al.,

2020; Qasim et al., 2020; Wang Q. et al., 2020; Yan et al., 2020; Yue et al., 2020; Zhao et al., 2020;

Zhou B. et al., 2020

Cell culture 23.5% Vaure and Liu, 2014; Cai et al., 2018; Li H. et al., 2018; Ke et al., 2019; Ma et al., 2019; Wang X. et al.,

2019; Zeng et al., 2019; Zhang M. et al., 2019; Zhu et al., 2019; Chen et al., 2020; Gao et al., 2020; Ge

et al., 2020; Gu et al., 2020; Xu et al., 2020; Zhou B. et al., 2020

Case-control 14.7% Luo et al., 2015; Deng et al., 2017; Azizi-Aghaali et al., 2018; Feng et al., 2018; Guo et al., 2018; Fotuhi

et al., 2019; Garofalo et al., 2020; Kurt et al., 2020; Wang D. et al., 2020; Zhuang et al., 2020

Animal study 13.2% Zhang et al., 2016; Fang et al., 2017; Yang et al., 2017; Liu et al., 2018; Zhang T. et al., 2018; Yi et al.,

2019; Azadfar et al., 2020; Ma et al., 2020; Banerjee et al., 2021

Case-control, cell culture, animal study 7.3% Faghihi et al., 2008; Kang et al., 2014; Yamanaka et al., 2015; Ghanbari et al., 2019; Zhou Y. et al., 2020

Case-control, cell culture 7.3% Massone et al., 2011; Spreafico et al., 2018; Wang J. et al., 2018; He et al., 2020; Zhang and Wang,

2021

Case-control, animal study 7.3% Airavaara et al., 2011; Cai et al., 2017; Huang et al., 2017; Tang et al., 2019; Zhang M. et al., 2019
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FIGURE 1 | Flow chart of search strategy based on PRISMA flow diagram.

Yue et al., 2020), U251 in two studies (Lin et al., 2019; Zeng
et al., 2019), Human peripheral neurons (HPNs) in two studies
(Zeng et al., 2019; Ge et al., 2020), SK-N-F1 (Kang et al., 2014),
RAW264.7 (Yamanaka et al., 2015), Hela (Spreafico et al., 2018),
CHP212 (Gao et al., 2020), SK-N-AS (He et al., 2020), HT22
(Hong et al., 2020), BV2 (Zhang andWang, 2021), and 20E2 (Ma
et al., 2019) cell lines each were used in one study. The number
and frequency of lncRNAs are shown in Figure 2. The following
is a schematic view of the contribution of LncRNAs in studies
and a comparison chart of up-regulated LncRNAs compared to
down-regulated ones. Due to the large volume of methods and
tests performed in these studies, only the major methods are
mentioned. The distribution of studies is limited to only seven
countries, in which China with 54 studies has a significant share
(Vaure and Liu, 2014; Luo et al., 2015; Zhang et al., 2016, 2021;
Cai et al., 2017, 2018; Deng et al., 2017; Fang et al., 2017; Huang

et al., 2017, 2020; Yang et al., 2017; Feng et al., 2018; Guo et al.,
2018; Li D. et al., 2018; Li H. et al., 2018; Liu et al., 2018; Wang J.
et al., 2018; Wang X. et al., 2018, 2019; Zhang T. et al., 2018; Ke
et al., 2019; Lin et al., 2019; Ma et al., 2019, 2020; Tang et al., 2019;
Yi et al., 2019; Zeng et al., 2019; Zhang M. et al., 2019; Zhu et al.,
2019; Bastard et al., 2020; Chen et al., 2020; Gao et al., 2020; Ge
et al., 2020; He et al., 2020; Hong et al., 2020; Li et al., 2020; Qasim
et al., 2020; Wang D. et al., 2020; Wang Q. et al., 2020; Xu et al.,
2020; Yan et al., 2020; Yue et al., 2020; Zhao et al., 2020; Zhou
B. et al., 2020; Zhou Y. et al., 2020; Zhuang et al., 2020; Zhang
and Wang, 2021), followed by the United States with five studies
(Faghihi et al., 2008; Airavaara et al., 2011; Kang et al., 2014;
Yamanaka et al., 2015; Butler et al., 2019), Iran (Azizi-Aghaali
et al., 2018; Fotuhi et al., 2019; Azadfar et al., 2020), and Italy
(Massone et al., 2011; Spreafico et al., 2018; Garofalo et al., 2020)
with three studies, and the Netherlands (Ghanbari et al., 2019)
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FIGURE 2 | (A) An overview of the LncRNAs proportion is considered in the qualified studies. The other part is about lncRNAs that have only been studied once that

can be accessed by referring to Table 3. (B) An overview of the ratio of up-regulated LncRNAs compared to down-regulated ones. NR also reflects non-reported

studies of regulation levels.

and Turkey (Kurt et al., 2020) and Israel (Banerjee et al., 2021)
each with one study.

THE PERSPECTIVE OF UP-REGULATED
LncRNAs IN AD

BACE1-AS
Aβ plays an essential role in AD. The cleavage of APP causes
the production of Aβ by β-secretase 1 (BACE1) and γ-secretase.
Compared to normal individuals, BACE1 levels are increased in
AD patients. Hence, increased BACE1 expression plays a critical
role in AD (Zeng et al., 2019). Increasing the expression of
some lncRNAs such as BACE1-AS induces BACE1 expression.
BACE1-AS, as an antisense RNA, can positively regulate BACE1
mRNA and protein expression in vivo and in vitro (Faghihi
et al., 2008; Zhang et al., 2018). BACE1-AS plays a crucial role
in BACE1 stability through RNA duplex formation and can
positively regulate BACE1 and protein expression (Zeng et al.,
2019). The cortex of patients with AD showed significantly higher
levels of HuD, and an increase in APP, BACE1, BACE1AS,
and Aβ compared to the cortical tissue of healthy individuals
(Kang et al., 2014).

Additionally, up-regulation of BACE1-AS leads to the
prevention of the binding of miRNA to BACE1. The knockdown
of BACE1-AS leads to an increase in the level of miRNAs, a
reduction in the level of BACE1 expression (Zeng et al., 2019).
Zhang et al. reported that BACE1-AS was significantly increased
in the blood samples of patients with AD, and knockdown of

BACE1-AS by siRNA increased the primary hippocampal neuron
proliferation in vitro. BACE1-AS knockdown improved memory
and learning behaviors in SAMP8 mice, inhibited BACE1, APP
production, and tau protein phosphorylation in hippocampi
(Zhang et al., 2018). In the Plasma of AD patients and SK-N-SH
and SK-N-AS cells treated with Aβ and isoflurane, the BACE1-
AS was upregulated, while miR-214-3p was downregulated.
Additionally, miR-214-3p improved cognitive status in mouse
models by preventing autophagy and reducing apoptosis via
suppressing Atg12 expression (He et al., 2020). Therefore,
BACE1-AS can play a critical role in the monitoring and
management of AD.

NEAT1
LncRNA nuclear enriched abundant transcript 1 (NEAT1) is
highly evolutionarily conserved between humans and rodents,
especially in the 5’ region of the transcript (Hutchinson et al.,
2007). Increased NEAT1 is associated with several cognitive
and neurodegenerative disorders such as AD, schizophrenia,
Huntington’s, and Parkinson’s. Studies in human and rodent
samples have shown that NEAT1 may play an important
role in neuroplasticity (Butler et al., 2019). NEAT1 is also
involved in epigenetic regulation mechanisms in AD pathology
(Lin et al., 2019). Wang et al. Found that NEAT1 interacts
with the P300/CBP complex, and silencing of NEAT1 by
suppressing acetyl-CoA production downregulated H3K27Ac
and upregulated H3K27Cro level (Lin et al., 2019). Anderson
et al. reported that NEAT1 is epigenetically involved in
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hippocampus-dependent, long-term memory formation, and
knockdown of Neat1 resulted in extensive changes in gene
expression and histone H3 lysine-9 dimethylations (H3K9me2)
disturbances in the hippocampus of aged rodents (Butler et al.,
2019). Huang et al. showed that NEAT1 is upregulated in
the APP/PS1 transgenic mice and regulated the interaction
between PINK1 and NEDD4L. Upregulation of NEAT1 induces
ubiquitination and degradation of PINK1, leading to autophagy
signaling, increased amyloid accumulation, and decreased
cognition (Huang et al., 2020). In Aβ-treated SH-SY5Y and SK-
N-SH cells, NEAT1 was increased, and its decrease inhibited Aβ-
induced by reducing survival and p-Tau levels and promoting
apoptosis. Also, NEAT1 acted as decoy and sponge of miR-107.
miR-107 abundance was decreased in Aβ-treated cells (Ke et al.,
2019). Hence, NEAT1 could provide new therapeutic approaches
for AD.

SNHG1
Small nucleolar RNA host gene 1 (SNHG1) is increased in various
diseases and plays an oncogenic role in cancer (Gao et al.,
2020). Silencing of SNHG1 promoted neuronal autophagy and
prevented cell death in Parkinson’s disease. Also, knockdown
of SNHG1 has effectively prevented Aβ (25-35)-induced cell
injury of SH-SY5Y and HPN cells (Wang H. et al., 2019). Gao
et al. reported that SNGH1 could induce ZFN217 expression to
modulate Aβ-induced cell injury by sponging miR-361-3p (Gao
et al., 2020). Additionally, a study has shown that several lncRNAs
and miRNAs, including SNHG1, are dysregulated in aged 2×Tg-
AD mice, and SNHG1 was targeted by Tet2 (Zhou B. et al.,
2020).

17A
GABAB receptors (GABABR) are activated potassium channels
and inhibit adenylate cyclase via G proteins. GABABR is a
heterodimer of G protein-coupled receptors consisting of two
subunits (GABABR1 and GABABR2). The GPR51 gene encodes
GABABR2. LncRNA 17A strictly controls alternative splicing of
GPR51. RNA polymerase III transcribes 17A from intron 3 of
GPR51 (Massone et al., 2011; Luo and Chen, 2016). One study
reported that a lack of 17A leads to inhibition of apoptosis,
migration, and increased autophagy (Wang X. et al., 2019).
Massone et al. showed that the expression of 17A was increased
in the cerebral tissue of AD patients and demonstrated that
its expression in neuroblastoma cells increased Aβ secretion in
response to inflammatory stimuli. So, 17A may be a potential
target for treating AD (Massone et al., 2011).

51A
SORL1 gene encodes SORLA protein, a receptor for
apolipoprotein E, associated with AD (Motoi et al., 1999;
Ciarlo et al., 2013). SORLA controls APP trafficking and
processing and restricts Aβ peptide production. Allelic variants
of the SORL1 gene are associated with AD disease, and the
function of this gene is reduced in AD (Willnow and Andersen,
2013). 51A lncRNA is antisense of the SORL1 gene and is
frequently increased in AD patients’ cerebral cortices (Ciarlo
et al., 2013). Ciarlo et al. reported that expression of 51A alters

SORL1 splicing and shifts from the canonical long protein
variant A to an alternatively spliced protein form. This process
reduces the synthesis of variant A of SORL1, and with impaired
APP processing, it leads to increased Aβ formation (Ciarlo et al.,
2013). 51A expression has also been increased in the AD brain
and in vitromodels (Feng et al., 2018). However, the plasma level
of lncRNA 51A did not show a significant difference between AD
patients and healthy controls (Feng et al., 2018). This evidence
suggests that 51A by reducing SORLA levels may be involved in
AD progression, but more studies are needed in the future.

XIST
The lncRNA X inactive specific transcript (XIST) is involved in
developing many malignant tumors (Yue et al., 2020). XIST can
act as an oncogenic lncRNA and induce growth in pancreatic
and bladder tumors by interacting and inhibiting miR-124 (Liang
et al., 2017; Xiong et al., 2017). It has been reported that miR-
124 regulates the expression of BACE1 and is decreased in the
AD tissues, implying that XIST might play a critical role in AD.
Yue et al. Treatment of Na2 cells with H2O2 has created an
AD model in vitro. Silencing of XIST has reduced the effect of
H2O2 on miR-124, BACE1, and Aβ1–42 expression in N2a cells
(Yue et al., 2020). A study in primary cultured rat hippocampal
neurons showed that knockdown of XIST reduced Aβ25-35-
induced neurotoxicity, apoptosis, and oxidative stress through
upregulation of miR-132 (Wang X. et al., 2018). Therefore, XIST
may be a new potential target therapy for AD (Yue et al., 2020).

RPPH1
Ribonuclease P RNA component H1 (RPPH1) is part of the
RNase P ribonucleoprotein RNA complex and converts precursor
tRNA into mature tRNA by cleavage. RPPH1 enhances cdc45
expression levels and induces dendritic spine formation by
binding to miR-330-5p (Cai et al., 2017). Gu et al. showed that
the levels of rpph1 and miR-122 are increased in AD mice,
and rpph1 by binding to miR-122 leads to the activation of
the Wnt/β-catenin and Aβ-induced neuronal apoptosis in SH-
SY5Y cells (Qasim et al., 2020). Also, Aβ25-35-induced apoptosis
and ER stress in SH-SY5Y cells could be reduced by RPPH1.
RPPH1 targets miR-326; thereby, the inhibitory effect of miR-
326 on Pyruvate kinase M2 (PKM2) is removed. PKM2 regulates
cell death and apoptosis by modulating glycolysis metabolism.
Therefore, RPPH1 could be involved in AD (Gu et al., 2020).

TUG1
Taurine Upregulated Gene 1 (TUG1) encodes a new lncRNA
that is 6.7 kb in length and is located on chromosome 22q12. At
first, the essential role in retinal development and the formation
of photoreceptors was identified (Lin et al., 2016). It was later
found that TUG1 promotes apoptosis by spongingmiR-9 and up-
regulation of BCL2L11 under ischemia. Up-regulation of TUG1
is associated with the pathogenesis of Huntington’s disease,
which is a neurodegenerative disease (Chen et al., 2017). Li
et al. Reported that knockdown of TUG1 inhibits the apoptosis
of hippocampal neurons in AD by upregulating miR-15a and
downregulating ROCK1 expression. Therefore, it may serve as a
new therapeutic target in AD (Li et al., 2020).
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LoNA
Long nucleolus-specific lncRNA (LoNA) reduces rRNA
production by reducing nucleolin (NCL) transcription and
decreases rRNA 2′-O-methylation by reducing active fibrillarin
(FBL). The 5’ portion of LoNA has NCL binding site, and the
3’ portion of LoNA has a snoRNA for binding to FBL (Decatur
and Fournier, 2002; Li D. et al., 2018). Decreased LoNA leads to
increased rRNA and ribosome levels and increased translation.
Also, the transport of ribosomes to synapses is enhanced, leading
to increasing AMPA/NMDA receptors, synapse flexibility, and
ultimately enhancing long-term memory. Knockdown of LoNA,
in addition to increasing long-term memory in WT mice,
improved memory function in APP/PS1 transgenic mice (Li D.
et al., 2018).

SOX21-AS1
The Wnt signaling pathway is involved in the proliferation,
differentiation, and survival of neuronal cells (Kishimoto et al.,
2008). Traces of this pathway have also been identified in
carcinogenesis and neurodegenerative disorders such as AD
(Inestrosa et al., 2007). SOX21-AS1 is increased in AD patients.
Silencing of SOX21-AS1 in AD mice could reduce neuronal
oxidative stress and inhibit apoptosis in neuronal cells by
upregulation of FZD3/5 and activating theWnt pathway. Frizzled
3/5 (FZD3/5) are two receptors required for the Wnt signaling
pathway, which play a role in developing the central nervous
system, including synaptogenesis and structural plasticity (Zhang
et al., 2019). Therefore, future studies can assess SOX21-AS1 as a
new target for AD treatment.

BC-200
LncRNA BC-200 encodes from Brain Cytoplasmic RNA 1
(BCYRN1) gene by RNA pol III. The BC-200 is a translational
regulator that targets the eukaryotic initiation factor 4A (eIF4A),
maintaining long-term synaptic plasticity. BC-200 levels in the
brains of AD patients are increased (Li H. et al., 2018). However,
in 2007, a study reported a decrease in its expression (Mus
et al., 2007). This discrepancy may be due to differences in brain
regions and the severity of the disease. In a study of post-mortem
specimens in the control group, BC-200 levels were reduced.
However, in AD brains, compared with normal brains, BC-
200 levels were significantly up-regulated (Ahmadi et al., 2020).
Li et al. showed that the expression BC-200 and BACE1 are
increased in Aβ1-42 induced AD cell model. They also reported
that inhibition of BC-200 by targeting and suppressing BCAE1
expression reduced apoptosis and increased cell viability in AD
cells. So BC-200 could provide new insights into AD gene therapy
(Li H. et al., 2018).

BDNF-AS
BDNF is involved in neurogenesis and synaptic plasticity,
and its decrease in the brain led to damage to memory
and learning. Levels of BDNF are decreased in patients with
advanced and mild AD (Azizi-Aghaali et al., 2018). LncRNA
BDNF-AS is an antisense transcript to BDNF and could
negatively regulate BDNF (Guo et al., 2018). Real-time PCR
data showed a significant increase in BDNF-AS levels in the

plasma of patients compared to controls (Azizi-Aghaali et al.,
2018). Guo et al. reported that in Aβ25-35-induced PC12
cells, BDNF-AS is increased, but BDNF is decreased. These
expression changes promote apoptosis and reduce cell viability.
Additionally, silencing of BDNF-AS increases the cell viability
and inhibits oxidative stress and apoptosis of Aβ25-35-induced
PC12 cells through upregulation of BDNF (Guo et al., 2018).

ANRIL
Lnc-antisense non-coding RNA in the INK4 locus (lnc-ANRIL)
is located on chromosome 9 and regulates neuronal functions
and inflammation. A study in diabetic rats revealed that
silencing of this lncRNA inhibited the NF-κB signaling pathway
and subsequently improved memory and reduced apoptosis
of hippocampal neurons (Wen et al., 2018). Inflammation is
involved in the pathogenesis of AD, and lnc-ANRIL can regulate
inflammation and cytokine expression through association with
the NF-κB or other inflammatory pathways such as the BRCC3
signaling pathway. Zhou et al. reported that ANRIL silencing
increases neurite outgrowth, suppresses cell apoptosis and
inflammation by binding to miR-125a in the Pc12 cell line.
Therefore, ANRIL may be a potential therapeutic target for AD
(Zhou B. et al., 2020).

LncRNA-ATB
Dysregulation of the lncRNA activated by transforming growth
factor-β (lncRNA ATB) involves various pathological processes,
such as colorectal cancer and pancreatic cancer (Yue et al.,
2016). There are limited reports on the role of lncRNA ATB
in neurodegenerative diseases such as AD. The role of lncRNA
ATB in Aβ25-35-induced PC12 cell injury has been investigated.
The results showed that in AD patients, lncRNA ATB expression
is increased. In P12 cells, lncRNA ATB negatively regulates the
expression of miR-200, and miR-200 can negatively regulate
ZNF217. Thus, suppression of lncRNA ATB reduced Aβ25-35-
induced PC12 cell injury by regulating the miR-200/ZNF217 axis
(Wang J. et al., 2018).

THE PERSPECTIVE OF
DOWN-REGULATED LncRNAs IN AD

MALAT1
Metastasis-associated lung adenocarcinoma transcript 1
(MALAT1) is abundantly expressed in neurons. MALAT1 is
involved in synaptic density (Wu et al., 2013), Schwann cell
proliferation and migration, and in initiating regenerative
responses after peripheral nerve injury. Also, MALAT1 has the
potential to protect neurons and modify anti-inflammatory
effects, and it possibly plays a protective role in AD pathology.
Ma et al. reported that MALAT1 boosts neurite outgrowth and
prevents neuron apoptosis and inflammation in AD through
interaction with miR-125b (Ma et al., 2019). Also, MALAT1
can act as a sponge for miR-30b and increase CNR1 expression,
which stimulates PI3K and AKT phosphorylation and ultimately
could improve neuronal recovery following AD in animal and
cell models (Bastard et al., 2020). These studies suggested the
critical role of MALAT1 in neuronal loss and inflammation.
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LncRNA MEG3
The PI3K/Akt pathway plays an essential role in protecting
neurons and inhibiting apoptosis by increasing SOD expression.
This pathway appears to be vital in AD because it is related
to hyper-phosphorylated tau protein (Matsuda et al., 2018).
Maternally expressed gene 3 (MEG3) lncRNA is involved in
PI3K/Akt pathway. Yi et al. reported that MEG3 expression
is decreased in the tissues of AD rats. Also, upregulation of
MEG3 led to improved cognitive impairment, reduced neuronal
damage, reduced Aβ positive expression, and inhibits activation
of astrocytes in hippocampus tissues in AD rats via inactivation
of the PI3K/Akt signaling pathway (Yi et al., 2019). Therefore,
increased expression of MEG3 may lead to an improvement
in AD.

WT1-AS
Another notable lncRNA associated with AD is WT1-AS. Wang
et al. reported low expression of WT1-AS in cell models induced
by Aβ25-35. Overexpression of WT1-AS through inhibition
of WT1 expression can suppress miR-375 expression and
promote SIX4 expression, thus preventing neuronal apoptosis
and oxidative stress injury (Wang Q. et al., 2020).

Other lncRNAs
LRP1-AS is another lncRNA that is dysregulated in AD. LRP1
locus produces both LRP1 mRNA and a spliced LRP1-AS of
the LRP1 gene. LRP1 plays a role in the systemic clearance of
AD amyloid-beta (Aβ), and LRP1 expression levels are critical
for AD progression. Yamanaka et al. reported that in the AD
brain, Lrp1-AS expression is increased and negatively regulates
the expression of Lrp1. Lrp1-AS directly binds to Hmgb2 and
inhibits Hmgb2 activity to increase Srebp1a-dependent Lrp1
transcription (Yamanaka et al., 2015). In a recent study, MAGI2-
AS3 is significantly increased in AD patients and act as a sponge
and negative regulator for miR-374b-5p (Zhang and Wang,
2021). Also, they reported that decreasedMAGI2-AS3 expression
and increased miR-374b-5p expression reduce Aβ-induced
neurotoxicity and inflammation. The results of luciferase activity
provide evidence for the interaction of miR-374b-5p with BACE1
(Zhang andWang, 2021). Therefore, theMAGI2-AS3/miR-374b-
5p axis can be considered as a biomarker for AD (Zhang
and Wang, 2021). Linc00507 was significantly increased in AD
mice and AD-like SH-SY5Y cells. linc00507 through binding to
miR-181c-5p regulates expression of microtubule-associated Tau
protein (MAPT) and microtubule tau tubulin kinase (TTBK1).
Also, linc00507 can mediate tau protein hyperphosphorylation
by activating the P25/P35/GSK3β signaling pathway through
MAPT/TTBK1 regulation (Yan et al., 2020). It has recently been
reported that RP11-543N12.1 enhanced apoptosis and suppresses
an AD cell model’s proliferation via targeting miR324-3p. Thus,
it is suggested that RP11-543N12.1 and miR-324-3p may serve
as practical biomarkers and therapeutic targets for AD in the
future (Cai et al., 2018). Additional studies have been conducted
on the role of other lncRNAs in AD, such as LINC00094, RP11-
543C4.3-001, GDNFOS, n336694 (Airavaara et al., 2011; Huang
et al., 2017; Zhu et al., 2019; Chen et al., 2020) (Table 3).

DISCUSSION

Expression Regulation, the Most
Crucial Step in the Process of LncRNA
Function
The precise expression of LncRNAs is vital because their
expression is low compared to the genes encoding proteins
and they are much less expressed than them. The specificity of
tissue expression and low expression means that the expression
of LncRNAs must be highly regulated (Hansen et al., 2011).
Remarkably, as much as the genes encoding proteins are
sensitive to developmental conditions and environmental stress
changes, these changes affect LncRNAs (Cawley et al., 2004;
Yang et al., 2013). On the other hand, because LncRNAs
themselves are involved in regulating the expression of other
genes, small changes in their expression can manifest as a
significant milestone in the expression regulating of other genes,
disrupting the co-expression network between LncRNAs and
mRNAs (Lim et al., 2019). There have not been many studies on
the mechanisms of regulation of lncRNA expression. However,
a few can be mentioned, including chromatin state, which
can be extensively altered by DNA methylation and histone
modification. Promoter hyper-methylation in theMEG3 lncRNA
gene causes downregulation of expression, which is increased by
interfering with DNA methyltransferase activity (Braconi et al.,
2011). In addition, methylated cytosines are found in critical
functional regions of LncRNAs such as XIST and HOTAIR and
show their effect on the function of LncRNAs (Amort et al.,
2013).

The effects of histone acetylation on the chromatin state,
which prevents the formation of its super-condensing structure
and facilitates the expression of surrounding (lncRNA)genes,
can also be mentioned as LncRNAs expression regulation
mechanisms (Chen and Pikaard, 1997). The high sensitivity
of regulating the expression of LncRNAs, tissue specificity,
and their essential and indispensable roles in regulating the
expression of other genes predispose them in the case of
dysregulation to the pathogenesis of various diseases, including
neurodegenerative disorders, in particular, AD. Among these,
GWAS studies identify the potential of several LncRNAs in
the pathogenesis of AD by examining many polymorphisms.
One study discovered eight variants in lncRNA genes that had
never been studied before in AD. These polymorphisms can
result in changes in lncRNA secondary structures, resulting
in the loss or increase of microRNA binding sites (miRNAs)
and downstream pathway regulation (Kretzschmar et al., 2021).
According to the present study, the significant contribution of
dysregulated LncRNAs in AD is assigned to Bace1-AS, NEAT1,
MALAT1, SNHG1, 17A, and Rpph1 LncRNAs, respectively.
Among the reported dysregulation of lncRNA expressions, the
significant share of these dysregulations with 56% is assigned
to the up-regulated, and 6.9% of the total cases reported are
down-regulated, and 37.5% of the studies They also did not
report up or down-regulation of LncRNAs. Interestingly, the
scales in these dysregulations of expressions in AD weigh
heavily toward up-regulation, and down-regulated ones are
meaningfully less.
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TABLE 3 | LncRNAs in Alzheimer’s disease.

References Country Type of study Human

sample(s)

Animal model(s) Cell line(s) lncRNA(s) Up or down Major method(s) Major findings

Faghihi

et al.

(2008)

USA Cell culture

case-control

animal study

AD patients (40

cases and 40

controls)

Tg19959 male mice HEK293T BACE1-AS up Enzyme complementation assay.

Human samples, RT-PCR, Mouse

studies

BACE1-AS expression is increased in AD patients and

disease model mice.

BACE1-AS expression is increased by various

stressors such as Aβ 1–42, increasing BACE1 mRNA

stability and further Aβ 1–42.

Airavaara

et al.

(2011)

US Case-control

Animal study

Post mortem

MTG samples of

controls, AD, and

HD

Sprague-Dawley rats - GDNFOS Quantitative RT-PCR

Western Blot

Dysregulation of GDNF and DNSP-11 and GDNFOS

may have played a role in AD pathogenesis

Massone

et al.

(2011)

Italy Case-control

Cell culture

NA - SHSY5Y 17A up In vitro transcription, Primer extension

reaction, Q-RT PCR,

Immunoprecipitation, Western blot,

Measurement of cAMP accumulation,

Patch-clamp, Aβ detection in

SHSY5Y permanently transfected

cells

17A lncRNA is up-regulated in the brain tissue of AD

patients and increases the secretion of beta-amyloid

peptides.

Synthesis of 17A can be induced by inflammation.

Kang et al.

(2014)

USA Cell culture

Case-control

Animal study

AD patients (20

cases and 20

controls)

HuD-Tg mice SK-N-F1 BACE1-AS up Cell Culture, siRNA, and Plasmids,

Protein Analysis, RNA Analysis

The level of HuD expression in AD patients’ brains is

higher than in the controls and the brains of HuD. Tg

mice have higher expression levels of APP, BACE1,

and BACE1-AS. HuD increases APP production and

increases cleavage to Aβ fragments.

Vaure and

Liu (2014)

China Cell culture - - SH-SY5Y BACE1-AS up Aβ1-42 treatment, MTT assay, qPCR,

Western blot, IF staining, ELISA

assay, Ribonuclease protection assay,

siRNA, and cell transfection

Down-regulation of BACE1 - AS by siRNA decreased

BACE1’s ability to cleavage APP and delayed SP

plaques’ formation.

Luo et al.

(2015)

China Case-control AD and MCI

patients [106

cases (AD)and 67

cases (MCI)] and

179 controls)

- - linc01080 Study population, DNA extraction,

SNP genotyping

No difference was found between allele frequency in

the SNP rs7990916 between patients and controls.

Yamanaka

et al.

(2015)

USA Case-control

Cell culture

Animal model

NA Mice RAW264.7 LRP1-AS up Cell Culture, Animal Studies,

qRT-PCR, RNase-Assisted RNA

Chromatography,

WB and IP,

Luciferase Reporter Assays, ChIP

In the Alzheimer’s brain, Lrp1-AS expression

increases, and Lrp1 expression decreases.

Lrp1-AS binds directly to Hmgb2 and inhibits Hmgb2

activity to increase Srebp1a-dependent Lrp1

transcription.

Zhang

et al.

(2016)

China Animal model - Mice - ENSMUST00000187351.1

ENSMUST00000193125.1

ENSMUST00000198676.1

TCONS_01857304

TCONS_03323270

TCONS_00506853

TCONS_03830561

TCONS_02311112

RNA sequencing, qPCR, Functional

enrichment analysis: GO and KEGG

This study provided a catalog of SAMP8 brain lncRNA

mice further to understand their regulatory role in AD’s

pathogenesis. lncRNAs, along with their application in

other diseases, have become effective therapeutic

targets.

Cai et al.

(2017)

China Cell culture

Animal study

- B6C3-Tg (APPswe,

PSEN1dE9)

85Dbo/Mmjax mice

C57BL/6J mice

(control)

Neuro-2a cells

HEK 293T

Rpph1 up qRT-PCR, whole transcriptome seq,

western blot

Rpph1 binds to miR326-3p/miR-330-5p and leads to

CDC42 upregulation. Upregulation of Rpph1 increased

dendritic spine density in primary cultured

hippocampal pyramidal neurons, whereas

downregulation of Rpph1 had the reverse effect.

(Continued)
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TABLE 3 | Continued

References Country Type of study Human

sample(s)

Animal model(s) Cell line(s) lncRNA(s) Up or down Major method(s) Major findings

Deng et al.

(2017)

China Case-control AD patients (70

cases and 90

controls)

- - 51A up qRT-PCR lncRNA 51A is up-regulated in patients with AD

compared to controls and is stable in Plasma.

Fang et al.

(2017)

china Animal study - APP/PS1 mice - Gm13498

DQ113493

AK038159

1700 030L20Rik

Microarray, qRT-PCR LncRNA 1700030L20Rik and lncRNA Gm13498 may

block its translocation into the nucleus by binding to

Rest protein, leading to reduced Rest expression and

the loss of neuroprotective effect of Rest.

Huang

et al.

(2017)

china Cell culture

Animal study

- PPswe/PS1E9

(APP/PS1) mice

SH-SY5Y lnc RNA n336694 up Real-time PCR, Western blotting lnc RNA n336694 and miR-106b were overexpressed

in APP/PS1 mice brain tissues.

Yang et al.

(2017)

china Animal study - Sprague-Dawley rats - 315 lncRNAs Such as:

BC158567,

MRAK050857,

MRuc009dux

S69385,

XR_008107,

MRAK081790

Down

(BC158567,

MRAK050857,

MRuc009dux)

Up

(S69385,

XR_008107,

MRAK081790)

Microarray Analysis, qRT-PCR Three hundred fifteen lncRNAs and 311 mRNAs were

significantly dysregulated in the AD model.

Azizi-

Aghaali

et al.

(2018)

Iran Case-control AD patients (30

cases and 30

controls)

- - BDNF-AS Up qRT-PCR lncRNA BDNF-AS is present in the Plasma of patients

and controls but is up-regulated in patients with AD.

Cai et al.

(2018)

China Cell culture - - SH-SY5Y RP11-543N12.1 up Chip hybridization, RT-qPCR,

Western blot, Dual-luciferase reporter

assay, ELISA, MTT assay

RP11-543N12.1 enhanced the apoptosis and

suppressed the proliferation of an AD cell model via

targeting of miR 324-3p.

Feng et al.

(2018)

China Case-control AD patients (80

cases and 72

controls)

- - 17A

51A

BACE1-AS

BC200

Up (BACE1-AS) qRT-PCR The plasma level of four LncRNAs was compared

between AD and non-AD patients and determine that

BACE1 levels were increased in the plasma of AD

patients and have high specificity for AD.

Guo et al.

(2018)

China Cell culture - - PC12 BDNF-AS up qRT-PCR, Western blot Silencing of BDNF-AS increases the cell viability, inhibit

oxidative stress and apoptosis of Aβ25-35-induced

PC12 cells through regulation of BDNF.

Spreafico

et al.

(2018)

Italy Case-control

Cell culture

AD patients (10

cases and 11

controls)

- HeLa

Cells

NEAT1

HOTAIR MALAT1

Cell Cultures, Antisense

Oligonucleotides Transfection,

qRT-PCR

In oligonucleotide transfection, the expression levels of

NEAT1, HOTAIR, and MALAT1 decreased by 61, 71,

and 78%, respectively. Because CDK5R1 expression

is negatively regulated by NEAT1 and HOTAIR, turning

them off increased CDK5R1 expression. CDK5R1

expression level increased with MALAT1 silencing.

Li H. et al.

(2018)

China Cell culture - - SH-SY5Y BC200 Up qRT-PCR, Western blot, MTT assay,

Flow cytometer

Inhibition of BC200 by targeting and suppressing

BCAE1 expression reduced apoptosis and increased

cell viability in AD cells.

Wang J.

et al.

(2018)

China Case-control

Cell culture

AD patients (18

cases and 16

controls)

- PC12 lncRNA-ATB up MTT assay, Flow cytometry, LDH

assay, Luciferase reporter assay,

qRT-PCR, Western blot

In AD patients, lncRNA-ATB expression is increased.

Suppression of lncRNA-ATB by regulating the miR-200

/ ZNF217 axis protects PC12 cells against

Aβ25-35-induced neurotoxicity.

Wang X.

et al.

(2018)

China Cell culture

Animal model

- Sprague-Dawley rat

embryos

Rat embryo

Primary

hippocampal

neurons

XIST up Cell culture

Aβ25-35 treatment, qRT-PCR, Cell

transfection, MTT assay,

LDH release assay, TUNEL, Western

blot, Luciferase reporter assay

XIST expression is increased in hippocampal neurons

as a result of the Aβ25-35 treatment. Knockdown of

XIST improves toxicity, oxidative stress, and apoptosis

induced by Aβ25-35 treatment in hippocampal

neurons by targeting miR-132.

(Continued)
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TABLE 3 | Continued

References Country Type of study Human

sample(s)

Animal model(s) Cell line(s) lncRNA(s) Up or down Major method(s) Major findings

Zhang T.

et al.

(2018)

China Animal study - Tg2576-APPswe mice - BC1 IHC, qPCR, RNA FISH Assay, EMS

Assay

Inhibition of BC1 or BC1-FMRP in AD mice blocks Aβ

aggregation in the brain and protects against memory

deficits and spatial learning.

Expression of exogenous BC1 in mice’s excitatory

pyramidal neurons induces Aβ peptides accumulation

and memory impairments, and spatial learning.

Li D. et al.

(2018)

China Cell culture

Animal model

- C57BL/6J mice N2a LoNA FISH and immunostaining, Northern

blots and densitometry analysis, RNA

pull-down, nuclear run-on (NRO)

analysis

The vital role of LoNA in modulating ribosome

production in response to translation demands in

long-term memory was confirmed.

Liu et al.

(2018)

China Animal study - SAMR1 and SAMR8

mice

- BACE1-AS up RT-qPCR, Western blot, ELISA BACE1-AS was significantly increased in the blood

samples of patients with AD, and knockdown of

BACE1-AS by siRNA increased the primary

hippocampal neuron proliferation in vitro. Also,

BACE1-AS knockdown mediated by lentivirus

improved memory and learning behaviors in SAMP8

mice, inhibited BACE1, APP production, and

phosphorylation of tau protein.

Wen et al.

(2018)

China Animal model

AND

Cell line

- Mouse

(APPswe

/PS1dE9)

SH-SY5Y EBF3-AS Gene knockdown (siRNA)

Real-time PCR Western blot

LncRNA EBF3-AS induced neuron apoptosis in AD

and play a role in EBF3 expression regulation.

Butler et al.

(2019)

United States Cell culture

Animal study

- C57BL/6 mice N2a cell NEAT1 up CRISPR, Western blotting, Reverse

transcription qPCR, ChIP, RIP

Overexpression of NEAT1 using CRISPRa resulted in

memory impairment in young adult mice, while

decrease NEAT1 in young and old adult mice improved

memory. These results suggest that lncRNA NEAT1 is

a hippocampal-dependent epigenetic suppressor and

plays a vital role in long-term memory formation.

Fotuhi et al.

(2019)

Iran Case-control AD patients (45

cases and 36

controls)

- - BACE1-AS Down Exosomes Purification, SEM Analysis,

Size Distribution Analysis, Purification

of Total RNA from the Plasma and the

Plasma-Derived Exosomes Samples,

qRT-PCR, ApoE Genotyping

BACE1-AS expression levels decreased in the pre-AD

subgroup’s Plasma and increased in AD patients’

Plasma relative to controls. Roc curve analysis can

differentiate between pre-AD patients and healthy

controls with a sensitivity of 75%, between full-AD

patients and healthy controls with a sensitivity of 68%,

and between pre-AD and full-AD patients with a

sensitivity of 78%.

Ghanbari

et al.

(2019)

Netherlands Cell culture

Case-control

Animal study

AD patients miR-142-/- knockout

mouse

HEK293 neural

progenitor cells

(NPC)

BZRAP1-AS1 GWAS study on AD, q-PCR, Putative

target genes of miR-142, RNA-Seq

analysis in NPC, RNA-Seq analysis in

the hippocampus of miR-142 KO

mice and wt littermates,

The rs2526377: A> G variant of BZRAP1 - AS lncRNA

is associated with a reduced risk of AD.

Ke et al.

(2019)

China Cell culture - - SH-SY5Y

SK-N-SH

HEK293T

NEAT1 Up RT-qPCR MTT assay, RIP assay,

Western blot, Flow cytometry,

luciferase activity

NEAT1 expression was upregulated in Aβ-treated

SH-SY5Y and SK-N-SH cells. Knockdown of NEAT1

reduced Aβ-induced neuronal injury by sponging miR

107.

Ma et al.

(2019)

China Cell culture - - PC12 MALAT1 MTT assay, RT-qPCR, Western blot,

luciferase Reporter

Inc-MALAT1 interacts with miR-125b, prevent

inflammation and neuron apoptosis While inducing

neurite outgrowth in AD.

Wang H.

et al.

(2019)

China Cell culture - - SH-SY5Y

HEK293

HPNs

SNHG1 up cell culture, Aβ 25-35 preparation,

qRT-PCR, Western blot assay, MTT

assay, Flow cytometry, MMP,

Caspase-3 activity assay, Luciferase

reporter assay

The results showed the up-regulation of SNHG1 in the

in-vitro cell model of AD.

SNHG1 knockdown was impactful in preventing

Aβ25-35-induced cell injury of SH-SY5Y and HPN

cells.

(Continued)
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TABLE 3 | Continued

References Country Type of study Human

sample(s)

Animal model(s) Cell line(s) lncRNA(s) Up or down Major method(s) Major findings

Wang X.

et al.

(2019)

China Cell culture - - SH-SY5Y 17A Up q-RT PCR, Western blot, Flow

Cytometry, Immunofluorescence,

ELISA assay

17A-overexpressing induces autophagy and

neurodegeneration and also deactivates GABAB

signaling.

Lin et al.

(2019)

China Cell culture

Animal study

- (APPswe/PS1dE9) U251 NEAT1 RNA seq, Western blot, Luciferase

assay, Flow cytometry

NEAT1 is involved in epigenetic regulation mechanisms

in AD pathology. NEAT1 interacts with the P300/CBP

complex and silencing of NEAT1 by suppressing

acetyl-CoA production downregulated H3K27Ac and

upregulated H3K27Cro level.

Yi et al.

(2019)

China Animal study - Sprague-Dawley rats - MEG3 Down IHC, Western blot, TUNEL, RT-qPCR Increasing the lncRNA MEG3 reduces neuronal

damage and cognitive impairment. Also, upregulation

of the lncRNA MEG3 inhibits the activation of

astrocytes in hippocampal tissues in AD by inhibiting

the PI3K/Akt signaling pathway.

Tang et al.

(2019)

China Case-control

Animal study

AD patients (3

cases and 3

controls)

C57BL/6J mice - AK045227

AK013093

AK080003

AK037309

Morris Water Maze Test, ELISA (The

level of pro-inflammatory cytokines),

IHC, Western Blot, Microarray

Analysis, qRT-PCR

Specific lncRNAs between patients and controls

played a significant role in inflammation, apoptosis.

FOXL1, CDC5L, ONECUT2, and CDX1 are among the

major transcription factors regulating the expression of

these lncRNAs.

Zeng et al.

(2019)

China Cell culture

Animal study

- APP/PS1 transgenic

mice

HEK293T

SH-SY5Y

U251

BACE1-AS Up RIP assay, Western blot, Real-time

PCR, Dual-luciferase assay

Overexpression of BACE1-AS prevents the

degradation of BACE1 mRNAs by sponging the

miRNAs that target BACE1.

Wang X.

et al.

(2019)

China Cell culture

Animal model

- specific pathogen-free

(SPF) Kunming (KM)

mice

HEK-293T SOX21-AS1 Microarray, IHC, Dual-Luciferase

Reporter Gene Assay, RT-qPCR,

Western Blot, Flow Cytometry

Silencing of the SOX21-AS1 lncRNA could reduce

neuronal oxidative stress and suppress neuronal

apoptosis in AD mice.

Zeng et al.

(2019)

china Cell culture - - SH-SY5Y cells Approximately 100 lncRNA

(SNHG1, RN7SL1,

SCARNA9, SNHG16,

RGS5, AGAP2-AS,

LINC01963)

RNA-seq

Differential lncRNA expression

analysis

RT-qPCR

Approximately 100 dysregulated lncRNA were found in

Aβ-treated SH-SY5Y cells, for instance, upregulation

of SNHG1, RN7SL1, SCARNA9 and downregulation

of SNHG16, RGS5, AGAP2-AS, LINC01963.

Therefore, these lncRNAs may play a critical role in AD

pathology through altered signal pathways.

Zhang M.

et al.

(2019)

china Cell culture

Animal study

- C57/BL6J mice PC-12 NEAT1 Up qRT-PCR, FACS (flow cytometry),

Luciferase assay, Western blot

NEAT1 promotes the development of AD by regulating

the miR-124/BACE1 axis.

Zhu et al.

(2019)

China Cell culture - - hCMEC/

D3

HBVP

NHA

HEK293T

LINC00094 up RT-qPCR, microarray, Western blot,

Horseradish peroxidase (HRP) flux,

Immunofluorescence assays, TEER

assays, Luciferase reporter assay, RIP

assay

In Aβ1-42-incubated ECs, the expressions of

LINC00094 and Endophilin-1 were increased, and the

expressions of miR-224-5p/miR-497-5p were

decreased. Also, the Silencing of LINC00094

promotes MEM’s effect on decreasing blood-brain

barrier permeability in the AD microenvironment.

Azadfar

et al.

(2020)

Iran Animal study - Wistar rats (ICV-STZ

rats)

- BACE1-AS RT-qPCR, ELISA The level of the Bace1 protein can be helpful as a

biomarker for prognosis, and Bace1-as expression

can be used during the AD progression.

Chen et al.

(2020)

China Cell culture - - SH-SY5Y cells RP11-543C4.3-001 Detection of the Expression of Long

Intronic Non-coding RNA and

CYP46A1,

Measurement of Ab and 24-OHC

Content,

Dual-Luciferase Assays

LincRNA overexpression inhibits cyp46a1 gene

expression and inhibits the production of 24-OHC and

beta-amyloid.

Genotype A has a more robust gene inhibitory function

than genotype G of the rs754203 variant located in the

Linc sequence.

(Continued)
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TABLE 3 | Continued

References Country Type of study Human

sample(s)

Animal model(s) Cell line(s) lncRNA(s) Up or down Major method(s) Major findings

Gao et al.

(2020)

China Cell culture - - SK-N-SH

CHP212

SNHG1 Up Cell counting kit 8 (CCK8) assay,

qRT-PCR, Flow cytometry, Western

blot analysis, ELISA, Dual-luciferase

reporter assay, RIP assay

SNHG1 increases cell damages during the regulatory

axis miR361-3p/ZNF217.

Knocking down SNHG1 reduces the pathological

effects of Aβ.

Garofalo

et al.

(2020)

Italy Case-control AD patients (six

cases and six

controls)

- CH507-513H4.4

CH507-513H4.6

CH507-513H4.3

up Isolation of Human Peripheral Blood

Mononuclear Cells and RNA

Extraction Sequencing, Pathway

Analysis, RT-qPCR

Twenty-three genes were identified as differentially

expressed, of which 3 LNCs were reported as

up-regulated.

Ge et al.

(2020)

China Cell culture - - HPN

SK-N-SH

HEK293T

BACE1-AS Up Cell Treatment, MTT Assay, LDH

Cytotoxicity Assay, Cell Apoptosis

Analysis, Western Blot Assay,

qRT-PCR, Dual-Luciferase Reporter

Assay

Accumulation of BACE1-AS reduces its protective

activity by acting on miR-132-3p.

Berberine interacts with BACE1-AS to up-regulate

miR132-3p and protect neurons via the

BACE1-AS/miR-132-3p axis.

Gu et al.

(2020)

China Cell culture - - SH-SY5Y RPPH1 MTT assay, qRT-PCR, Detection of

apoptotic cells, Western blotting,

Dual-luciferase reporter assay

Aβ25-35-induced apoptosis is attenuated by the

RPPH1 effect along the miR-326/PKM2 axis.

Qasim

et al.

(2020)

China Cell culture

Animal study

- APPswe/PS11E9

double transgenic

mice

SH-SY5Y RPPH1 up Cell culture and transfection, Cell

viabilities, Flow cytometry, Caspase-3

activity, Measurement for Aβ,

RT-qPCR, Western blot,

Dual-luciferase reporter assay

Rpph1 lncRNA reduces apoptosis due to beta-amyloid

by activating the Wnt/β-catenin pathway and targeting

miR-122, while Rpph1 lncRNA and miR-122 are

up-regulated in AD mice.

He et al.

(2020)

china Case-control

Cell culture

AD patients (35

cases and 35

controls)

- SK-N-SH

SK-N-AS

BACE1-AS Isoflurane Treatment, qRT-PCR, Cell

Proliferation Assay, Flow Cytometry,

Western Blot, Dual-Luciferase

Reporter Assay

BACE1-AS acts as a sponge for miR-214-3p.

BACE1-AS potentiates isoflurane-induced

neurotoxicity by acting on miR-214-3p.

Hong et al.

(2020)

china Cell culture

Animal study

- SAMP8 and SAMR1

mice

HT22 ENSMUST0000015746

ENSMUST00000175096

ENSMUST00000083211

NR_040673

ENSMUST00000148940

ENSMUST00000137025

MWM Test, Microarray, RNA Labeling,

Array Hybridization, qRT-PCR, GO

and KEGG Analyses, AD Cell Models

and Knockdown of lncRNAs by

antisense oligonucleotide (ASO)

These dysregulated lncRNAs and their nearby genes

can play an essential role in the pathogenesis of AD.

Huang

et al.

(2020)

China Cell culture

Animal study

- APP/PS1 transgenic

mice

HEK293T

SH-SY5Y

N2A-APPsw

NEAT1 up RT-PCR Analysis, RNA Pull-Down

Assay, RNA Immunoprecipitation,

Western Blot, ATP Level and

Cytochrome C Oxidase Activity

In ADs animal models, neat1 is up-regulated and, by

interacting with NEDD4L, promotes ubiquitination of

PINK1 and disrupts the PINK1-dependent autophagy

process.

Kurt et al.

(2020)

Turkey Case-control AD patients (23

cases and 33

controls)

- - TTC39C-AS1

lnc-AL445989.1-2

LINC01420

lnc-CSTB-1

LOC401557

Up

(TTC39C-AS1

lnc-

AL445989.1-

2LINC01420)

Down

(lnc-CSTB-

1LOC401557)

Microarray Hybridization, and Scan,

Microarray Data Analysis, qRT-PCR

Analysis

The first three lncRNAs showed increased expression,

and the other two showed decreased expression in

patients compared to controls. KEGG analysis showed

a significant relationship between these lncRNAs and

metabolic pathways.

Zhou B.

et al.

(2020)

China Cell culture

Animal study

- APPswe/PSEN1dE9

doubly transgenic mice

HEK 293T MALAT1

Meg3

Sox2ot

Gm15477

Snhg1

Up (MALAT1

Meg3

Gm15477

Snhg1)

Down (Sox2o)

IHC analysis, Western blot, qPCR,

Morris water maze tests, Aβ42

oligomer preparation, MTT assay

MALAT1, Meg3, Gm15477, Snhg1 are up-regulated,

and sox2ot is down-regulated in the absence of tet2,

which regulates them and are the main lncRNAs in the

formation of neurons.

(Continued)
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TABLE 3 | Continued

References Country Type of study Human

sample(s)

Animal model(s) Cell line(s) lncRNA(s) Up or down Major method(s) Major findings

Li et al.

(2020)

China Cell culture

Animal study

- BALB/c mice Hippocampal

neurons from

neonatal

BALB/c mice

TUG1 Morris water maze test,

Hematoxylin-eosin staining, Nissl

staining, TUNEL staining,

Determination of SOD activity and

MDA content, MTT assay, flow

cytometry, RT-qPCR

In hippocampal neurons, knockdown of TUG1 limits

apoptosis by raising miR-15a levels and inhibiting

ROCK1 expression.

Liu et al.

(2020)

China Cell culture - hCMEC/D3

HBVP

NHA

- LINC00662 RT-qPCR, Western blot,

Immunofluorescence assays, FISH,

Chromatin immunoprecipitation

assays, microarrays, RIP assays

LINC00662 increases the Blood-Brain Barrier’s

permeability by suppressing ELK4, and the TRA2A /

LINC00662 / ELK4 network plays a vital role in BBB

regulation.

Ma et al.

(2020)

China Animal study - APP/PS1 mice - LNC_000854

LNC_001450

LNC_000217

LNC_000233

LNC_001741

LNC_001678

RNA-seq, RT-qPCR q-PCR-validated lncRNAs represent a group of

lncRNAs in the network of ceRNAs involved in

processes such as synaptic plasticity, regulation of

amyloid-β (Aβ) -induced neuroinflammation, and

memory.

Wang D.

et al.

(2020)

China Case-control AD patients (72

cases and 62

controls)

- – BACE1-AS Up Plasma collection and exosome

isolation, Western blot analysis, TEM,

RT-qPCR

Acquisition of brain images.

Expression levels of lncRNA BACE1 AD patients were

meaningfully increased compared with the controls,

but there were no differences in the levels between

patients with varying severity of dementia. Further to

this, BACE1 AS levels combined with right entorhinal

cortex MRI parameters may improve AD diagnosis

accuracy.

Wang Q.

et al.

(2020)

China Cell culture

Animal study

BALB/c male mice SH-SY5Y WT1-AS qRT-PCR, Western Blot,

Flow cytometry, FISH, ChIP assay,

RIP, AD modeling, Morris water maze

test, TUNEL staining

Inhibition of WT1 expression by overexpression of

WT1-AS can suppress the regulatory axis of

miR-375/SIX4 and prevent neuronal apoptosis.

Zhang and

Wang

(2021)

China Case-control

Cell culture

AD patients (48

cases)

- SH-SY5Y

BV2

HEK293

MAGI2-AS3 Up Dual-luciferase reporter assay,

qRT-PCR

MTT assay, ELISA

In Alzheimer’s disease, the expression of MAGI2-AS3

increases, and miR-374b-5p expression decreases.

Decreased MAGI2-AS3 expression and increased

miR-374b-5p expression reduce Aβ-induced

neurotoxicity and inflammation. The

MAGI2-AS3/miR-374b-5p axis can be considered as a

biomarker.

Xu et al.

(2020)

China Cell culture - - SH-SY5Y

SK-N-SH

SOX21-AS1 Up qRT-PCR, Cell viability assay, Flow

cytometry, Western blot,

Dual-luciferase reporter assay, RIP

assay

SOX21-AS1 expression increased in Aβ1-42-treated

cells, and miR-107 expression decreased.

Silencing of SOX21-AS1 by sponging miR-107

reduces nerve damage caused by Aβ1-42.

Yan et al.

(2020)

China Cell culture

Animal study

- APP/PS1 double

transgenic mice

SH-SY5Y linc00507 Up qRT-PCR, Western blot, FISH,

Luciferase reporter assay

Expression of linc00507 is elevated in the Alzheimer’s

disease model. The MAPT and TTBK1 genes are the

direct targets of miR-181c-5p.

By binding to miR-181c-5p as a ceRNA, linc00507

inhibits miR-181c-5p and increases the expression of

its target genes involved in tau phosphorylation.

Zhao et al.

(2020)

China Cell culture

Animal study

- mice

C57BL/6

APPswe/PS1dE9

double transgenic

mice

SH-SY5Y NEAT1 Up qPCR, Cell culture, ChIP assay,

RIP-qPCR

Increased NEAT1 expression can play a

neuroprotective role and regulate microtubule stability

by affecting the FZD3/GSK3β/p-tau axis.

(Continued)
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TABLE 3 | Continued

References Country Type of study Human

sample(s)

Animal model(s) Cell line(s) lncRNA(s) Up or down Major method(s) Major findings

Zhou B.

et al.

(2020)

China Cell culture - - Pc12 ANRIL Cell culture, RT-qPCR, CCK-8 assay,

Luciferase reporter assay

ANRIL reduces the expression of miR-125a by binding

to it. In the Alzheimer’s disease model, ANRIL silencing

increases neurite outgrowth and suppresses cell

apoptosis and inflammation.

Zhou Y.

et al.

(2020)

China Case-control

Cell culture

Animal study

AD patients (18

cases and 18

controls)

APP/PS1 mice SH-SY5Y BACE1-AS Up qRT-PCR,

western blot,

Cell culture,

HE staining and a TUNEL assay, IHC

BACE1-AS expression is increased in Alzheimer’s

disease. On the other hand, the autophagic activity

also increases in the model of Alzheimer’s disease.

BACE1-AS indirectly reduces ATG5 expression by

miR-214-3p. BACE1-AS silencing reduces neuronal

damage and autophagy by affecting the

miR-214-3p/ATG5 axis.

Zhuang

et al.

(2020)

China Case-control AD patients (120

cases and 120

controls)

- - MALAT1 Up RT-qPCR In AD patients, MALAT1 expression increased, and its

target expression, miR-125b, decreased. MALAT1 and

miR-125b may be involved in disease management

through interaction with FOXQ1, PTGS2, and CDK5

genes.

Yue et al.

(2020)

China Cell culture

animal study

- AD mice (2vo) N2a mouse

neuroblastoma

cells

XIST qPCR, Immunofluorescence assay,

Western blot assay, Aβ1–42

detection

The shutdown of lncRNA XIST attenuates the function

of BACE1 in the progression of AD through miR - 124

and can be considered a target for treatment.

Ma et al.

(2019)

china Cell culture

Animal study

- C57BL/6J mice SH-SY5Y

20E2

BACE1-AS RNA interference, RT-qPCR,

Extraction of cell and total proteins

from brain tissues, Western blot

analysis, ELISA

BACE1-AS is involved in regulating BACE1 expression

and Aβ production in APPsw transgenic cells.

Bastard

et al.

(2020)

China Cell culture,

animal model

- Sprague Dawley rats PC12

C6

MALAT1 Up Morris water maze training,

Hematoxylin and eosin (HE) staining,

Microarray analysis, Flow cytometry,

ELISA, Western blot

The ability of MALAT1 was determined in neuronal

recovery following the occurrence of AD via the

miR-30b/CNR1 axis and the PI3K/AKT pathway.

Banerjee

et al.

(2021)

Israel Animal study - Zebrafish - MSTRG.1987

MSTRG.28608

MSTRG.535

MSTRG.70

MSTRG.26654

MSTRG.17001

MSTRG.23990

MSTRG.12623

MSTRG.1031

MSTRG.8212

MSTRG.5861

MSTRG.24808

Library construction and sequencing,

Transcriptome assembly, RT-qPCR

Hypoxia causes differential expression of genes

associated with Alzheimer’s disease (AD). Several new

lncRNAs were similar in the synthetic regions of

zebrafish and human brains, and eight functional

lncRNAs related to the expression of Alzheimer’s

genes were examined.

Zhang

et al.

(2021)

China Cell culture

Animal study

- AD mice PC12 H19 Up Luciferase reporter assay, RNA-pull

down assay, RT-qPCR

Silencing of H19 is associated with elevated miR-129

levels, improves survival, and suppresses

Aβ25-35-induced apoptosis in PC12 cells.
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FIGURE 3 | Classification of lncRNA functions in gene transcriptional regulations, including Signal, Decoy, Guide, and Scaffold. Signal, recruiting transcriptional

proteins to the target gene to enhance gene expression. Decoy, a “molecular sink” for RNA-binding proteins (RBPs). Guide, binding to chromatin-modifying enzymes

and direct to the target for epigenetic modification. Scaffold, a nest for connecting several effective partners and transporting them simultaneously to one place. This

graphical figure was created using the vector image bank of Servier Medical Art (http://smart.servier.com).

LncRNA Authority in Transcription
Regulation
One of the essential functional areas of LncRNAs is gene
expression regulation. LncRNAs affect gene expression through
various molecular mechanisms. Some lncRNAs can function
simultaneously through several of these mechanisms, so these
mechanisms cannot be considered in isolation. LncRNAs can act
as guides, signals, decoys, and scaffolds (Wang and Chang, 2011).
As a guide, lncRNAs can bind to proteins such as chromatin-
modifying enzymes and direct them to their specific target and
mediate epigenetic modification. In this mechanism, lncRNAs
can change the pattern of gene expression in cis or trans.
LncRNAs such as ANRIL, XIST, HOTAIR, and KCNQ1OT1 can
serve as chromatin modifier enzymes to reprogram epigenetic
status (Bhat et al., 2016). LncRNAs can also act as molecular
signals to change chromatin structure and recruit transcriptional
proteins to the target gene to enhance gene expression (Wang
and Chang, 2011; Bhat et al., 2016). Functional flexibility in
the structure of LncRNAs as a decoy mechanism provides the
ability to act as “molecular sinks” for RNA-binding proteins
(RBPs), including transcription factors, regulatory factors, and
chromatin modifiers and these groups of lncRNAs are likely
to be negative regulators. Also, in this mechanism, lncRNAs
sponge miRNAs in a ceRNA network and prevent them from
binding to the target RNA (Wang and Chang, 2011). miRNAs

bind to the 3’UTR sequences or the coding sequences in mRNA
molecules, reducing mRNA stability and the abundance of
target proteins (Baek et al., 2008; Bartel, 2009). Scaffolds as a
nest for connecting several effective partners and transporting
them simultaneously to one place can be considered one of
the capabilities of LncRNAs in the transcription process. These
molecular companions can activate or suppress transcription
(Wang and Chang, 2011; Bhat et al., 2016). The following is a
schematic of the four regulatory mechanisms in the transcription
regulation process (Figure 3). Because lncRNAs are involved in
various human diseases which AD can be considered one of
the main ones, knowing the mechanism of action and their
characteristics facilitate their application in targeted diagnostics,
monitoring progression, and treatment (Bhat et al., 2016). The
following section provides a comprehensive overview of up and
down-regulated LncRNAs.

CONCLUSION

In addition to regulating the expression of other genes, LncRNAs
play critical regulatory roles by interacting with miRNAs in
the ceRNA network. Tissue expression specificity is another
factor that makes LncRNAs more sensitive. Low expression
of LncRNAs compared to other genes and their essential
role in vital cell mechanisms causes the slightest change or
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dysregulation in the expression of LncRNAs as a disorder,
especially neurodegenerative diseases. Among these, AD can
be considered the most important member of this group of
diseases that LncRNAs also play an important role in its
etiology due to the tissue expression specificity of 40% of them
related to the brain. So far, many studies have examined the
expression of LncRNAs in AD. In this review, we tried to
provide a comprehensive summary of studies that have used
validated molecular methods and provide an overview of the
role of LncRNAs in the pathogenesis of this disease. The same
project could be carried out in other neurodegenerative diseases,
such as Parkinson’s or ALS, and the role of LncRNAs in it
can be discussed. On the other hand, further studies on the
existing pathways for each of the mentioned LncRNAs have
sound potential. Finally, it is decent to mention that there
were some limitations to our study. First, we can mention
the searching process. During it, all efforts were focused on
selecting the keywords to cover the studies on the subject
entirely. On the other hand, during screening studies, a study
may be lost. It should also be noted that there were several

studies that, despite much effort, could not provide their full text
(Yang et al., 2018).
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