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ABSTRACT

ChIP-exo/nexus experiments rely on innovative mod-
ifications of the commonly used ChIP-seq protocol
for high resolution mapping of transcription factor
binding sites. Although many aspects of the ChIP-
exo data analysis are similar to those of ChIP-seq,
these high throughput experiments pose a num-
ber of unique quality control and analysis chal-
lenges. We develop a novel statistical quality control
pipeline and accompanying R/Bioconductor pack-
age, ChIPexoQual, to enable exploration and analy-
sis of ChIP-exo and related experiments. ChIPex-
oQual evaluates a number of key issues includ-
ing strand imbalance, library complexity, and sig-
nal enrichment of data. Assessment of these fea-
tures are facilitated through diagnostic plots and
summary statistics computed over regions of the
genome with varying levels of coverage. We evalu-
ated our QC pipeline with both large collections of
public ChIP-exo/nexus data and multiple, new ChIP-
exo datasets from Escherichia coli. ChIPexoQual
analysis of these datasets resulted in guidelines for
using these QC metrics across a wide range of se-
quencing depths and provided further insights for
modelling ChIP-exo data.

INTRODUCTION

Chromatin Immunoprecipitation followed by exonuclease
digestion and next generation sequencing (ChIP-exo) is cur-
rently one of the state-of-the-art high throughput assays
for profiling protein-DNA interactions at or close to sin-
gle base-pair resolution (1). It presents a powerful alter-

native to popular ChIP-seq (chromatin immunoprecipita-
tion coupled with next generation sequencing) assay. ChIP-
exo experiments first capture millions of DNA fragments
(150–250 bps in length) that the protein under study in-
teracts with, using a protein-specific antibody and random
fragmentation of DNA. Then, �-exonuclease (�-exo) is de-
ployed to trim the 5′ end of each DNA fragment to each
protein-DNA interaction boundary. This step is unique to
ChIP-exo and aims to achieve significantly higher spatial
resolution compared to ChIP-seq. Finally, high through-
put sequencing of a small region (36–100 bps) at the 5′
end of each fragment generates millions of reads. Similarly,
ChIP-nexus (Chromatin Immunoprecipitation followed by
exonuclease digestion, unique barcode, single ligation and
next generation ligation) (2) is a further modification on
the ChIP-exo protocol. ChIP-nexus aims to overcome lim-
itations of ChIP-exo by yielding high complexity libraries
with numbers of cells comparable to that of ChIP-seq ex-
periments. This is achieved by reducing the numbers of lig-
ations in the standard ChIP-exo protocol from two to one,
and adding unique, randomized barcodes to adaptors to en-
able monitoring of overamplification. In addition to these,
several other high-resolution protocols have also been con-
sidered. In X-ChIP and ORGANIC (3,4), the DNA is frag-
mented by the application of endonuclease and exonuclease
enzymes and then stabilized by sonication. The main dif-
ference between these two protocols is that in X-ChIP, the
cells are crosslinked with formaldehyde and then the DNA
is extracted by cell lysation, while the ORGANIC protocol
achieves this step by nuclear isolation. Currently, ChIP-exo
seems to be the more commonly adapted high-resolution
protocol.

Figure 1A illustrates the differences between distinct
ChIP-based protocols: ChIP-exo, ChIP-nexus, single-end
(SE) ChIP-seq, paired-end (PE) ChIP-seq. The 5′ ends from
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Figure 1. ChIP-seq versus ChIP-exo/nexus. (A) Processing of sonicated fragments bound by TF before immunoprecipitation and PCR amplification: For
ChIP-exo, an exonuclease enzyme (orange hexagon) trims the 5′ ends of each DNA fragment to a fixed distance from the TF. For ChIP-nexus, a random
barcode is added on the 3′ end, and transferred to the 5′ stopping base by self-circularization. For both ChIP-exo and SE ChIP-seq, an adaptor is ligated
(green triangles) at the 5′ ends. The adaptors are ligated to both ends for PE ChIP-seq. (B) Forward Strand Ratio densities for SE ChIP-seq and ChIP-exo
peaks. (C) Hexbin plot of PE ChIP-seq bin counts vs. ChIP-exo bin counts. (D) Mappability score vs. mean ChIP-exo read counts with error bands. E)
GC-content vs. mean ChIP-exo read counts with error bands. (F) SCC curves for human CTCF from HeLa cell lines. The SCC curve for the ChIP-exo
sample from (1) is shown in the left panel, and the SCC for ChIP-seq samples from (17) are shown in the right panel. The ChIP-exo curve shows local
maxima at the motif and read lengths. SE ChIP-seq curves for both replicates are maximized at the fragment length and show local maxima at the read
length.
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a ChIP-exo/nexus experiment are clustered more tightly
around the binding sites of the protein than in a ChIP-seq
experiment. In a PE ChIP-seq experiment, both ends are
sequenced as opposed to only the 5′ end in a SE ChIP-seq.
Although ChIP-exo/nexus protocols are being adopted by
the research community, features of ChIP-exo data, spe-
cially those pertaining to data quality, have not been in-
vestigated. First, DNA libraries generated by the ChIP-
exo protocol are expected to be less complex than the li-
braries generated by ChIP-seq (5) because digestion by �-
exo aims to reduce the number of individual genomic posi-
tions, to which sequencing reads can map, to small regions
located around the actual binding sites. Therefore, in high
quality and deeply sequenced ChIP-exo datasets, it is pos-
sible to observe large numbers of reads accumulating at a
small number of bases due to actual signal rather than over-
amplification bias as commonly observed in ChIP-seq ex-
periments. Second, although we expect approximately the
same numbers of reads from both DNA strands at a given
binding site, there may be locally more reads in one strand
than in the other, owing to �-exo efficiency, ligation effi-
ciency, or other factors. This is an important point with
implications on the statistical analysis of ChIP-exo data.
Specifically, currently available ChIP-exo specific statistical
analysis methods (e.g. MACE (6), CexoR (7) and Peakzilla
(8)) rely on the existence of peak-pairs formed by forward
and reverse strand reads at the binding site. Finally, most of
current widely used ChIP-seq quality control (QC) guide-
lines (9–11) may not be directly applicable to ChIP-exo data.

To address these challenges, we develop a suite of diag-
nostic plots and summary statistics and implement them in
a versatile R/Bioconductor package named ChIPexo-
Qual. The overall pipeline takes into account the charac-
teristics of ChIP-exo/nexus data and addresses the critical
shortcomings of the currently available QC pipelines that
are not particularly tailored for ChIP-exo/nexus data (9–
10,12–13). We apply this pipeline to a large collection of
public and newly generated ChIP-exo/nexus data and we
validate the QC pipeline by evaluating the samples for fea-
tures that capture high signal to noise, such as occurrences
of motifs recognized by the profiled DNA interacting pro-
tein and also utilize blacklisted regions as identified by the
ENCODE consortium.

MATERIALS AND METHODS

ChIP-seq/exo/nexus datasets

E. coli ChIP-exo and ChIP-seq samples. For simplicity, we
introduce some abbreviations for the Escherichia coli �70

ChIP-exo (E), PE ChIP-seq (P), and SE ChIP-seq (S) sam-
ples. We denote the data generated in the first (second) batch
as E1 (E2), P1 (P2) and S1 (S2). Summaries of the growth
conditions and sample IDs for the ChIP-exo samples are in-
cluded in Table 1. The SE and PE ChIP-seq samples gener-
ated under the same conditions share the same Id. conven-
tion. The procedures for sample preparation and sequenc-
ing are described in the supplement. The ChIP-exo experi-
ments followed the protocol 7 described in (1).

Processing of the ChIP-exo and ChIP-nexus samples. We
aligned the ChIP-exo/nexus samples in Table 2 by follow-

ing the descriptions listed in their respective publications.
When the alignment settings were not discernible in the
original publication, we used bowtie (version 1.1.2) (14).
We aligned the E1 samples of Table 1 with bowtie -
q -m 1 -l 55 -k 1 -5 3 -3 40 --best -S and
the E2 samples using bowtie -q -m 1 -v 2 --best.
The average read lengths were 102 and 52 bp for the E1 and
E2 samples, respectively. Hence, to make the alignments for
both samples comparable, we trimmed 40 bp from the 3′
ends of the reads in the E1 samples. We trimmed 3 bp from
the 5′ end to remove the adaptors in the E1 samples.

ChIP-exo and ChIP-seq peak calling with MOSAiCS to
identify high signal peaks

MOSAiCS (15) is a model-based approach for the analysis
of ChIP-seq and ChIP-exo data. We used MOSAiCS to iden-
tify sets of highly significant peaks for ChIP-exo and ChIP-
seq under the GC + Mappability and InputOnly modes
for background estimation, respectively. Subsequently, we
called peaks with a 5% FDR and a threshold of at least 100
extended fragments.

Generation of a set of high signal regions from E. coli samples
to assess strand imbalance

We partitioned the E. coli genome into non-overlapping in-
tervals of length 150 bp and counted the number of reads
overlapping each interval. As is usually the practice with
ChIP-seq analysis, each read was extended to the average
fragment length of 150 bp toward the 3′ direction. To eval-
uate the strand imbalance, we identified a set of high signal
peaks for ChIP-exo and SE ChIP-seq. The subset of these
peaks for which dPeak (16) analysis identified one or more
binding events were used in FSR assessments (Figure 1B
and Supplementary Figure S1E).

Existing next generation sequencing data QC metrics and
methods

We used the ChIP-seq QC metric definitions established
by the ENCODE consortium (10,11), and described in de-
tail at https://genome.ucsc.edu/ENCODE/qualityMetrics.
html. These QC metrics were calculated with the ChIPUtils
package (version 0.99.0 from https://github.com/keleslab/
ChIPUtils). Empirical data from the ENCODE project sug-
gests the following guidelines for interpretation of the QC
metrics for human and mouse genomes: a PBC value be-
tween 0–0.5 indicates severe bottlenecking, 0.5–0.8 moder-
ate bottlenecking, 0.8–0.9 mild bottlenecking and 0.9–1 no
bottlenecking.

In addition to ENCODE QC metrics, we considered
FASTQC (version 0.11.5) andhtSeqTools (version 1.16.0)
(9) for assessing the overall quality of the ChIP-exo/nexus
sequences. Collectively, these encompass all the metrics
available for read-level data in ChiLin (13), which is an-
other QC tool for ChIP-seq and DNase-seq, and Q-nexus
(12), which is a ChIP-nexus analysis pipeline with QC fea-
tures that are similar to that of FASTQC. The remaining
metrics calculated by the ChiLin pipeline require the use
of a peak calling algorithm or external data (such as DNase

https://genome.ucsc.edu/ENCODE/qualityMetrics.html
https://github.com/keleslab/ChIPUtils
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Table 1. Summary of the E. coli �70 ChIP-exo samples

Group Growth Treatment Rep. Id. Depth NSC RSC PBC SSD

Exp. +O2 No Rif. 1 1 13 961 493 103.15 2.0193 0.1399 356.8525
ChIP-exo Exp. +O2 No Rif. 2 2 14 810 838 162.70 1.7805 0.1633 371.6857
(E1) Stat. +O2 No Rif. 1 3 16 108 774 153.51 1.8035 0.1353 402.3119

Stat. +O2 No Rif. 2 4 13 636 541 172.59 2.014 0.1532 400.2480
Exp. +O2 No Rif. 1 1 902 921 13.77 1.1270 0.2689 68.0992

ChIP-exo Exp. +O2 Rif. 20 min 1 2 1 852 124 17.91 1.5275 0.2590 96.9974
(E2) Exp. +O2 No Rif. 2 3 2 104 427 29.60 1.2844 0.2584 120.3401

Exp. +O2 Rif. 20 min 2 4 11 548 572 13.08 1.5122 0.1510 219.8427

Exp. stands for exponential and Stat. for stationary growth conditions. Rif. stands for Rifampicin treatment. Columns 7-10 depict QC metrics on these data:
NSC: Normalized Strand Cross-Correlation; RSC: Relative Strand Cross-Correlation; PBC: PCR Bottleneck Coefficient; SSD: Standardized Standard
Deviation.

Table 2. Summary of publicly available data used for development and evaluation of ChIPexoQual

Protocol Organism TF/histone
Cell
type/treatment Rep. Depth NSC RSC PBC SSD

ChIP-exo Human CTCF HeLa 1 23 576 694 22.82 1.2604 0.4654 0.8102
2 20 947 081 13.79 1.1382 0.4292 0.7846
3 37 688 587 20.51 1.2071 0.2744 0.6348

Human ER MCF-7 1 9 289 835 19.87 1.0127 0.8082 0.6308
2 11 041 833 21.48 1.0063 0.8024 0.7313
3 12 464 836 18.72 1.0100 0.8203 0.7231

Mouse FoxA1 Liver 1 22 210 461 21.28 1.1104 0.6562 1.0728
2 23 307 557 60.42 1.1604 0.7996 0.9790
3 22 421 72 72.04 1.1975 0.1068 1.3861

Human GR IMR90 1 47 443 803 8.86 1.3678 0.2978 0.8970
K562 1 116 518 000 4.11 1.0441 0.0504 1.0708
U2OS 1 3 255 111 10.05 1.0288 0.7714 0.3717

Human TBP K562 1 61 046 382 12.01 1.1119 0.1232 0.7552
2 94 314 770 7.93 1.0299 0.1681 2.8796
3 114 282 270 9.25 1.1027 0.1464 2.9330

S.Cerevisiae H3 Tail deleted 1 35 951 922 6.80 1.0631 0.4435 24.1752
2 32 568 539 4.37 1.2112 0.3902 17.2758
3 21 600 382 11.91 1.1655 0.4774 29.0496
4 11 030 924 14.92 1.1137 0.5381 30.9052

ChIP-nexus D.Melanogaster Dorsal Embryo 1 8 863 170 7.27 1.0402 0.6766 1.6014
2 10 003 562 7.19 1.0672 0.5656 1.6565

Twist 1 18 244 203 5.82 1.1632 0.6592 4.6353
2 52 546 982 5.27 1.1805 0.4549 7.1775

Max S2 1 18 320 743 3.60 1.3628 0.5178 2.8449
2 24 965 642 3.47 1.0138 0.2124 5.2416

MyC 1 7 832 034 5.92 1.0115 0.3935 3.3570
2 22 824 467 5.76 1.0045 0.1879 6.9451

Human TBP K562 1 33 708 245 32.16 1.1712 0.3102 2.2438
2 129 675 001 32.70 1.2455 0.0492 4.5579

Columns 7-10 depict QC metrics on these data: NSC: Normalized Strand Cross-Correlation; RSC: Relative Strand Cross-Correlation; PBC: PCR Bottle-
neck Coefficient; SSD: Standardized Standard Deviation.

hypersensitive sites) and, therefore, are not utilized in our
evaluations.

Blacklisted regions in eukaryotic genomes

For the mm9, hg19, and dm3 genomes, we used the black-
lists generated by the ENCODE consortium (17), avail-
able at https://sites.google.com/site/anshulkundaje/projects/
blacklists. These lists consist of genomic segments for which
next-generation sequencing experiments produce artificially
high signal. These lists were empirically derived from large
compendia of data generated by the ENCODE and mod-
ENCODE consortia, respectively.

ChIP-exo quality control with R package ChIPexoQual

We implemented our proposed QC pipeline with an
R/Bioconductor package named ChIPexoQual, avail-
able at http://bioconductor.org/packages/release/bioc/html/
ChIPexoQual.html. The analysis in this paper used version
1.0.0 of the ChIPexoQual package.
ChIPexoQual: The package takes a set of N aligned

reads from a ChIP-exo (or ChIP-nexus) experiment as in-
put and performs the following steps.

1. Identify read islands, i.e. overlapping clusters of reads
separated by gaps, from read coverage. The gaps are de-
fined as the union of positions in the genome with fewer
than h* (default =1) aligned reads. The remaining is-

https://sites.google.com/site/anshulkundaje/projects/blacklists
http://bioconductor.org/packages/release/bioc/html/ChIPexoQual.html
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lands can be interpreted as the natural partition of the
genome determined by a ChIP-exo/nexus experiment.

2. Compute Di, number of reads in island i; Ui number of
positions in island i with at least one aligning read; and
Wi, the width of island i defined as the total number of
bases in the island, i = 1, ···, I.

3. For each island i, i = 1, ···, I, compute island statistics:

ARCi = Di

Wi
, URCi = Ui

Di
,

FSRi = (# of fwd. strand reads aligning to island i )/Di ,

4. Generate diagnostic plots (i) URC vs. ARC plot; (ii) Re-
gion Composition plot; (iii) FSR distribution plot.

5. Randomly sample without replacement M (at least 500,
default = 1000) islands and fit,

Di = β1Ui + β2Wi + εi ,

where εi denotes the independent error term. Repeat this
process B (default = 1000) times and generate box plots
of estimated �1 and �2.

Interpretation of the linear model in the QC pipeline. The
linear model

Di = β1Ui + β2Wi + εi

is a re-parametrization of the following relationship from
URC vs. ARC diagnostic plot:

URCi = κ

ARCi
+ γ + εi (1)

with �1 = 1/� and �2 = −�/� . In this setting, � can be
considered as the large-depth URCi, i.e. the limiting ratio
between the number of positions with at least one map-
ping read and depth as the depth tends to infinity. Equiv-
alently, �1 = 1/� can be interpreted as the average number
of aligned reads per unique position when the sequencing
depth is large. To interpret �2 = −�/� , we express � as a
function of ARC and URC and assume that � is already
estimated. Then,

κ = U
W

− γ ARC,

κ

γ
= U

W
× 1

γ
− ARC = U

W
× lim

D→∞
D

U(D)
− ARC,

where � approximates the URC as the sequencing depth in-
creases.

In a low quality experiment where reads accumulate in a
few number of positions due to PCR amplification bias or
other artifacts, several reads are expected to repeatedly align
to the same collection of unique positions, making the term
involving the limit diverge from ARC. In contrast, in a high-
quality experiment, �/� is expected to converge to zero be-
cause the expression with the limit approximates ARC.

The ChIPexoQual pipeline is enriched by the following
two additional modules that are utilized when the sequenc-
ing depth is high and/or blacklisted regions are available.

i. Subsampling analysis. For high depth datasets (e.g.,
≥60M reads for human and mouse samples), we sub-
sample N1 < N2 < ··· < N reads, starting with N1 = 20M

reads and up to 50M reads in 10M increments as de-
fault, and apply steps 1 to 5 for each of the subsampled
datasets.

ii. Blacklisted regions analysis. The islands identified by
ChIPexoQual are separated into two different collec-
tions based on their overlap with a set of blacklisted re-
gions. Then, the �1 and �2 scores are estimated for both
collections and compared against the all island scores.

Motif analysis of FoxA1 and TBP enriched regions

For each ChIP-exo/nexus sample, we used the ChIP-exo
QC pipeline to partition its reference genome into a set of
islands with their respective summary statistics. We then fil-
tered them into collections of high quality regions as fol-
lows:

i. FoxA1 experiments: we removed the islands with (i) reads
residing only on one strand; (ii) Ui ≤ 15; (iii) Di ≤ 100.

ii. For TBP experiments: we removed the islands with (i)
reads residing only on one strand; (ii) Wi < 50 or Wi ≥
2000 bp; (iii) Ui ≤ 15; (iv) Di ≤ medianjDj.

These thresholds were empirically selected. To validate
their robustness, we performed an analogous analysis by
using the regions that overlapped a set of peaks (identified
by MOSAiCS at FDR 5%) with width larger than 3 × rl,
where rl is the median read length of the experiment (Sup-
plementary Figures S34 and S35). The width filter was not
applied to the TBP ChIP-exo samples, and accordingly to
the ChIP-nexus samples for consistency, since they exhib-
ited over-amplification (2).

We used FIMO (version 4.9.1) (18) to identify the FoxA1
and TBP motifs within each enriched region using the
FoxA1 MA0148.1 and TBP MA0108.1 position weight ma-
trices from the JASPAR database (19), respectively. For the
FoxA1 experiments we used the default parameters and for
the TBP experiments we considered all motifs identified
with FIMO p.value < 0.05.

RESULTS

Publicly available ChIP-exo/nexus and novel E. coli ChIP-
seq/exo datasets

We utilized a rich collection of publicly available ChIP-
exo/nexus data from multiple organisms to build and eval-
uate our quality control pipeline (Table 2). These include:
CTCF factor in human HeLa cell lines (1); ER factor in hu-
man MCF-7 cell lines (20); GR factor in IMR90, K562 and
U2OS human cell lines (21); TBP factor in human K562 cell
lines (22); H3 histone in S. cerevisiae where most, but not
all of the tail was deleted (�1-28) (23). ChIP-nexus data in-
cluded experiments from (2) profiling TBP in human K562
cells, MyC and Max in D. melanogaster S2 cell lines, and
Twist and Dorsal in D. melanogaster embryo.

In order to have a setting where we can compare SE and
PE ChIP-seq with their ChIP-exo counterpart, we profiled
�70 under a variety of conditions in E. coli with ChIP-exo
(Table 1), SE and PE ChIP-seq. Collectively, we generated
�70 factor ChIP-exo, PE and SE ChIP-seq experiments un-
der aerobic (+O2) and anaerobic (−O2) conditions in glu-
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cose minimal media. For simplicity, we named these exper-
iments as E1, P1 and S1, respectively. Similarly, we gener-
ated �70 factor ChIP-exo and PE ChIP-seq experiments in
E. coli under aerobic (+O2) conditions with and without ri-
fampicin treatment. We also named these experiments E2
and P2, respectively.

ChIP-exo versus ChIP-seq: general features

We first compared ChIP-seq and ChIP-exo in terms of data
features that are well studied in ChIP-seq studies. Our �70

ChIP-seq and ChIP-exo samples from E. coli are especially
well suited for this task since they are all deeply sequenced
compared to the genome size of E. coli. Figures 1B–C sum-
marize this comparison for one biological replicate of ChIP-
exo and ChIP-seq experiments from the same biological
conditions (samples E1-1 from Table 1, P1-1 and S1-1 fol-
lowing the same Id. convention).

Peak-pair assumption. We evaluated the peak-pair as-
sumption, i.e. a cluster of reads in the forward strand lo-
cated on the left-hand-side of the binding site is usually
paired with a cluster of reads located on the right-hand-
side of the binding site in the reverse strand. This obser-
vation is commonly utilized in designing statistical analysis
methods for ChIP-exo data (6–8). We considered the set of
peaks identified in both the ChIP-seq and ChIP-exo sam-
ples as high quality peaks (Materials and Methods) and cal-
culated the proportion of forward strand reads in these re-
gions (Figure 1B and Supplementary Figures S1–S3). This
plot reveals a higher level of strand imbalance for ChIP-
exo compared to ChIP-seq. Potential reasons for this obser-
vation include ligation efficiency, efficiency of �-exo diges-
tion, and single-stranded protein-DNA interactions. Over-
all, such an imbalance is more likely to occur in low com-
plexity libraries.

Read distributions within signal and background regions.
Using extended raw read counts within 150 bp non-
overlapping intervals, i.e., bins interrogating the genome,
Figure 1C depicts that, as observed by others, ChIP read
counts from ChIP-exo and ChIP-seq are linearly correlated
especially at high read counts. This indicates that signals for
potential binding sites are well reproducible between ChIP-
exo and ChIP-seq data. In contrast, there is a clear dif-
ference between the two data types for bins with low read
counts, highlighting potential differences in the background
read distributions of these data types. Comparisons with
other paired E. coli ChIP-seq and ChIP-exo samples led to
similar conclusions (Supplementary Figures S1–S3).

Mappability and GC-content bias. We next evaluated
ChIP-exo data of CTCF in HeLa cells (1) to investigate
biases inherent to next generation sequencing experiments
with eukaryotic genomes. Figures 1D and E (Supplemen-
tary Figure S4) display the bin-level average read counts
against mappability and GC-content. Each data point is
obtained by averaging the read counts across bins with the
same mappability of GC-content. These biases, increasing
linear trend with mappability and non-linear trend with
GC-content, are similar to those observed in ChIP-seq

datasets (15,24–25). This observation indicates that analy-
sis of ChIP-exo data should benefit from methods that take
into account apparent sequencing biases such as mappabil-
ity and GC content, mostly when an input control sample
is not available to account for variability in the background
read distribution.

Existing high throughput sequencing quality control metrics
applied to ChIP-exo/nexus data

We processed the ChIP-exo/nexus samples with FASTQC
and observed that in 73.33% and 93.33% of the cases, at
least a warning is raised for sequence duplication levels and
kmer content representation (Supplementary Table S1), re-
spectively. The former assumes that most sequences will oc-
cur only once in a diverse library and the latter assumes
that any small fragment should not have a positional bias
in its appearance within a library. Clearly, these assump-
tions are not appropriate for ChIP-exo/nexus data, as the
exo-enzyme is expected to stop its digestion when it reaches
the crosslinking protein.

The ENCODE consortium established empirical and
widely used QC metrics on ChIP-seq data (10). We evalu-
ated how these metrics, namely PCR Bottleneck Coefficient
(PBC), Normalized Strand Cross-Correlation (NSC), and
Relative Strand Cross-Correlation (RSC) defined at https:
//genome.ucsc.edu/ENCODE/qualityMetrics.html (10,11).
Tables 1 and 2 present these metrics for the collection of
ChIP-exo/nexus datasets we consider in this paper.

Marinov et al. (11) discussed that highly complex ChIP-
seq libraries can become exhausted by deep sequencing.
Hence, the PBC is expected to decrease as the sequencing
depth increases. This effect is expected to be more severe in
ChIP-exo/nexus as DNA libraries generated by those pro-
tocols are expected to be less complex than the libraries
generated by ChIP-seq because the numbers of positions to
which the reads can align to are reduced due to the exonu-
clease digestion. This affects the interpretation of the PBC,
which is defined as the ratio of the number of genomic po-
sitions to which exactly one read maps to the number of ge-
nomic positions to which at least one read maps. For ChIP-
seq samples, low PBC values (e.g., ≤0.5) indicate high levels
of PCR amplification bias, i.e. PCR bottleneck, unless the
sequencing depth is high enough to saturate all targets of
the factor profiled. In contrast, for ChIP-exo/nexus, exonu-
clease digestion will lead to reads with same exact 5′ end
even before the PCR amplification step. We note that the
PBC values are especially low for deeply sequenced ChIP-
exo and ChIP-nexus samples; however, this does not auto-
matically indicate severe bottlenecking as suggested by stan-
dard ChIP-seq guidelines.

Planet et al. (9) presented in the R/Bioconductor
package htSeqTools the Standardized Standard Devia-
tion (SSD) as a metric to assess enrichment efficiency and
to compare across samples. According to the guidelines es-
tablished by the authors, higher values of this metric indi-
cates high-quality. We calculated the SSD coefficient for all
the ChIP-exo/nexus samples (Tables 1 and 2). Detailed ex-
amination of these results reveals a key shortcoming of this
metric as the propensity to label samples with low library
complexity as higher quality because the reads in such sam-

https://genome.ucsc.edu/ENCODE/qualityMetrics.html
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ples align to fewer positions in the genome. For example,
when comparing the ChIP-exo/nexus TBP samples, the use
of this metric suggests that the deeply sequenced ChIP-exo
samples (replicates 2 and 3) exhibit higher quality than the
first ChIP-nexus replicate. This is in contrast to evaluation
of these datasets with an independent, motif-based metric
as we discuss below.

The Strand Cross-Correlation (SCC), introduced by
Kharchenko et al. (26), is a commonly used quality metric
in assessing ChIP-seq enrichment quality. It aims to quan-
tify how well the reads mapped to each strand are clustered
around the locations of the protein–DNA interaction sites
by calculating the Pearson correlation between forward and
backward strands reads by shifting them across a range that
covers both the read length of the experiment and the ex-
pected average fragment length. Typical SCC profiles ex-
hibit two local maxima: at the average fragment length and
the read length. In high quality experiments with clear ChIP
enrichment, the average fragment length maximum coin-
cides with the global maximum. In an idealized ChIP-exo
experiment where the DNA fragments are digested to the
boundaries of the protein–DNA interaction sites, the SCC
profile is expected to maximize at the motif length indi-
cating clustering of the forward and reverse strand reads
around the binding site. This hinders the interpretation of
SCC for a ChIP-exo/nexus experiment since it is now maxi-
mized at an unobserved shorter fragment length that is con-
founded with the ‘phantom peak’ at the read length. Carroll
et al. (27) studied the impact of blacklisted regions and du-
plicated reads when calculating the SCC for ChIP-exo data.
The authors showed that there is a dramatic effect in the
SCC profile when removing duplicated reads but the effect
of removing the blacklisted regions may be specific in few
positions of the SCC profile and suggested to calculate the
SCC using only aligned reads that overlap the experiment’s
set of peaks but don’t overlap a set of predefined blacklisted
regions. Several biases are introduced into the computation
of this modified SCC, because it requires the use and tuning
of a peak calling algorithm. Furthermore, in a lower quality
experiment, the peaks may not correspond to actual bind-
ing sites. Figure 1F displays the SCC curves for the CTCF
HeLa samples where the ChIP-exo curve actually shows lo-
cal maxima at 12 bp and the read length, while the SE ChIP-
seq curves have an expected local maxima at the read length
and a global maxima at the average fragment length. SCC
profiles for other samples are available in Supplementary
Figures S5 to S14. In ChIP-exo experiments, the read length
and the fragment length peaks in the SCC are confounded.
Furthermore, the former is close in proximity to the motif
length; as a result, this may incorrectly suggest experiments
to be marginally successful or even failed (e.g. Supplemen-
tary Figure S8) and renders QC metrics such as the Normal-
ized Strand Cross-Correlation (NSC) or the Relative Strand
Cross-Correlation (RSC) harder to interpret. However, in
majority of the cases we present, the profile itself seems in-
formative about the enrichment signal in ChIP-exo/nexus
experiments.

ChIP-exo quality control pipeline ChIPexoQual

To address the limitations of available analytical explo-
ration approaches discussed above, we developed ChIPex-
oQual. In Table 3, we compare ChIPexoQual against the
existing tools discussed above. We highlight that ChIPex-
oQual provides a global view of both library enrichment
and complexity, and detailed diagnostic plots for the bal-
ance between the two. We first present the overall pipeline
and then discuss individual components with a case study
using ChIP-exo data of FoxA1 from (20) and ChIP-nexus
data from (2). Figure 2 summarizes the 4-step pipeline and
the two additional modules. Given aligned reads from a
ChIP-exo/nexus sample, the first step partitions the refer-
ence genome into islands representing overlapping clusters
of reads separated by gaps by removing the regions with
fewer than h* aligned reads. In step 2, the total number of
reads overlapping each island (Di) and the number of island
positions with at least one aligned read (Ui) are recorded.
Then, three summary statistics ARCi, URCi, and FSRi are
computed for each region i. ARCi denotes the average read
coefficient and is defined as the ratio of the number of reads
in island i (Di) to the width of the island i (Wi); URCi,
unique read coefficient, quantifies the inverse of the effective
coverage and is defined as the ratio of the number of ge-
nomic positions with at least one aligned read within island
i (Ui) to the number of reads in island i (Di); and FSRi de-
notes the proportion of forward strand reads. Step 3 of the
pipeline generates several diagnostic plots aimed at quan-
tifying ChIP enrichment and strand imbalance, and step 4
generates quantitative summaries of these diagnostic plots.

Figure 2A presents the typical behavior of the URC vs.
ARC plot for a high quality ChIP-exo sample. In general,
the plot depicts two strong arms. The left arm, with low
ARC and varying URC values, corresponds to background
islands, regions that are usually composed of scattered reads
that were not digested during the exonuclease step. The right
arm where the URC decreases as the ARC increases cor-
responds to regions that are usually ChIP enriched. As a
result, this arm depicts the balance between library enrich-
ment and complexity. Low URC in this arm corresponds to
regions composed by reads concentrated in a smaller num-
ber of positions.

We quantify the shape of the URC versus ARC plot by
the use of two estimated parameters: �1 which represents
the average number of reads aligned to the unique positions
in large depth regions and �2 which represents the overall
change in depth as the width varies across a large set of re-
gions. These parameters are estimated by sampling exper-
iments on the original samples. We provide further details
on how to obtain these later in the paper where we apply
the pipeline to a large collection of ChIP-exo/nexus exper-
iments. Figure 2B and C present the typical behavior of the
Region Composition and Forward Strand Ratio (FSR) dis-
tribution plots, both of which quantify the strand imbalance
as part of the QC pipeline. The Region Composition plot
depicts how quickly the ratio of islands exclusively com-
posed of fragments on a single strand among the islands
with comparable read depth decreases as a function of read
depth of the island. In a high quality sample, the propor-
tion of islands with reads from only one strand is expected
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Figure 2. ChIP-exo QC pipeline ChIPexoQual. The ChIP-exo reads are partitioned into overlapping clusters of reads separated by gaps (step 1). For
each region, the following summary statistics are calculated (step 2) and visualized (step 3): Average Read Coefficient (ARC), Unique Read Coefficient
(URC) and Forward Strand Ratio (FSR). These statistics are visualized as: (A) URC versus ARC plots, which presents the overall balance between library
complexity and enrichment; there are two arms, one with low ARC and varying URC and one where the URC decreases as the ARC increases. (B) Region
Composition plot, which shows the strand composition for all the regions formed by a minimum number of reads. (C) FSR distribution plot, which
illustrates the FSR’s distribution as the depths of the islands get larger. D) Example of the Blacklisted region analysis module. Both β̂1 and β̂2 scores are
significantly higher for islands overlapping the blacklisted regions, and robust to the removal of them.

to decrease rapidly as we consider higher depth regions. In
contrast, this proportion remains approximately constant
in lower quality samples. The Forward Strand Ratio distri-
bution plot illustrates how quickly the quantiles of the FSR
approaches to 0.5, the expected FSR value in high quality
samples. Even though not every region in a ChIP-exo ex-
periment is perfectly balanced, the most enriched regions
are expected to have approximately equal numbers of reads
in both strands.

Application and validation of ChIPexoQual with the
FoxA1 ChIP-exo dataset. We next illustrate the proposed
QC pipeline using FoxA1 ChIP-exo datasets, which were
profiled at comparable sequencing depths in three biological
replicates of mouse liver cells. We first investigated various
thresholds for partitioning the mouse genome using these
ChIP-exo samples. We specifically considered small thresh-
olds because larger thresholds are likely to partition wider
regions into smaller ones, discard parts of wide regions, and
ignore background regions completely. With this in mind,
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Table 3. Comparison of state-of-the-art quality control tools for ChIP-seq and ChIP-exo/nexus samples

Aspect\Tool ChIPexoQual ChiLin ChIPQC phantompeakqualtools htSeqTools FASTQC Q-nexus

Pipeline tailored to ChIP-exo/nexus experiments � �
Global view of library enrichment � � � � �
Global view of library complexity � � � � � �
Balance between library enrichment and
amplification

�

Peak-pair assumption diagnostic by dynamic
analysis of strand imbalance

�

Analysis of subsampled experiment to determine
overall quality

� �

Explicit analysis of blacklisted regions � �
Sequence quality scores distributions � �
Analysis of over-represented kmers and
sequences

� �

Analysis of duplicated reads � � � � � �

we processed the FoxA1 datasets with the following thresh-
olds 1, 5, 25 and 50 (Supplementary Figure S15). We ob-
served that, in a high-quality experiment, if multiple thresh-
olds are small and close to each other, then the partitions
are similar and the distributions of the proposed metrics are
similar as well. Hence, we decided to use the default thresh-
old of h* = 1 when analyzing the FoxA1 samples.

Figure 3A presents URC versus ARC plots for all three
replicates. The first and third replicates exhibit a defined de-
creasing trend in URC as the ARC increases. This indicates
that these samples exhibit a higher ChIP enrichment than
the second replicate. On the other hand, the overall URC
level from the first two replicates is higher than that of the
third replicate, elucidating that the libraries for the first two
replicates are more complex than that of the third replicate.

Figures 3B and C display the Read Composition and
FSR distribution plots, which highlight specific problems
with replicates 2 and 3. Figure 3B exhibits apparent decreas-
ing trends in the proportions of regions formed by frag-
ments in one exclusive strand. High quality experiments
tend to show exponential decay in the proportion of single
stranded regions, while for the lower quality experiments,
the trend may be linear or even constant (Supplement Fig-
ure S21). FSR distributions of both of replicates 2 and 3 are
more spread around their respective medians (Figure 3C).
The rate at which the 0.1 and 0.9 quantiles approach the me-
dian indicate the aforementioned lower enrichment in the
second replicate and the low complexity in the third one.

In addition to step 4, when a set of blacklisted regions
is available we divide the ChIP-exo/nexus islands into two
groups based on whether or not they overlap the blacklisted
regions. Figure 3D illustrates that, first, �1 and �2 scores
are robust to existence of islands in the blacklisted regions.
Second, for the islands overlapping the blacklisted regions,
both summary metrics are significantly higher in both the
overall level and variance. Therefore, this stratified analy-
sis further indicates that the �1 and �2 scores provide good
overall assessments of the datasets and can clearly separate
blacklist regions.

We conclude that replicate 1 is higher quality than both
of replicates 2 and 3. We validate this observation with a
motif analysis on the candidate binding regions identified
from these replicates. A conservative approach to identify
high quality binding regions (Materials and Methods) re-
veals 7014, 1855, and 2187 regions for replicates 1, 2 and
3, respectively. The lower number of enriched regions from

replicate 2 is consistent with the lower ChIP enrichment
pattern in the URC vs. ARC diagnostic plot. Figure 4A
compares the FIMO scores among the three replicates, not-
surprisingly confirming that the first replicate exhibits the
highest quality.

Figure 4B displays the average normalized read coverage
around the actual motif locations in the candidate binding
regions. These coverage plots reveal that the ChIP signal is
slightly more defined for the first and third replicates than
the second one, indicating overall strength of the ChIP en-
richment in these samples compared to the second repli-
cate. Figure 4C compares FSR distributions of the ChIP
islands overlapping the union of the peaks across the three
replicates and highlights that the samples largely satisfy the
‘peak-pair’ assumption because peaks with at least one mo-
tif tend to be more strand-balanced. Furthermore, samples
with lower library complexity appear to exhibit heavier FSR
tails.

High sequencing depth may confound low-complexity library
issues. We evaluated every sample listed in Tables 1 and 2
with the ChIPexoQual QC pipeline (Supplementary Fig-
ures S16–S27). A key observation from this large scale anal-
ysis is that the URC versus ARC plots typically display one
of the three patterns captured in the FoxA1 study. We will
refer to these as pattern I (FoxA1 replicate 1), II (FoxA1
replicate 2), and III (FoxA1 replicate 3), respectively. Pat-
tern III where the two arms along ARC are not distinguish-
able can arise due to either low-complexity library or high
sequencing depth. For example, all three replicates of the
TBP ChIP-exo from K562, with sequencing depths between
∼ 60M to 115M reads, and replicate two of TBP ChIP-
nexus in K562, with a sequencing depth of ∼ 130M reads,
exhibit this pattern.

A simple but effective strategy to distinguish the two
plausible scenarios from Pattern III is to apply the QC
pipeline to sub-samples randomly generated from the full
dataset at varying sequencing depths (sub-sampling analy-
sis module). We applied this strategy by sub-sampling 20M
to 50M reads in 10M increments, a range that represents
the sequencing depths of the human samples we are using
in this paper, from the TBP samples. URC vs. ARC diag-
nostics of these sub-samples (Supplementary Figures S30 to
S33) indicate that, among the four TBP samples with this
pattern, replicates two and three of K562 ChIP-exo suffer
from low-complexity library issues, whereas the other sam-
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Figure 3. ChIPexoQual diagnostic plots for the FoxA1 ChIP-exo data (20). (A) URC versus ARC plot, (B) Region Composition plot, (C) FSR distribution
plot comparison across three replicates and (D) �1 and �2 scores stratified based on overlap with the blacklisted regions.

ples exhibit the pattern specific to high quality samples. To
confirm this implication, we compared the top FIMO scores
(18) of the TBP motif for the ChIP-exo and ChIP-nexus
replicates. Figure 4D illustrates that the first ChIP-exo repli-
cate and ChIP-nexus replicates identify binding events with
consistently better motif matches than the other ChIP-exo
replicates. This implication on overall quality is further con-
firmed by the large separation of the �1 and �2 scores be-
tween regions that do and do not overlap with the blacklist
regions for these high quality samples (Supplementary Fig-
ures S28-S29).

Figure 4E compares the FSR distributions of ChIP is-
lands overlapping the union of peaks across all TBP sam-
ples by stratifying them with respect to TBP motif occur-
rence. Overall, while the peaks in high quality experiments
are more likely to have a motif occurrence if they are bal-

anced, many strand-unbalanced peaks with motifs are also
identified. Specifically, the proportion of peaks with FSR
smaller than 0.3 or larger than 0.7 varied between 0.38-
0.43 and 0.20-0.22, for ChIP-exo and the ChIP-nexus exper-
iments, respectively. This further confirms the conclusion of
the ChIPexoQual QC pipeline.

Summary statistics for the URC versus ARC diagnostic plot.
We next utilized QC pipeline results for all the samples
(Tables 1 and 2) and quantified the relationship between
ARC and URC by fitting a reparametrized regression model
of URC as a function of ARC. Specifically, we considered
a model of read depth (Di) on the number of positions
with at least one aligned read (Ui) and the width of the
island (Wi), i.e., Di = �1Ui + �2Wi + εi, where εi repre-
sents the random error term. As we discuss in Materials
and Methods, this parametrization has a direct connection



PAGE 11 OF 14 Nucleic Acids Research, 2017, Vol. 45, No. 15 e145

Figure 4. Validation of the ChIPexoQual pipeline with FoxA1 ChIP-exo (A–C) and TBP ChIP-exo/nexus (D, E) data. (A) Comparison of the top 50,
100, 250, 500, 1000 and 2000 FIMO scores for each replicate. (B) FoxA1 average coverage plots of the 5′ read ends centered around motif start positions
separated by replicate and strand. (C) FoxA1 FSR distribution of ChIPexoQual islands overlapping ChIP-exo peaks stratified by the number of motifs.
(D) Comparison of the top 50, 100, 250, 500, 1000, 2000, 4000 and 8000 FIMO scores for each TBP ChIP-exo/nexus sample. (E) TBP FSR distribution
of ChIPexoQual islands overlapping ChIP-exo/nexus peaks stratified by the number of motifs.
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Figure 5. Comparison of ChIPexoQual numerical summaries. (A) β̂1 and (B) β̂2 for all eukaryotic ChIP-exo/nexus samples. (C) Average estimated �1
and (D) �2 for the ChIP-exo/nexus TBP samples in K562 cell lines when sub-sampling 20M to 50M reads.

to URCi = κ

ARCi
+ γ + εi , which aims to recapitulate the

relationship in the URC vs. ARC plots. Figure 5A displays
estimated overall change in depth (β̂1) as the number of po-
sitions with at least one aligned read varies across a large
collection of ChIP-exo samples from eukaryotic genomes.
The � parameter can be interpreted as the limiting (i.e.,
large depth) URC of a sample. As discussed earlier, high
quality ChIP-exo samples are expected to have two arms in
the URC versus ARC plots: one with low ARC and varying
URC and another with a decreasing URC as ARC increases
and stabilizes �1. When the ChIP-exo sample is not deeply
sequenced, high values of β̂1 in Figure 5A indicate that the
library complexity is low. In contrast, lower values corre-
spond to higher quality ChIP-exo experiments. Taking into
account the depths of these samples and visualizing all the
diagnostic plots (Supplementary Figures S16–S27), we con-

clude that samples with estimated β̂1 values <10 seem to be
high quality samples.

We interpret the �2 as the overall change in depth as the
width varies and display its estimates across all the eukary-
otic samples in Figure 5B. Under perfect digestion by �-exo,
most of the reads aligned to binding regions are expected to
accumulate around binding events. In a high quality sample,
the overall variation in depth is expected to be small as the
overall widths of the regions change. This is because the ma-
jority of reads are expected to be located tightly around the
binding sites and, as a result, the region width should not
significantly affect its depth. In contrast, low quality sample
regions are usually composed of a fixed proportion of reads
aligned to a small number of unique positions; hence, the
overall change in depth as the width varies is proportional
to this fixed proportion. For example, although the third
replicate of the TBP ChIP-exo experiment has comparable
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sequencing depth to the second replicate of the TBP ChIP-
nexus experiment (Figure 5B), β̂2 is considerably higher for
the ChIP-exo experiment. This potentially indicates that ad-
ditional sequencing reads in comparison to replicates 1 and
2 are scattered around new positions instead of accumulat-
ing on the existing binding sites. In summary, samples with
estimated �2 values close to zero can be considered as high
quality samples.

The interaction between �1 and �2 has implications re-
garding the quality of ChIP-exo and ChIP-nexus samples.
When either β̂1 is large or β̂2 is different from zero owing
to potentially the high sequencing depth of the sample, we
suggest randomly sub-sampling reads to form samples of
lower depth and evaluating the sub-samples with the QC
pipeline. As an illustration, we apply this strategy for the
three replicates of TBP ChIP-exo in K562 (22) and second
replicate from the K562 ChIP-nexus experiments (2). Fig-
ure 5C reveals a much higher β̂1 (and larger than 10) for
replicates 2 and 3 compared to replicate 1 and both ChIP-
nexus samples. Figure 5D illustrates that the �2 estimates
remain approximately constant in ChIP-nexus sub-samples
and sub-samples of first replicate of ChIP-exo, while they
increase for the second and third ChIP-exo replicates. This
suggests that these two ChIP-exo replicates have low library
complexity and overall lower quality than the ChIP-nexus
samples, regardless of the fact that all three experiments
are deeply sequenced with more than 90M reads each. Fur-
thermore, the ChIPexoQual diagnostic plots for each sub-
sample (Supplementary Figures S30–S33) illustrate that the
two arms of the ARC vs. URC plots are clearly visible
in moderate depth sub-samples of TBP ChIP-nexus data.
Similarly, Supplementary Figure S32 illustrates that, as ex-
pected, the suggested subsampling strategy is also effective
for the E1 and E2 samples, which are deeply sequenced, rel-
ative to the E. coli genome.

ChIPexoQual R package

We implemented ChIPexoQual as an R/Bioconductor
package. ChIPexoQual utilizes a fast processing algo-
rithm by parallel computing. Supplementary Figure S36
provides ChIPexoQual’s processing times for a collec-
tion of samples representing different sequencing depths
of the ChIP-exo/nexus experiments listed in Table 2 using
four parallel threads on a server with 24 AMD 55Opteron
2.2GHz processors. This plot shows thatChIPexoQual re-
quires between 125 and 640 s (80 and 420 when the aligned
reads are already loaded into memory) for processing a
ChIP-exo/nexus sample.

CONCLUSION

We presented a systematic exploration of several ChIP-
exo/nexus datasets. We provided a list of factors that re-
flect the quality of a ChIP-exo/nexus experiment and de-
veloped an easy to use QC pipeline, implemented into an
R/Bioconductor package called ChIPexoQual. ChIPex-
oQual takes aligned reads as input and automatically gen-
erates several diagnostic plots and summary measures that
enable assessing enrichment and library complexity.

Our analysis of several datasets indicated that the QC
pipeline only requires a set of aligned reads to provide a
global overview of the quality of a given ChIP-exo dataset.
The implications of the diagnostic plots and the summary
measures align well with more elaborate analysis that is
computationally more expensive to perform and/or re-
quires additional inputs that often may not be available,
such as motif occurrences in a set of high quality regions
or resolution analysis based on a gold-standard.

The ChIPexoQual package (version 1.0.0) is avail-
able from Bioconductor (http://bioconductor.org/packages/
release/bioc/html/ChIPexoQual.html). The Bioconductor
version does not currently include the blacklist sub-
module. A stable version (version 0.99.15) with this
additional submodule is available at https://github.com/
welch16/ChIPexoQual/tree/devel.

DATA AVAILABILITY

Escherichia coli ChIP-exo sequence and processed data
are available under the NCBI’s Gene Expression Om-
nibus (28) and are accessible through GEO series acces-
sion number GSE84830 (http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE84830).
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