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Automated thyroid nodule classification in ultrasound images is an important way to

detect thyroid nodules and to make a more accurate diagnosis. In this paper, we propose

a novel deep convolutional neural network (CNN) model, called n-ClsNet, for thyroid

nodule classification. Our model consists of a multi-scale classification layer, multiple

skip blocks, and a hybrid atrous convolution (HAC) block. The multi-scale classification

layer first obtains multi-scale feature maps in order to make full use of image features.

After that, each skip-block propagates information at different scales to learn multi-

scale features for image classification. Finally, the HAC block is used to replace the

downpooling layer so that the spatial information can be fully learned. We have evaluated

our n-ClsNet model on the TNUI-2021 dataset. The proposed n-ClsNet achieves an

average accuracy (ACC) score of 93.8% in the thyroid nodule classification task, which

outperforms several representative state-of-the-art classification methods.

Keywords: the thyroid nodule classification, multi-scale, densely connection, hybrid atrous convolution, deep

convolutional neural network

1. INTRODUCTION

Proper balancing of hormones, which regulates metabolism in the human body, is a main sign
to identify the healthy nature of human beings. The tyroid gland is responsible for balancing
hormones in human being. Therefore, the thyroid is an essential butterfly shaped organ which is
positioned in front of the neck (Gulame et al., 2021). A thyroid nodule is a discrete lesion within
the thyroid gland that is radiologically distinct from the surrounding thyroid parenchyma (Haugen
et al., 2016). Thyroid nodules are very common in the general population. About 19–68% of
individuals are detected to have thyroid nodules with high resolution ultrasound imaging (Liu et al.,
2019). Generally, only nodules >1 cm should be evaluated, since they have a greater potential to be
clinically significant cancers. In very rare cases, some nodules <1 cm yet may cause future morbidity
and mortality Haugen et al. (2016). Thyroid cancer accounts for 3% of the global incidence of all
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cancers, with 586,000 new patients estimated in Miranda-Filho
et al. (2021). Since ultrasound image provides a non-invasive and
realtime inspection at a low cost, ultrasonography has become
the best selection for the clinical identification of thyroid nodules
(Gulame et al., 2021). However, due to ultrasound image being
influenced by echo and speckle noise, experienced radiologists
usually diagnose based on the shape, margin, and boundaries of
sonographic characteristics of nodules in ultrasound image slices.
It is fairly subjective and extremely dependent upon the clinical
experience of radiologists (Yang et al., 2021). So as to handle
this challenge, computer aided classification using ultrasound
images is quite important in thyroid nodule identification. The
automatic classification of thyroid nodules can differentiate
whether a nodule is benign or malignant, which reduces the
workload and inexperienced young radiologists’ misdiagnosis
rate (Yang et al., 2021).

Two steps are required in machine learning (ML)-based
methods for thyroid nodule classification. Features are first
extracted and then a classifier is built to perform an automated
classification. For instance, random forest Ouyang et al. (2019),
backpropagation neural network (BPNN) Kumari and Rani
(2019), and stationary wavelet transform Acharya et al. (2014)
have been well applied in the classification of thyroid nodules.

In recent years, deep learning models have successfully
been used in image classification tasks, since they have shown
superior performance to conventional learning methods. One
benefit of deep learning is that it can extract deep features
hidden in the sonographic image that human radiologists may
not visually inspect. In addition, it can integrate the feature
extraction and classification into a uniform framework, which
avoids the processes of complex hand-crafted features extraction
and classifier selection (Yang et al., 2021). Therefore, various
deep learning-based methods have been proposed for different
classification tasks.

For the classification of natural images, Krizhevsky
et al. (2012) presented a groundbreaking networks, which
demonstrated that deep learning models have superior
performance in the classification domain. Szegedy et al. (2015)
used a deep convolutional neural network (CNN) architecture
called Inception, which obtained further improvements in image
classification over AlexNet (Krizhevsky et al., 2012). Simonyan
and Zisserman (2014) proposed a very deep convolutional
network, which moved a step forward to deepen networks in
image recognition. He et al. (2016) proposed an extraordinary
structure referred to as ResNet, which solved the degradation
problem in an extremely deep convolutional network. Iandola
et al. (2016) proposed a lightweight CNN architecture called
SqueezeNet to speed up the inference process without loosing
accuracy (ACC). Howard et al. (2017) presented a lightweight
and efficient neural network, which can achieve a high ACC
of classification. Huang et al. (2017) introduced the dense
convolutional network to strengthen feature propagation and
encourage feature reuse.

Several studies based on deep neural networks have been
carried out for the classification of thyroid nodules (Song et al.,
2018; Zhang et al., 2019a). However, the use of classification
models in a natural image may lead to poor generalization

problems. First of all, since the amount of natural images is
much larger than the number of medical images, it is difficult to
achieve the same ACC for the classification of thyroid nodules
on the Caltech-101 dataset. Different from natural images, it
is difficult to obtain millions of ultrasound images in clinical
practice. Therefore, it is a challenge to train deep learning models
using a small set of ultrasound images for the classification of
thyroid nodules. In clinical practice, experienced radiologists
distinguish whether a thyroid nodule is benign or malignant
in ultrasound image slices via visual inspections. However, the
process is not only time consuming and has high labor cost, but
also has extremely subjective biases.

Based on the advantages of CNN and Transformer, we
propose an O-Net framework to combine the CNN and the
Transformer to learn both global and local contextual features.
We combine the CNN and Swin Transformer as encoder
first and send them into a CNN-based decoder and a Swin
Transformer-based decoder, respectively. The results of two
decoders are fused to get the final result. This network combines
the advantages of CNN and Transformer and may improve the
performance of medical image segmentation. Our experimental
results have shown that the performance of the network can
be significantly improved by combining CNN and Transformer.
In addition, a classification task is simultaneously performed
based on the O-Net. Experiments show that the segmentation
results are beneficial for improving the ACC of the classification
task. Experiments on the Synapse multi-organ segmentation
dataset and the ISIC2017 skin lesion challenge dataset have
demonstrated the superiority of our method compared to other
state-of-the-art segmentation methods. In addition, based on
the segmentation network, the performance of the classification
network has also been greatly improved.

Data is the key to the performance of classification networks
based on deep learning. Classification networks that show good
performance in natural images are difficult to achieve the same
high ACC in medical image classification. Most of the existing
thyroid nodule classification methods use the natural image
classification network as the backbone network architecture.
However, the classification network used for natural images does
not fully adapt to medical images because the number of thyroid
nodule images is far less than that of natural images. In the case
of small amount of data, there is a risk of overfitting when deep
network suitable for natural images is used to classify thyroid
nodules. Therefore, this paper proposes a new method to solve
this problem.

The method includes the following steps. First, we adopt
a multi-scale input layer to excavate multiscale features.
Then, we design specialized skip-block exploit depth features.
Finally, we employ hybrid atrous convolution block substitute
downsampling. In general, the main innovations of this paper
include the follwing:

1) We design a skip-block as depth feature extractor, which
consists of convolution layer, batch normalization layer, skip
connection layer, and activation function. This skip-block is
used to learn the deep features of thyroid nodules. Its skip
connection structure deepens the network while reducing the risk
of overfitting.
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2) We propose a novel hybrid atrous convolution (HAC)
block substitute downsampling in order to reduce the loss of
spatial information caused by downsampling. This framework
with HAC effectively enlarges the receptive fields of the network
to aggregate global information.

2. RELATED WORKS

2.1. Thyroid Nodule Classification Based
on ML
Computer-aided diagnostic (CAD) system of thyroid nodules has
a long history. For objective differentiation of benign/malignant
thyroid lesions, various CAD systems based on ML have been
exploited (Chang et al., 2010, 2016; Iakovidis et al., 2010; Acharya
et al., 2011, 2012; Ding et al., 2011; Raghavendra et al., 2017;
Ardakani et al., 2018; Prochazka et al., 2019a,b; Lu et al., 2020).

Earlier ML approaches for thyroid nodule classification
include two steps: hand-crafted features are first extracted and
then used in the support vector machine (SVM) or k-nearest
neighbor (KNN) classifier to build the automated classification
system for the diagnosis of malignant thyroid nodules (Chang
et al., 2010; Iakovidis et al., 2010; Acharya et al., 2011; Ding et al.,
2011).

Afterward, the CAD system used for thyroid nodules tries to
consider combining various features and different classifiers. In
another study by Acharya et al. (2012), integrated features include
the following: local binary pattern, laws texture energy, Fourier
descriptor, and Fourier spectrum descriptor, using ultrasound
images of 20 nodules (10 benign images and 10 malignant
images) to extract features. Then, resulting feature vectors were
used to build seven different classifiers in order to compare
the performances, including SVM, decision tree, sugeno fuzzy,
gaussian mixture model (GMM), KNN, radial basis probabilistic
neural network, and naive Bayes classifier. The result shows
that SVM and fuzzy classifier achieved the highest classification
ACC of 100%, whereas, the GMM classifier peaked at an ACC
of 98%. Chang et al. (2016) employed histogram, intensity
differences, elliptical fit, gray-level co-occurrence matrices, and
gray-level run-length matrices to abstract features from 30
malignant and 29 benign images, which then used SVM classifier
and leaveone-out cross-validation to differentiate benign and
malignant nodules, consequently achieving ACC of 98.4%.
Raghavendra et al. (2017) proposed the CAD based on a binary
stack decomposition algorithm, which extracted 181 features
from 242 images and achieved ACC of 97.5% using SVM
classifier. Therefore, we can conclude that selecting features and
then constructing a classifier is very important for thyroid nodule
classification, which is the key to promoting classification ACC.

From more recently published studies, how to extract more
features from the original image and select features carefully
is still the key to thyroid nodule classification based on ML.
Ardakani et al. (2018) proposed the CAD based on textural
and morphological features, which is capable of distinguishing
thyroid nodules from ultrasound images by utilizing a support
vector machine classifier. Prochazka et al. (2019b) designed a
CAD that divided 60 thyroid nodules (20 malignant images,

40 benign images) into small patches of 17×17 pixels, which
were used to extract several direction independent features by
employing two-threshold binary decomposition. The features
were used in random forests (RF) and SVM classifiers to
categorize nodules into malignant and benign classes, then
obtained the ACC score of 91.6%. In another study, Prochazka
et al. (2019a) applied histogram analysis and segmentation-based
fractal texture analysis algorithm, which calculated direction-
independent features only. The features were used in SVM and
RF classifiers to differentiate nodules into malignant and benign
classes. Using the leave-one-out cross-validation method, the
overall ACC was 92.42% for RF and 94.64% for SVM. Lu et al.
(2020) extracted shape features, texture features, and local binary
pattern features from original ultrasound images (59 patients).
Then, the multi-kernel support vector machine classifier was
configured with 10 linear kernels to combine features from
different categories for classification, achieving the best ACC for
the sub-class at 94.44%.

2.2. Thyroid Nodule Classification Based
on Deep Learning
The classical ML algorithms usually require complex feature
engineering, which first selects features and then uses it in
classifier. However, the deep learning only needs to pass the
data directly to the neural networks. Thus, one of the most
growing trends of ML is deep learning (Sharifi et al., 2021). Song
et al. (2018) developed a cascade convolution neural network
framework, which confirmed the feasibility of CNN used for
thyroid nodules detection and recognition. Zhang et al. (2019a)
adopted a tripartite classificationmodule based on CNNmodel to
pick out nodules information in ultrasound images. Wang et al.
(2020) proposed a dual-attention ResNet-based classification
network to automatically achieve the accurate classification of
thyroid nodules. Specifically, they adopted ResNet200 as the
backbone network architecture to perform the classification of
thyroid nodules while there is the problem that the classification
network used for natural images does not fully adapt to medical
images.

3. THE PROPOSED METHOD

3.1. Overall Architecture Design
In this paper, we proposed a n-ClsNet classification model, which
consists of a multi-scale classification layer, skip blocks, and HAC
block. The multi-scale classification layer supported the n-ClsNet
model capture several scale features on small-scale dataset. In an
insufficient data case, tackled various features are quite important
to classification networks. In each skip block, the convolution
with skip connection can handle several scale information from a
multiscale layer. Our proposed n-ClsNet is specialized for benign
and malignant binary classification tasks of thyroid nodules. The
n-ClsNet network’s framework is shown in Figure 1.

3.2. Image Preprocess
In this paragraph, we foremost introduce the data augmentation
and image pretreatment strategies, which are used in training
and testing stages. Due to the limited number of medical
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FIGURE 1 | Illustration of the architecture of the proposed n-ClsNet network, which consists of two blocks: Skip-block and hybrid atrous convolution (HAC) block.

image datasets, the datasets are enlarged to reduce the hazard
of overfitting (Sun et al., 2018). For image preprocessing,
we first select several transformations, includes vertical
flip, horizontal flip and rotation. The direction of rotation
including 45/90/135/180/225/270/315. Besides, we employ noise
interference, which selected gauss noise. The visualization of
transformation is shown in Figure 2.

3.3. Multi-Scale Classification Framework
The multi-scale input layer was extensively used for the
segmentation of images. The deep learning model that adopted
multi-scale input has been demonstrated to increase the
performance of segmentation (Gu et al., 2019). Because multi-
scale input could integrate various information from feature
maps to avoid the large parameters in follow-up networks. Not

only that, multi-scale input could enlarge the network width.
Therefore, the above advantages of multi-scale input can be
applied not only to image segmentation algorithms but also to
image classification algorithms. Then, we determine to introduce
a multi-scale method into the n-ClsNet to achieve supplementary
feature representation in scale interspace. Different from Fu
et al. (2018), they pushed the multiscale feature map to multi-
scream networks and concatenate the ultimate feature map in
the last layer, we employ the max-pooling layer to downsampling
the image effectively and construct the feature detectors with
different receptive field sizes. In our multi-scale classification
framework, we first adopt downsampling of different multiples
in order to obtain image patches sample of different sizes.
According to the size of the original image from thyroid nodules,
we design four branches downsampling with four scales. In
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FIGURE 2 | Examples of several transformations for thyroid nodule image.

each branch, the thyroid nodules image is followed by feature
extractors in order that receiving abundant information on image
features. Then, each branch connects to the former branch.
Specifically, the first branch only has a depth feature extractor
while others have both shallow feature extractor and depth
feature extractor. The shallow feature extractor from the last
three branches was combined with the depth feature extractor
from the former branch. This method is more advantageous
for characterizing diverse size structures in ultrasound imaging
than single scale framework. The architecture of this multi-scale
classification framework is shown in Figure 3.

3.4. Skip Block
In our n-ClsNet framework, we design the skip-block as a depth
feature extractor, which receives shallow feature map from the
former convolution layer. This skip-block is composed of a
convolution layer, batch normalization layer, skip connection
layer, and activation function. With regard to convolution
layer from skip-block, we select 3×3 convolutional kernels and
stuff a layer of edge pixels. They are followed by a batch
normalization layer in order to alleviate the disappearance of
gradients. After that, the ReLU is used as the activation function,
which introduced a non-linear element to further overcome the
problem of vanishing gradient. The skip connection layer is
designed to leapfrog the structure composed of the convolutional
layer, batch normalization layer, and ReLU. This layer is directly
connected to a straight link that pushed the output of the
shallow feature extractor and pushed into the ReLU. In order
to conform to the demand of thyroid nodules datasets, we tried
two kinds of skip connection layers and compared the residual
architecture of the ResNet34-layer (Simonyan and Zisserman,
2014). This residual architecture is shown in Figure 4. One
version of the skip connection layer only has one convolutional
layer, which is designed as 1×1 convolutional kernels to change
the number of channels. The structure of this version is shown
in Figure 4. The other version of the skip connection layer
has both convolutional layer and batch normalization layer, the
configuration of convolutional layer is the same as the former.
The structure of our choosen version is shown in Figure 4.

In our research, the skip connection layer increased the batch
normalization layer, which promoted the quality of classification
effectively for thyroid nodules. Specifically, we conducted a
comparative experiment to prove this viewpoint.

3.5. HAC Block
In order to reduce the loss of spatial information caused by
downsampling, we employed dilated convolution substitute
downsampling in the model (Liu et al., 2017). Besides, dilated
convolution can increase receptive field size, even will not reduce
the spatial resolution of the intermediate feature map. The
dilated convolution can be described as follows:

Y(p) =
n

∑

0

Fi(p+ r × n) (1)

where Y() is the output feature map, Fi() is the input feature map,
p is the processing pixel, n is the pixel used in the convolution
process, and r is the dilation rate. The dilation rate depends on
the stride of the input feature map. The dilated convolution is
commonly available in two connection of types called parallel
type and cascade type (Xiong et al., 2021). The HAC has parallel
mode and cascade mode. In a word, the output feature map
consists of four aisles atrous convolution and the operation of
dimension mapping. Specifically, the output signal of the HAC
block is defined as:

H = Ac1(Fi)‖{[Ac2(Fi)‖Ac3(Fi)‖Ac4(Fi)]‖D(Fi)} (2)























Ac1(Fi) = Ar1(Fi),

Ac2(Fi) = Ar3(Fi),

Ac3(Fi) = Ar1(Fi)+ Ar3(Fi),

Ac4(Fi) = Ar1(Fi)+ Ar3(Fi)+ Ar7(Fi),

(3)

In our HAC block, we adopt three atrous convolutions. The
architecture of these three atrous convolutions is shown in
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FIGURE 3 | Schematic diagram of our proposed multi-scale classification framework for thyroid nodules.

FIGURE 4 | The illustrations of skip connection layer and residual architecture of resnet34-layer. Among them, (A, B) are the versions of skip connection layer

designed by us, and (C) is the residual architecture of ResNet34-layer.
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FIGURE 5 | The illustrations of three kinds of atrous convolutions. Left to right: the atrous convolution have dilation rates of r = 1, 3, 7, respectively.

Figure 5. Due to the fact that we choose atrous convolution with
four aisles, where Ac1(Fi) is the first aisle for atrous convolution,
Ar1(Fi),Ar3(Fi), and Ar7(Fi) is atrous convolution with a learning
rate of 1, 3, 7, respectively,H is the output feature map, andD(Fi)
is the operation of dimension mapping. Then, we display each
aisle atrous convolution in particular, as shown in Figure 6. This
framework with HAC effectively enlarges the receptive fields of
the network to aggregate global information. In our research, the
HAC block with parallel mode and cascade mode have evidently
helpful improvement in classification ACC. In the experimental
part, we compared theHAC block with the atrous spatial pyramid
pooling (ASPP) block to verify the superiority of the HAC block
in improving the classification accuracy of thyroid nodules.

4. EXPERIMENTS

4.1. Datasets
We employ 2,615 ultrasound thyroid nodule images that were
manually labeled by doctors in Fujian Union Medical College
Hospital, called the TNUI-2021 dataset, which evaluates the
robustness and effectiveness of our classification method. There
are 1,834 training samples, 523 validation samples, and 258
testing samples. In addition, the original image size of the TNUI-
2021 dataset is 780×780, we resize the images to 224×224 in the
image preprocessing stage.

4.2. Implementation Details
All models in this experiment were trained on an Ubuntu system
withNvidia RTX 2080TI GPUs. The experiments were performed
with SGD as the optimizer, CrossEntropyLoss as the loss, initial

learning rate set to 0.1, and weight decay set to 0.001. Two
hundred epochs were performed for all experiments.

4.3. Evaluation Metrics
In order to evaluate the classification performance, several model
evaluation indices are used in the experiment, including ACC,
Average Precision (AP), area under the receiver operator curve
(AUC), Precision, F1-score, and Specificity, which are calculated
as follows:

ACC =
TP + TN

TP + TN + FP + FN
, (4)

Precision =
TP

TP + FP
, (5)

Specificity =
TN

TN + FP
, (6)

Recall =
TP

TP + FN
, (7)

F1− score =
2

1
Precision + 1

Recall

, (8)

AUC =

∑

i∈positive class ranki −
M×(M+1)

2

M × N
, (9)

AP =
∑

j

(Recallj − Recallj−1)× Precisionj (10)
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FIGURE 6 | The architecture of HAC with four aisles atrous convolution and the operation of dimension mapping (see the part of white).

where TP, TN, FP, and FN denote the number of true positives,
true negatives, false positives, and false negatives, respectively.M
is the number of positive samples. N is the number of negative
samples. ranki is the serial number of the i-th sample. The ACC
displays the performance of our n-ClsNet model in classifying
nodules as malignant or benign. Specificity shows the proportion
of correctly identified benign nodules (Wang et al., 2018).

4.4. Method Comparison
We compare our proposed model with several representative
state-of-the-art classification approaches on the TNUI-2021
dataset from the comparison shown in Table 1. We compare
the proposed n-ClsNet with the state-of-the-art classification
algorithms ARL50 (Zhang et al., 2019b) used for medical
imaging. In addition, some classical deep learning based

classification methods, Alexnet (Krizhevsky et al., 2012),
GoogleNet (Szegedy et al., 2015), VGG (Simonyan and
Zisserman, 2014), ResNet34 (He et al., 2016), SqueezeNet
(Iandola et al., 2016), MobilenetV1 (Howard et al., 2017),
and DenseNet (Huang et al., 2017), are also included in the
comparison. In order to explain intuitively, we compare of
receiver operator curve (ROC)-Accuracy (ACC) curves of nine
classification approaches on TNUI-2021 datasets, as shown in
Figure 7.

On comparison with the ARL50 (Zhang et al., 2019b), which
is attention residual learning convolutional neural network, the
ACC increases from 0.8992 to 0.938, the AP increases from 0.909
to 0.9738, the AUC increases from 0.9343 to 0.9756, the Precision
increases from 0.8377 to 0.9014, and the Specificity increases
from 0.8047 to 0.8906. For classic algorithms, compared with
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ResNet34 (He et al., 2016), the ACC is increased by 5.4% from
0.8837 to 0.938, the AP is increased by 11% from 0.8638 to
0.9738, the AUC is increased by 5.3% from 0.9218 to 0.9756,
the Precision is increased by 8% from 0.8205 to 0.9014, and the

TABLE 1 | Performance of our method and other methods in classification of

thyroid nodules.

Method ACC AP AUC Precision Specificity

ARL50

(Zhang et al., 2019b)

0.8992 0.9090 0.9343 0.8377 0.8047

ResNet34

(He et al., 2016)

0.8837 0.8638 0.9218 0.8205 0.7813

MobilenetV1 (Howard

et al., 2017)

0.8760 0.8474 0.8852 0.8025 0.7500

DenseNet (Huang

et al., 2017)

0.8837 0.9555 0.9607 0.8247 0.7891

SqueezeNet (Iandola

et al., 2016)

0.8682 0.9286 0.9375 0.8038 0.7578

VGG (Simonyan and

Zisserman, 2014)

0.8488 0.9179 0.9266 0.7758 0.7109

GoogleNet (Szegedy

et al., 2015)

0.8837 0.9290 0.9439 0.8205 0.7813

Alexnet (Krizhevsky

et al., 2012)

0.7907 0.7553 0.8096 0.7184 0.6172

Ours 0.9380 0.9738 0.9756 0.9014 0.8906

Bold values indicate optimal values.

Specificity is increased by 10% from 0.7813 to 0.8906, respectively.
We also compare n-ClsNet with the MobilenetV1 Howard et al.
(2017), the ACC increases from 0.876 to 0.938 by 6.2%, the
AP increases from 0.8474 to 0.9738 by 12%, the AUC increases
from 0.8852 to 0.9756 by 9%, the Precision increases from 0.8025
to 0.9014 by 9%, and the Specificity increases from 0.75 to
0.8906 by 14%. For the model evaluation index ACC, compared
with DenseNet (Huang et al., 2017), the ACC increases from
0.8837 to 0.938; compared with SqueezeNet (Iandola et al., 2016),
the ACC increases from 0.8682 to 0.938; compared with VGG
(Simonyan and Zisserman, 2014), the ACC increases from 0.8488
to 0.938; compared with GoogleNet (Szegedy et al., 2015), the
ACC increases from 0.8837 to 0.938; compared with Alexnet
(Krizhevsky et al., 2012), the ACC increases from 0.7907 to 0.938.

On the thyroid nodule dataset, our model achieves a
remarkably higher ACC, AP, AUC, Precision, and Specificity than
others, the highest ACC of 0.938, the highest AP of 0.9738, the
highest AUC of 0.9756, the highest Precision of 0.9014, and the
highest Specificity of 0.8906, which proves that our proposed
method has a robustness classification ability.

4.5. Comparison of Skip-Block With
Residual Architecture
4.5.1. Comparative Experiment for the

ResNet34-Residual
To verify the effectiveness of skip-block, we conducted an
experiment that skip-block has better performance, in contrast

FIGURE 7 | Comparison of receiver operator curve (ROC)-Accuracy (ACC) curves of nine classification approaches on TNUI-2021 datasets.
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TABLE 2 | Comparison to skip-block and residual architecture.

Method ACC AP F1-score Precision Recall

ResNet34-Residual 0.9109 0.9224 0.9104 0.8639 0.9103

No-BatchNormalization 0.9341 0.9726 0.9337 0.8844 0.9336

Ours 0.9380 0.9738 0.9378 0.9014 0.9376

Bold values indicate optimal values.

with the residual architecture from ResNet34 (He et al., 2016).
A quantitative comparison is shown in Table 2. The “No-Batch-
Normalization” is one of the versions of skip-block we designed,
which has only one convolution layer. The table shows that
“No-Batch-Normalization” surpasses “ResNet34-Residual” in the
model evaluation of ACC, AP, F1 − score, Precision, and Recall.
From the comparison, our final version skip-block achieves
0.9341, 0.9726, 0.9337, 0.8844, and 0.9336 in ACC, AP, F1 −

score, Precision, and Recall, respectively, better than “ResNet34-
Residual.”

4.5.2. Comparative Experiment for Two Versions of

Skip-Block
In order to further improve our n-ClsNet classification
network ACC of thyroid nodules, we consider that the batch
normalization layer possesses the advantage of reducing the risk
of overfitting and mitigating the disappearance of gradients.
We also tried adding a batch normalization layer in the skip
connection layer to improve network performance. Experiments
show that this attempt is successful. In comparison with the
“No-Batch-Normalization,” the ACC increases from 0.9341 to
0.938, the AP increases from 0.9726 to 0.9738, the F1 − score
increases from 0.9337 to 0.9378, the Recall increases from 0.9336
to 0.9376, and the Precision increases from 0.8844 to 0.9014
by 1.7%. The Precision score of ours is significantly beyond
“No-Batch-Normalization” architecture, which shows that our
proposed final version skip-block is beneficial for thyroid nodules
classification.

4.6. Comparison of HAC Block With ASPP
Block
To verify the superiority of the HAC block compared to the ASPP
block, we conducted a comparative experiment. According to
the principle of the control variable method, in the experiments,
we only replaced the HAC block with the ASPP block. As
shown in Table 3, when comparing our employed HAC block
to the ASPP block, the ACC increases from 0.9186 to 0.938,
the Specificity increases from 0.8593 to 0.8906, the F1 − score
increases from 0.9182 to 0.9378, the Precision increases from
0.8758 to 0.9014, and the Recall increases from 0.9181 to 0.9376.
From the comparison, the classification ACC of our HAC block
is much higher than that of the ASPP block.

4.7. Ablation Study
To evaluate the utility of the multi-scale classification layer,
skip-block, and HAC block in our deep learning model, control
variable comparison experiment is shown in Table 4. Afterward,

TABLE 3 | Comparison to HAC block and the atrous spatial pyramid pooling

(ASPP) block.

Method ACC Specificity F1-score Precision Recall

ASPP 0.9186 0.8593 0.9182 0.8758 0.9181

Ours 0.9380 0.8906 0.9378 0.9014 0.9376

Bold values indicate optimal values.

TABLE 4 | Ablations study for each component of our n-ClsNet framework on the

TNUI-2021 dataset.

Method ACC AP F1-score Precision Recall

SkipBlock+HAC 0.8760 0.9128 0.8738 0.8025 0.8750

SkipBlock+Multiscale 0.9147 0.9614 0.9141 0.8600 0.9141

SkipBlock+Multiscale+HAC 0.9380 0.9738 0.9378 0.9014 0.9376

Bold values indicate optimal values.

we perform the ablation studies using the TNUI-2021 dataset as
examples:

4.7.1. Ablation Study for Employing Multi-Scale

Classification Layer
We adopted the multi-scale classification layer to obtain multi-
scale feature maps to improve the learning ability. As we can
see from the “SkipBlock+HAC,” the evaluation score of ACC,
AP, F1 − score, Precision, and Recall have been significantly
improved: the ACC is increased by 6.2% from 0.876 to 0.938,
the AP is increased by 6.1% from 0.9128 to 0.9738, the F1 −

score is increased by 6.4% from 0.8738 to 0.9378, the Precision
is increased by 9.8% from 0.8025 to 0.9014, and the Recall is
increased by 6% from 0.875 to 0.9376, respectively. Therefore,
the results demonstrate that the multi-scale classification layer is
effective.

4.7.2. Ablation Study for Adopting the HAC
We employed the hybrid atrous convolution substitute
downsampling, aiming at increasing receptive field size. As
shown in Table 4, our selected HAC block improves the
ACC, AP, F1 − score, Precision, and Recall in thyroid nodules
classification than “SkipBlock+Multiscale”: the ACC increases
from 0.9147 to 0.938, the AP increases from 0.9614 to 0.9738 by
2.3%, the F1 − score increases from 0.9141 to 0.9378 by 2.3%,
the Precision increases from 0.86 to 0.9014 by 4.1%, and the
Recall increases from 0.9141 to 0.9376 by 2.3%. Even though the
evaluation score of AP is already performed very well, it has also
improved. It demonstrates that our HAC block is useful for the
classification task.

5. CONCLUSION

We present a multi-scale deep learning model, namely n-ClsNet,
to classify benign and malignant thyroid nodules on ultrasound
images, which use multi-scale ultrasound images as input. On
the one hand, our skip-block adopts the strategy of approximate
jump connection to excavate the feature of the thyroid nodule
image. On the other hand, we propose the HAC that takes
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the place of downpooling to increase receptive field size and
decrease the spatial resolution of the intermediate feature map.
The experimental results demonstrate that the n-ClsNet model
can effectively improve the performance of classification in
thyroid nodules. Moreover, our method surpass the performance
of representative state-of-the-art classification methods in the
thyroid nodules classification task.
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