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Abstract Coordination of neurite morphogenesis with surrounding tissues is crucial to the

establishment of neural circuits, but the underlying cellular and molecular mechanisms remain

poorly understood. We show that neurons in a C. elegans sensory organ, called the amphid,

undergo a collective dendrite extension to form the sensory nerve. The amphid neurons first

assemble into a multicellular rosette. The vertex of the rosette, which becomes the dendrite tips, is

attached to the anteriorly migrating epidermis and carried to the sensory depression, extruding the

dendrites away from the neuronal cell bodies. Multiple adhesion molecules including DYF-7, SAX-7,

HMR-1 and DLG-1 function redundantly in rosette-to-epidermis attachment. PAR-6 is localized to

the rosette vertex and dendrite tips, and promotes DYF-7 localization and dendrite extension. Our

results suggest a collective mechanism of neurite extension that is distinct from the classical

pioneer-follower model and highlight the role of mechanical cues from surrounding tissues in

shaping neurites.

DOI: https://doi.org/10.7554/eLife.38065.001

Introduction
Morphogenesis of an organism involves long-range coordination among organs. In the nervous sys-

tem, sensory neurons may grow long dendrites and integrate their sensory endings into target tis-

sues. The guided outgrowth of neurites needs to be coordinated with other neurons as well as

surrounding tissues (Chao et al., 2009; Dong et al., 2015; Lefebvre et al., 2015). In particular,

many neurites bundle or fasciculate to form nerves. The pioneer-follower model offers a simple

developmental mechanism to explain this organization. In this model, the pioneer neuron extends its

growth cone first to explore the environment and interact with chemotropic signals and environmen-

tal guideposts in order to establish a path to its target. The follower neurons respond to cues from

the pioneer (Tamariz and Varela-Echavarrı́a, 2015). Multiple mechanisms coordinate the interaction

between the pioneer and the followers, such as selective fasciculation (Hayashi et al., 2014; Hut-

ter, 2003; Lin et al., 1994), or juxtaparacrine signals (Jaworski and Tessier-Lavigne, 2012).

The amphids are a bilaterally symmetric pair of sensory organs in the nematode Caenorhabditis

elegans. Each amphid consists of 12 sensory neurons and two glia cells, namely the sheath and the

socket cells. The 12 dendrites in an amphid form a sensory nerve, which extends from the neck of

the worm where the cell bodies are situated to the nose tip where most of the ciliated endings of

the dendrites are exposed to the environment. This structure is highly organized, with the dendrites

arranged in a stereotyped order within the bundle (Yip and Heiman, 2018). During development,

these dendrites grow by retrograde extension, in which the dendritic tips are anchored in place at

the embryonic nose while the cell bodies move posteriorly, extending the dendrite behind them

(Heiman and Shaham, 2009). The anchoring requires DYF-7 and DEX-1, which likely assemble a

matrix in the extracellular environment (Heiman and Shaham, 2009).
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Here, we report how amphid neurons orchestrate collective growth of their dendrites with mor-

phogenesis of the surrounding epidermis. Specifically, we show that the amphid neurons form a mul-

ticellular rosette along with the sheath and socket glial cells. The vertex of the rosette, which

becomes the dendrite tips, is attached to the anteriorly migrating epidermis and carried to the sen-

sory depression at the developing nose, extruding the dendrites away from the neuronal cell bodies.

Abolishing epidermis migration by RNAi of elt-1, a key transcription factor required for epidermal

fate, abolishes the extension of the amphid dendrites without affecting rosette formation. Molecular

localization and loss of function phenotypes suggest that multiple adhesion molecules, including

DYF-7, SAX-7/L1CAM, HMR-1/Cadherin and DLG-1/Dlg1 mediate attachment of the rosette vertex

to the migrating epidermis. We further show that PAR-6 is localized to the rosette vertex, and pro-

motes DYF-7 localization, as well as the attachment to the epidermis and dendrite extension. Our

study reveals a rosette-mediated mechanism for collective neurite outgrowth and nerve formation,

in contrast to the classical pioneer-follower model, and highlights a novel role for mechanical cues

from the skin in dendrite extension.

Results

Amphid neurons form a multicellular rosette before dendrite extension
Using phalloidin staining, we observed a multicellular rosette at the comma stage of C. elegans

embryogenesis (Figure 1A). The age of the embryo and the position of the observed rosette sug-

gested that these could be the amphid neurons. To determine the identity of these cells and under-

stand the developmental function of the rosette, we generated a strain using the cnd-1/NeuroD

promoter driving PH::GFP to label neurons (Shah et al., 2017). 3D, time lapse imaging and cell line-

age tracing with a ubiquitously expressed histone::mCherry (Santella et al., 2014; Santella et al.,

2010) showed that the rosette is indeed formed by the amphid neurons (Figure 1B). Specifically,

the cnd-1p::PH::GFP marker labels 9 of the 12 amphid neurons (ADF, ASE, ASG, ASH, ASI, ASJ,

AWA, AWB, AWC). The other three amphid neurons are not labeled, but the relative position of

their nuclei suggested that they are also part of the rosette. In addition, the sheath and socket cells

are labeled and engaged in the rosette. Surprisingly, the marker showed that five other neurons

(AIB, AVB, AUA, RIV, URB) are also engaged in the rosette. However, judging by cell shape changes,

these non-amphid neurons disengage from the rosette about 40 min later. The significance of this

transient engagement is not known.

We found that PAR-6 is localized to the center of the rosette (Figure 1C), suggesting that the

rosette is a polarized structure. Furthermore, DYF-7, which is required for anchoring the dendrite

tips during retrograde extension (Heiman and Shaham, 2009), is also localized to the rosette center

(Figure 1D).

In the next 60 to 90 min, dendrites grow from the rosette center. The dendrite tips migrate ante-

riorly to the sensory depression at the developing nose. The dendrites stay in a tight bundle, with

PAR-6 and DYF-7 localized at their tips (Figure 1E and F, Video 1). During this period, the cell bod-

ies remain largely stationary (dashed lines in Figure 1E). Posterior movement of the cell bodies

occurs at later stages (Figure 1—figure supplement 1). These results show that the dendrites

extend in two distinct steps: first, anterior-directed growth that extrudes the nascent dendrites from

the neuronal cell bodies and brings the dendrite endings to the sensory depression at the nose, fol-

lowed by posterior-directed growth that is concomitant with movement of the neuronal cell bodies.

The rosette Vertex is carried by the migrating epidermis
At this developmental stage, the epidermal cells are known to migrate anteriorly to enclose the

head (Chisholm and Hardin, 2005). To examine the relationship between the anterior migration of

the epidermal cells and the anterior extension of the amphid dendrites, we conducted 3D, time

lapse imaging, using an mCherry::PAR-6 reporter (Zonies et al., 2010) to label the rosette vertex

and dendrite tips and a DLG-1::GFP to label the junctions in the epidermal cells (Firestein and

Rongo, 2001; Totong et al., 2007). We found that prior to anterior movement of the dendrite tips,

the rosette vertex is aligned with the leading edge of the migrating epidermis, specifically the hyp5

cell. As the epidermis migrates anteriorly, an indentation can be observed at the leading edge of

hyp5. The dendrite tips are situated in the indentation (Figure 2A). Furthermore, the anterior
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Figure 1. Multicellular rosette precedes collective dendrite extension. (A, B) Amphid neurons form a multicellular

rosette. (A) Image of embryo prior to amphid dendrite extension stained with phalloidin. A multicellular rosette is

shaded in pink. In this and all subsequent figures, embryos are oriented with anterior to the left. (B) cnd-1p::PH::

GFP labels amphid neurons in the rosette. Lineage-derived cell identities are shown. (C, D) PAR-6 and DYF-7 are

localized to the rosette vertex. cnd-1p::PH::mCherry labels neurons. (E) Amphid dendrite tip migrates anteriorly.

PAR-6 accumulates in the dendrite tip. cnd-1p::PH::mCherry labels neurons. Vertical dashed lines show initial

position of amphid dendrite tip and posterior extent of amphid cell bodies. Arrows indicate dendrite tip. Closed

arrowhead indicates amphid axon commissure. Open arrowhead indicates sensory depression. (F) Measured

displacement of amphid dendrite tips from five embryos during dendrite extension. Scale bars in A-E, 10 mm.

DOI: https://doi.org/10.7554/eLife.38065.002

The following source data and figure supplement are available for figure 1:

Source data 1. Displacement of dendrite tip from five embryos.

DOI: https://doi.org/10.7554/eLife.38065.004

Figure supplement 1. Retrograde extension in wild-type embryos.

DOI: https://doi.org/10.7554/eLife.38065.003
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movement of the dendrite tips is correlated with

the anterior migration of the leading edge of

hyp5 (Figure 2B).

These results suggest that the dendrite tips

may be physically attached to the leading edge

of hyp5 and carried anteriorly. To test this

hypothesis, we sought to perturb the anterior

migration of the epidermis. ELT-1 is a GATA tran-

scription factor that is necessary to specify epi-

dermal fate (Page et al., 1997) and that activates

the expression of its target, lin-26

(Landmann et al., 2004). We used elt-1(RNAi) to

perturb epidermal development, and a lin-26

promoter driven GFP marker (Gally et al., 2009)

to label the epidermis and assay the conse-

quence. Expression of the lin-26::GFP marker was

reduced to different levels depending on the effi-

cacy of RNAi. 24 out of 79 elt-1(RNAi) embryos

showed high level of expression of lin-26::GFP,

suggesting the RNAi was not effective in these

cases. These embryos exhibited more or less nor-

mal anterior migration of the epidermis and the

amphid dendrites also developed normally,

showing movement that was correlated with the epidermal cells and that brought the dendrite end-

ings to the sensory depression (Figure 2C). In contrast, in 29 out of 79 embryos, low levels of lin-26::

GFP expression were observed, suggesting a moderate effect of RNAi. In these embryos, the epi-

dermis underwent partial anterior migration but stopped before covering the head completely, and

the dendrites also showed partial anterior extension, stopping at the position where the epidermis

stopped (Figure 2D). Intriguingly, the dendrite tips remained coupled to the leading edge of the

epidermis even as the epidermis retracted posteriorly after failing to enclose the head in some

embryos (dashed lines in Figure 2D). Finally, in the embryos with the strongest RNAi effect (26/79),

where minimal or no lin-26::GFP expression remained, dendrite extension was abolished, even

though the rosette formed normally (Figure 2C). We were not able to directly observe epidermal

cells positions in these embryos due to the strong loss of lin-26::GFP, but by inference of RNAi

strength and lin-26::GFP expression, we assumed that the epidermal migration defect is likely to be

more severe than the second group that showed partial migration. These results suggest that the

dendrite tips are attached to the leading edge of the epidermis and that dendrite extension requires

the anterior migration of the epidermis.

Multiple adhesion molecules function redundantly to couple epidermal
migration to dendrite extension
To identify the molecules that mediate the attachment between the dendrites and the epidermis,

we examined the localization of several adhesion molecules during dendrite extension. We gener-

ated a construct in which the dyf-7 promoter drives expression of a modified DYF-7 protein that

includes a superfolderGFP (sfGFP) tag on its ectodomain, and that completely rescues the dendrite

extension defects of a dyf-7 mutant (Low et al., 2019). As previously described, we found that DYF-

7 was expressed by amphid neurons and not in epidermis. As expected from its localization to the

rosette vertex (Figure 1B), it localized to the dendrite tips (Figure 3A). For HMR-1/Cadherin, we

used a marker that showed a localization pattern similar to the endogenous pattern as detected by

immunostaining and that rescued embryonic lethality of hmr-1(zu389) (Achilleos et al., 2010). HMR-

1 was observed at the dendrite tips in addition to its known localization at epidermal cell junctions

(Figure 3B). In addition, we examined the localization of SAX-7, a homolog of the vertebrate L1 cell

adhesion molecule (L1CAM). SAX-7 has been shown to function redundantly with HMR-1 in blasto-

mere compaction during C. elegans gastrulation (Grana et al., 2010), and to mediate the interaction

between the epidermis and the dendrite of the PVD neuron (Dong et al., 2013; Salzberg et al.,

2013). We used a fosmid-based GFP reporter to examine SAX-7 localization (Dı́az-Balzac et al.,

Video 1. Amphid dendrite anterior extension. Time-

lapse imaging of a wild-type embryo expressing cnd-

1p::PH::mCherry to label sensory neurons and PAR-6::

GFP to label dendrite tips. Dashed lines mark the initial

position of the amphid neuron cell bodies at 0 min.

The dendrite tip is tracked with an arrow. Scale bar, 10

mm.

DOI: https://doi.org/10.7554/eLife.38065.007

Fan et al. eLife 2019;8:e38065. DOI: https://doi.org/10.7554/eLife.38065 4 of 15

Research article Neuroscience

https://doi.org/10.7554/eLife.38065.007
https://doi.org/10.7554/eLife.38065


A B

60 min

C 0 min

60 min

0 min

4
 m

in

2 μm

elt-1 RNAi
lin-26 cnd-1 lin-26 cnd-1

110min

30 min

elt-1 RNAi lin-26 cnd-1

D

PAR-6 DLG-1

elt-1 RNAi weak e"ect, n=24 strong e"ect, n=26

moderate e"ect, n=29

Figure 2. The amphid rosette vertex is attached to the epidermis. (A) PAR-6-labeled amphid tip (arrows) is

localized at the hyp5 leading edge. The apical junction of epidermal cells was labeled by DLG-1::GFP with xnIs17

transgene. The inset is shown magnified on the right. (B) A kymograph generated along the dashed line in the

inset in A, showing the correlated anterior movement of the PAR-6 signal and the leading edge of the epidermal

cell. (C) Example of an elt-1(RNAi) embryo with weak RNAi effect which is similar to the wild type (left) and an elt-1

(RNAi) embryo with strong RNAi effect and minimal lin-26::GFP expression (right). In the latter group dendrites

failed to extend (arrow), even though the amphid rosette (circle in the upper panel) and the amphid axon

commissure both formed normally (arrowheads). (D) A representative elt-1(RNAi) embryo with moderate lin-26::

GFP expression shows a partial anterior migration of the epidermis (upper panel) followed by posterior retraction.

Figure 2 continued on next page
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2016). We found that SAX-7 is localized to the epidermal cell junctions and along the amphid den-

drites (Figure 3C). Furthermore, while a DLG-1/Dlg1 reporter used initially in this study (xnIs17)

showed expression only in the epidermis (Figure 2A), we found that a more recently-developed

CRISPR tagged DLG-1 (Heppert et al., 2018) showed localization on both the apical junctions of

epidermal cells and the amphid dendrite tips (Figure 3D).

We then asked if these molecules are required for the attachment of the dendrite tips to the epi-

dermis. If a gene is required, its loss of function will cause failure of attachment and result in partial

or no anterior extension of the dendrites. In the majority of the dyf-7(m537) mutant embryos (84/88),

the dendrite tip reached the sensory depression, but detached afterwards when the cell bodies

moved posteriorly (Figure 3—figure supplement 1A), consistent with the known function of dyf-7 in

the later steps of dendrite extension. However, in a small fraction of dyf-7(m537) embryos (4/88),

dendrites of one of the amphids extended partially and the tip failed to reach the sensory depres-

sion (Figure 3E). These embryos reached the 1.5-fold stage normally, and dendrites of the other

amphid reached the sensory depression, suggesting that the epidermis migrated normally. This

result suggests that DYF-7 also plays a role in the attachment between epidermal cells and dendrite

tips during the initial anterior extension of dendrites. DEX-1 has been shown to function together

with DYF-7 in dendrite extension (Heiman and Shaham, 2009). dex-1(ns42) showed similar but

weaker phenotypes than dyf-7(m537). In 34/102 of the dex-1(ns42) embryos, the amphid dendrite

tips detached during the later posterior-directed dendrite extension. 1/102 dex-1(ns42) embryos

showed defects in the early anterior-directed extension, suggesting that DEX-1 also functions during

attachment of dendrite tips to the epidermis (Figure 3F). We did not find dendrite extension defects

in sax-7(ky146), hmr-1(RNAi) or sax-7(ky146);hmr-1(RNAi) embryos (Figure 3F). Neither sax-7(ky146)

nor hmr-1(RNAi) enhanced the phenotype of dyf-7(m537) in the anterior extension of the dendrites.

However, in dyf-7(m537);sax-7(ky146);hmr-1(RNAi) triple loss of function embryos, we found a signifi-

cant increase in anterior dendrite extension defects compared to dyf-7(m537) (16/88, Fisher’s exact

test (two-tailed); threshold of significance was adjusted by Bonferroni correction for multiple com-

parisons, Figure 3E,F). In all of the 16 dyf-7;sax-7;hmr-1(RNAi) embryos with defective dendrite

anterior extension, the embryo developed to the 1.5-fold stage normally and the other amphid tip

reached the sensory depression, indicating that epidermal migration in these embryos was not

affected. The significantly higher penetrance suggests that DYF-7, SAX-7 and HMR-1 act redundantly

in the attachment of dendrite tips to the epidermis. In contrast, 6 out of 72 dyf-7; sax-7; dlg-1(RNAi)

embryos arrested before reaching the 1.5-fold stage, suggesting that epidermal migration was dis-

rupted. In the remaining 66 embryos that developed to the 1.5-fold stage and beyond, 15 showed a

defect in anterior extension of amphid dendrites on one side of the embryo while the dendrite tips

of the contralateral side reached the sensory depression (Figure 3F). This frequency (15/66, or 23%)

is significantly higher than that of dyf-7(m537) (4/88, or 5%), suggesting that DLG-1 also functions in

the attachment of dendrite tips to the epidermis. We further confirmed the results using dyf-7

(ns119) (Heiman and Shaham, 2009) and sax-7(eq1) alleles (Wang et al., 2005) (Figure 3—figure

supplement 1B).

PAR-6 functions in amphid dendrite extension
To examine the function of PAR-6 in amphid dendrite extension, we generated par-6(M/Z) embryos

that are deprived of both maternal and zygotic PAR-6 (Totong et al., 2007). In this approach, only a

quarter of the embryos imaged in our experiments were expected to be par-6(M/Z). We imaged a

total of 89 embryos and found 25 to be par-6(M/Z) based on embryonic lethality.

Given the similar localization pattern of PAR-6 and DYF-7, we asked whether PAR-6 functions

upstream of DYF-7. In the wild type, DYF-7 was concentrated at the vertex of the amphid rosette

(Figure 4A) and, following anterior-directed dendrite extension, localized at the dendrite tips

(Figure 4B). In 20% of the par-6(M/Z) embryos (5/25), DYF-7 showed a more diffuse localization

Figure 2 continued

Dashed lines mark the leading edge of the epidermis before and after the retraction. The amphid dendrite tips

follow the leading edge of the epidermis. Arrows mark the position of the dendrite tip. Scale bars in A-D, 10 mm.

DOI: https://doi.org/10.7554/eLife.38065.008
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Figure 3. Multiple adhesion molecules function redundantly in amphid dendrite anterior extension. (A–D) Localization of DYF-7, HMR-1, SAX-7 and

DLG-1 (dlg-1(cp301)) in amphid neurons and epidermal cells. Middle panels, superficial focal plane showing localization in epidermal cells. Lower

panels, deeper focal plane showing localization in amphid neurons. Arrows indicate amphid tips and arrowheads indicate epidermal cells. (E) Dynamics

of dendrite anterior extension in wt, dyf-7(m537) and dyf-7;sax-7;hmr-1(RNAi) triple loss of function. (F) Frequency of anterior extension defects in single,

Figure 3 continued on next page
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around the rosette center (Figure 4A). The size of the DYF-7::GFP signal at the vertex increased sig-

nificantly (1.36 ± 0.25 mm in the WT vs 2.27 ± 0.41 mm, student t-test, Figure 4C). Furthermore, dur-

ing later steps of dendrite extension, DYF-7 signal was spread along the dendrites in par-6(M/Z)

embryos (7/25) (Figure 4B). DYF-7 is made as a membrane protein but its extracellular (and func-

tional) domain is cleaved off (Heiman and Shaham, 2009; Low et al., 2019). Our GFP labels the

extracellular domain. It is not yet known if the cleavage occurs before or after DYF-7 localizes to the

Figure 3 continued

double and triple loss of function embryos. Number of amphids scored is indicated. P-values were calculated with Fisher’s exact test (two-tailed).

Threshold for significance was adjusted by Bonferroni correction to 0.01 for five comparisons. Scale bars in A-E, 10 mm.

DOI: https://doi.org/10.7554/eLife.38065.009

The following source data and figure supplement are available for figure 3:

Source data 1. P values in multiple comparasions.

DOI: https://doi.org/10.7554/eLife.38065.005

Figure supplement 1. dyf-7 phenotype and genetic redundancy.

DOI: https://doi.org/10.7554/eLife.38065.010
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Figure 4. PAR-6 regulates localization of DYF-7. (A, B) DYF-7 shows more dispersed localization in par-6(M/Z). (C) Quantification of the size of DYF-7::
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DOI: https://doi.org/10.7554/eLife.38065.011

The following source data and figure supplement are available for figure 4:

Source data 1. Size of DYF-7::GFP in wt and par-6(M/Z) embryos.

DOI: https://doi.org/10.7554/eLife.38065.006

Figure supplement 1. PAR-6 is required for amphid dendrite extension.

DOI: https://doi.org/10.7554/eLife.38065.012
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dendrite tips. Nonetheless, these phenotypes suggest that PAR-6 regulates the localization of DYF-7

(Figure 4D).

A previous study showed that PAR-6 is required for apical junction formation in epidermal cells

by regulating the localization of HMR-1 and DLG-1 (Totong et al., 2007). As expected, 17 of the 25

par-6(M/Z) embryos arrested early (at 1.5-fold or soon after), indicating early malformation of the

epidermis. Among these, five embryos showed partial dendrite extension (Figure 4—figure supple-

ment 1B). This phenotype is likely due to the failure of the epidermis to complete its anterior migra-

tion. 8 of the 25 par-6(M/Z) embryos developed to the 2-fold stage, suggesting that in these

embryos epidermal morphogenesis was more or less normal beyond the stage where the dendrite

tips normally reach the sensory depression. Among these eight embryos, we found one in which the

dendrites showed little extension (Figure 4—figure supplement 1C). This result raises the possibility

that PAR-6 may play a role in the attachment of dendrite tips to the epidermis. We were not able to

image more par-6(M/Z) embryos due to technical difficulties.

Discussion
Our results revealed a mechanism where a multicellular rosette organizes collective neurite out-

growth, which is different from the classical pioneer-follower model in coordinating a group of neu-

rites to grow in the same direction. Multicellular rosettes have been found in diverse organisms and

developmental contexts, including C. elegans in terms of the assembly of the ventral nerve cord

(Harding et al., 2014; Paré et al., 2014; Shah et al., 2017). However, in these previously reported

contexts, rosettes are used to orchestrate cell intercalation and collective migration. Dynamic forma-

tion and resolution are therefore a defining aspect of those rosettes. In contrast, the amphid rosette

remains stable. It is not clear what causes the difference in cellular behaviors between the amphid

rosette and the others. Given the localization of PAR-6, HMR-1 and DLG-1, it is possible that the

amphid neurons form apical junctions at the rosette center and dendrite tips (Nechipurenko et al.,

2016). Indeed, electron microscopy of the developing amphid suggests the presence of tight junc-

tions between the dendrites; in the mature structure, tight junctions are present between each of

the neurons and the sheath glial cell (Low et al., 2019). These junctions define an outward-facing

apical surface (Low et al., 2019). How DYF-7 interacts with this apical surface would be an interest-

ing question to answer.

We also showed that the initial extension of the amphid dendrites is driven by the migrating skin

through physical attachment. Thus, retrograde extension of amphid dendrites occurs in at least two

steps: first, neurons attach to the migrating epidermis, which pulls the dendrite endings anteriorly to

the developing nose; then, the neuron cell bodies migrate away, pulling the dendrites posteriorly as

they move. We refer to this entire process as ‘retrograde extension’ because dendrite endings

remain attached to their target (the epidermis) throughout both steps and dendrite growth is driven

by ‘stretch’ as the distance between the epidermis and the neuronal cell bodies increases – first due

to epidermal migration, and then due to neuronal cell body migration. Attachment to a moving tar-

get, similar to the first step, has been proposed to underlie axon extension of the M2 pharyngeal

neuron in C. elegans (Pilon, 2014) as well as lateral line ‘axon towing’ in zebrafish (Gilmour et al.,

2004). Movement of neuronal cell bodies away from their attachment sites, similar to the second

step, has been proposed to underlie olfactory axon development in zebrafish (Breau et al., 2017).

Thus, the basic mechanisms at play in the amphid may be widely used, but they require careful time-

lapse imaging to observe.

Interestingly, the molecular mechanisms appear to be different in terms of the initial attachment

of the dendrite tips/rosette vertex to the epidermis during anterior extension and the anchoring of

dendrite tips at the sensory depression during the subsequent movement of neuronal cell bodies. In

the latter case, dyf-7 loss of function causes detachment of the dendrite tips from the sensory

depression in 100% of the embryos. The same allele, however, only causes a mild phenotype during

anterior extension where the dendrite tips detached from the migrating skin in 5% of the embryos.

Furthermore, in anterior extension, we showed that SAX-7 and HMR-1 function redundantly with

DYF-7 to mediate the attachment of the dendrite tips to the skin. In comparison, recent work sug-

gests that transition zone proteins in cilia function in dendrite extension (Schouteden et al., 2015).

However, transition zone proteins do not appear to be localized to the amphid dendrite tips until
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the 2-fold stage (Schouteden et al., 2015), about an hour after the skin-driven anterior extension is

complete.

Consistent with the notion that the dendrite tips are attached to different substrates via different

molecular mechanisms, we note that during anterior extension, the tips are attached to a specific

skin cell called hyp5. However, in the adult, the dendrite tips are embedded between different skin

cells, namely hyp2 and hyp3. hyp2/3 are born near the sensory depression and are not part of the

anterior skin migration (data not shown). Presumably, the dendrite tips must dissociate from hyp5

and form new relationship with hyp2/3. While this transition remains to be elucidated, it could

demarcate the end of the skin-driven anterior extension and the beginning of the later steps of den-

drite extension. Thus, the extension of the amphid dendrites involves a surprising level of complexity

in term of cellular and molecular mechanisms.

Surrounding tissues play profound roles in neuronal development (Chao et al., 2009), and recent

work has highlighted intriguing roles for the skin in shaping dendrites. In Drosophila, signals from

the skin shape Class IV da neurons (Jiang et al., 2014; Meltzer et al., 2016; Parrish et al., 2007),

and skin acts to clear debris from degenerating neurons in zebrafish (Rasmussen et al., 2015). In C.

elegans, the epidermis plays a role in controlling synapse density (Cherra and Jin, 2016) and posi-

tioning (Shao et al., 2013). Furthermore, the epidermis plays a critical role in patterning the elabo-

rate dendritic arbor of the PVD neuron. Interestingly, SAX-7/L1CAM functions in this interaction.

Specifically, it functions together with MNR-1 in the epidermis to instruct the dendritic pattern of

PVD (Dong et al., 2013; Salzberg et al., 2013). SAX-7 is also required for proper bundling of the

amphid neurons (Sasakura et al., 2005; Yip and Heiman, 2018). In our study, it remains unclear

whether SAX-7 acts in the neurons, skin, or both, but the interaction between the amphid dendrites

and the epidermis appears to be a simple physical attachment at a focal point defined by the

rosette. This example therefore suggests that skin not only provides chemical signals to developing

neurons, but can also provide mechanical cues that shape dendrites by physically coupling neurons

to epidermal morphogenesis.

An interesting observation regarding the amphid rosette is that key structural features of the

mature amphid are already seeded in the rosette before dramatic organ morphogenesis starts.

These features include polarization of the neurons and the future dendrite tips at the vertex,

engagement of the future dendrite tips with the amphid glia cells, which ultimately ensheath the

dendrites, and engagement of the future dendrite tips with the epidermis. Thus, topological features

of an organ can be specified early via short range interactions when players are local, before these

features are extended over space through development.

Finally, PAR-6 localization to the dendrite tips raises an intriguing question on neuron polariza-

tion, given the contrast to its localization and function in vertebrate neurons. In cultured hippocam-

pal neurons, the PAR-6/PAR-3/aPKC complex is enriched at the tip of the future axon. The complex

is thought to provide local regulation of the actin cytoskeleton (Insolera et al., 2011). A genetic

screen in C. elegans for mutants that disrupt axon-dendrite polarity in the amphid identified unc-33,

which encodes a microtubule binding protein called CRMP (Maniar et al., 2011). UNC-33/CRMP

localizes to the initial segment of the axon and has global effects on microtubule organization in a

neuron. The potential function of PAR-6 in the axon-dendrite polarity in the amphid neurons has not

been examined. Intriguingly, in Drosophila sensory and motor neurons, PAR-6/PAR-3/aPKC localizes

to dendrites (Sánchez-Soriano et al., 2005). It remains to be seen if this similarity is a coincidence or

marks a difference between vertebrate and invertebrate neurons.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Genetic reagent
(E. coli)

OP50 Caenorhabditis
Genetics Center

OP50

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Genetic reagent
(C. elegans)

dex-1(ns42) III PMID: 19344940

Genetic reagent
(C. elegans)

dyf-7 (ns119) X PMID: 19344940

Genetic reagent
(C. elegans)

dyf-7 (m537) X PMID: 19344940

Genetic reagent
(C. elegans)

sax-7(ky146) IV Caenorhabditis
Genetics Center

CX2993

Genetic reagent
(C. elegans)

sax-7(eq1) IV Caenorhabditis
Genetics Center

LH81

Genetic reagent
(C. elegans)

par-6(zu170) I Caenorhabditis
Genetics Center

FT36

Genetic reagent
(C. elegans)

par-6(tm1425)/hIn1
[unc-54(h1040)] I

Caenorhabditis
Genetics Center

JJ1743

Genetic reagent
(C. elegans)

unc-101(m1) I Caenorhabditis
Genetics Center

DR1

Genetic reagent
(C. elegans)

zbIs3[cnd-1p::PH::GFP] PMID: 28441532

Genetic reagent
(C. elegans)

ujIs113[pie-1p::mCherry::H2B;
nhr-2p::mCherry::HIS-24
-let-858UTR; unc-119(+)] II

Caenorhabditis
Genetics Center

JIM113

Genetic reagent
(C. elegans)

itIs1024[par-6::PAR-6::GFP] Dr. Kenneth
Kemphues

KK1024

Genetic reagent
(C. elegans)

zyIs36[cnd-1p::PH::mCherry;
myo-2p::mCherry]X

PMID: 28441532

Genetic reagent
(C. elegans)

mcIs40 [lin-26p::ABDvab-
10::mCherry; myo-2p::GFP]

Caenorhabditis
Genetics Center

ML916

Genetic reagent
(C. elegans)

xnIs17[dlg-1::GFP; rol-6(su1006)] Caenorhabditis
Genetics Center

FT63

Genetic reagent
(C. elegans)

axIs1928[mCherry::PAR-6] Caenorhabditis
Genetics Center

JH2648

Genetic reagent
(C. elegans)

dlg-1(cp301[dlg-1::
mNG-C1̂3xFlag])X

Caenorhabditis
Genetics Center

LP598

Genetic reagent
(C. elegans)

ntIs1[gcy-5::GFP] Caenorhabditis
Genetics Center

OH3192

Genetic reagent
(C. elegans)

oyIs44[odr-1::RFP + lin-15(+)]V Caenorhabditis
Genetics Center

PY2417

Genetic reagent
(C. elegans)

zuIs43[pie-1::GFP::PAR-6::ZF1;
unc-119(+)]

Caenorhabditis
Genetics Center

JJ1743

Genetic reagent
(C. elegans)

ddIs290[sax-7::TY1::EGFP::
3xFLAG(92C12); unc-119(+)]

Caenorhabditis
Genetics Center

TH502

Genetic reagent
(C. elegans)

xnIs96 [hmr-1p::HMR-1::GFP::
unc-54 3’UTR; unc-119(+)]

Caenorhabditis
Genetics Center

FT250

Genetic reagent
(C. elegans)

kyIs4[ceh-23-unc-76-gfp::lin-15]X Caenorhabditis
Genetics Center

CX2565

Genetic reagent
(C. elegans)

hmnEx149[dyf-7p::DYF-7
(ZP-sfGFP)-mCherry;
rol-6(su1006)]

DOI: 10.1101/393850

Genetic reagent
(E. coli)

elt-1(RNAi) expressed
in HT115 (DE3)

Source BioScience C. elegans RNAi
collection (Vadel)

RNAi Bacteria,
Clone ID: 10019-B-8

Genetic reagent
(E. coli)

hmr-1(RNAi) expressed
in HT115 (DE3)

Source BioScience C. elegans RNAi
collection (Ahringer)

RNAi Bacteria,
Clone ID: I-5F23

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Genetic reagent
(E. coli)

dlg-1(RNAi) expressed
in HT115 (DE3)

Source BioScience C. elegans RNAi
collection (Ahringer)

RNAi Bacteria,
Clone ID: X-8A08

Software, algorithm Fiji https://fiji.sc/

Worm strains and genetics
Worms were maintained at room temperature on nematode growth media (NGM) plates seeded

with OP50 bacteria as previously described (Brenner, 1974), except for RNAi experiments. N2 Bris-

tol was used as the wild-type strain. Strains used in this study are listed in the key resource table.

RNAi
RNAi experiment was performed using the standard feeding method (Kamath et al., 2003;

Rual et al., 2004). For elt-1(RNAi) and hmr-1(RNAi), L1 hermaphrodites were placed on RNAi plates

and embryos were harvested by cutting the adults 2 days later. For dlg-1(RNAi), L4 hermaphrodites

were grown for 1 day before embryos are collected. The clones of 10019-B-8 from Vidal RNAi

library, I-5F23 and X-8A08 from Ahringer RNAi library were used to target elt-1, hmr-1 and dlg-1,

respectively.

Microscopy
Embryos were collected and mounted as previously described (Bao and Murray, 2011). Briefly,

embryos were collected by cutting gravid hermaphrodites in a droplet (20 mL) of M9 buffer (3 g

KH2PO4, 6 g Na2HPO4, 5 g NaCl, 1 ml 1 M MgSO4, per liter H2O). Embryos at the 2 or 4 cell stages

were transferred to a droplet (1.5 mL) of M9 containing 20 mm polystyrene beads on 24 � 50 mm

coverglass. An 18 � 18 mm coverglass was laid on top and sealed using melted Vaseline. Images

were acquired on a spinning disk confocal microscope (Quorum Technologies, Puslinch, Canada)

comprising a Zeiss Axio Observer Z1 frame. An Olympus UPLSAPO 60x objective was used with a

thread adapter (Thorlabs, Newton, NJ) to mount on the Zeiss body. The timing of major develop-

mental events was used to check for phototoxicity during 3D time-lapse imaging.
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