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Progressive multifocal leukoencephalopathy (PML) is a severely debilitating and often fatal
demyelinating disease of the central nervous system (CNS) in immunosuppressed indi-
viduals caused by JC polyomavirus (JCV), a ubiquitous human pathogen. Demyelination
results from lytically infected oligodendrocytes, whose clearance is impaired in the setting
of depressed JCV-specific T cell-mediated CNS surveillance. Although mutations in the
viral capsid and genomic rearrangements in the viral non-coding region appear to set the
stage for PML in the immunosuppressed population, mechanisms of demyelination and
CNS antiviral immunity are poorly understood in large part due to absence of a tractable
animal model that mimics PML neuropathology in humans. Early studies using mouse
polyomavirus (MPyV) in T cell-deficient mice demonstrated productive viral replication in
the CNS and demyelination; however, these findings were confounded by spinal cord
compression by virus-induced vertebral bone tumors. Here, we review current literature
regarding animal models of PML, focusing on current trends in antiviral T cell immunity in
non-lymphoid organs, including the CNS. Advances in our understanding of polyomavirus
lifecycles, viral and host determinants of persistent infection, and T cell-mediated immunity
to viral infections in the CNS warrant revisiting polyomavirus CNS infection in the mouse
as a bona fide animal model for JCV-PML.
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INTRODUCTION
The human JC polyomavirus (JCV) persists silently in >50% of
the healthy adult population, with recent evidence suggesting an
even higher prevalence (1, 2). Seroepidemiological studies indi-
cate that individuals are first exposed to JCV in late adolescence
(3). Based on detection of JCV in tonsils and sewage, the virus
is likely acquired via respiratory and/or fecal-oral transmission
routes (4–6). JCV was discovered in 1971 as the etiologic agent
of progressive multifocal leukoencephalopathy (PML) (7), a life-
threatening demyelinating disease of the central nervous system
(CNS) resulting from lytic infection of oligodendrocytes (8, 9).
PML was first described in 1958 in patients with chronic lym-
phocytic leukemia and Hodgkin’s lymphoma (10), and has since
been diagnosed in individuals immunosuppressed by a variety of
hematological malignancies. Before the advent of highly active
antiretroviral therapy (HAART), approximately 5% of individ-
uals afflicted with HIV/AIDS developed PML, such that PML
became regarded as an AIDS-associated disease (11). Profound
immunosuppression, however, is not an essential prelude to PML.
PML is seen in HIV-negative individuals with occult or minimal
immunosuppression caused by old age, chronic liver or kidney dis-
ease, untreated dermatomyositis, and idiopathic CD4+ or CD8+

lymphopenia (12). No effective anti-JCV agents are currently avail-
able, and the prognosis for PML is poor (13). Recently, PML

has emerged in patients receiving humoral immunomodulatory
agents for autoimmune diseases and inflammatory disorders.

In 2005, a trilogy of articles in the New England Journal of Med-
icine described PML in patients with relapsing-remitting multiple
sclerosis (MS) and Crohn’s disease given the monoclonal antibody
natalizumab (Tysabri®) (14–16). Recent studies report that the risk
of PML increases with duration of natalizumab therapy and is as
high as 11.1 cases per 1000 patients in MS patients seropositive
for JCV, >24 months of the monthly infusion therapy, and a his-
tory of immunosuppression (17). Most MS treatment regimens
were designed to reduce autoreactive immune responses. Natal-
izumab is a humanized antibody against α4 integrin (CD49d),
which complexes with the integrins β1 (to form very late antigen-
4, VLA-4) or β7 on the surface of activated T cells (18). VLA-4 and
α4β7 enable T cells to traffic to sites of infection/inflammation
or to mucosal tissues, respectively. VLA-4 and α4β7 are required
for T cell extravasation by mediating leukocyte arrest at acti-
vated vascular endothelium expressing the VLA-4 ligand vascular
cell adhesion molecule 1 (VCAM-1) or the α4β7 ligand mucosal
addressin cell adhesion molecule (MAdCAM-1). Supporting the
hypothesis that natalizumab-mediated VLA-4 blockade impairs
CNS immune surveillance is an early study showing that a cohort
of 23 MS patients receiving natalizumab had decreased counts of
CD4+ and CD8+ T cells, CD19+ B cells, and CD138+ plasma cells
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in the CSF compared to 35 untreated MS patients and 16 patients
with other neurological diseases. Of 14 patients available for six-
month followup after cessation of natalizumab therapy, all but one
had decreased counts in each of these lymphocyte populations; the
one exception being a patient having a modest elevation in CD4+

and CD8+ T cell counts coincident with a clinical MS replase (19).
Other monoclonal antibody-based immunomodulatory therapies,
including efalizumab (anti-LFA-1, for severe plaque psoriasis) and
rituximab (anti-CD20, for B cell lymphoma), have been shown to
put patients at risk for PML; because of this risk, efalizumab was
taken off the market despite its efficacy in reducing rejection in kid-
ney transplant recipients (20). With development of more intense
steroid-avoidance immunosuppressive agents in transplantation
medicine, there is concern that the incidence of PML may also rise
in this patient population, as has happened for BK virus (BKV)-
associated nephropathy. Recent evidence suggests that inadequate
T cell-mediated surveillance for JCV-infected CNS glial cells is the
common mechanism among immunosuppressive regimens con-
ferring susceptibility for PML. As discussed above, natalizumab
interferes with trafficking of circulating effector T cells into the
CNS. Rheumatoid arthritis patients receiving rituximab show
marked T cell depletion, particularly in the CD4+ T cell com-
partment, which is associated with clinical response (21). B cell-
depletion therapies, such as rituximab, may affect T cell responses
by depleting B cell-derived cytokines/chemokines, by eliminating
B cells in their capacity as professional antigen-presenting cells
to activate CD4+ T cells, or, possibly, by limiting availability of
immune complexes to cross-present antigens to CD8+ T cells by
FcγR+ dendritic cells (22). Immune reconstitution by HAART
for AIDS or plasma exchange for monoclonal antibody therapy is
the recommended treatment option for PML (23). Such regimens
predispose patients to a rapid, robust, and often fatal influx of cir-
culating leukocytes into the CNS termed immune reconstitution
inflammatory syndrome (IRIS); paradoxically, these treatments
can accentuate PML lesions, cause relapse of autoimmune dis-
ease or, in the case of organ transplant recipients, lead to graft
rejection (24).

In addition to underlying depressed or altered immune func-
tion, viral determinants may also increase PML risk and/or disease
severity. Mutations resulting in single amino acid substitutions in
the host cell receptor binding domain of the viral capsid pro-
tein VP1 and rearrangements/deletions in the non-coding control
region (NCCR) were found in most JCV sequences from cere-
brospinal fluid (CSF) of PML patients (25–28). These mutations
may constitute necessary viral determinants for PML and under-
lie the sharp discrepancy between the high prevalence of JCV
infection and the low incidence of PML. Recent work demon-
strated that rearranged NCCRs conferred increased early viral
gene expression and DNA replication capability in glial cells (29).
An important role for the JCV capsid protein in CNS tropism is
supported by evidence that a hybrid virus containing the early
genes of the monkey polyomavirus, SV40, and the late genes of
the PML-JCV (Mad-1 strain) acquired the more restricted host
range of JCV; i.e., the ability to infect human fetal glial cells but
not monkey cells, and to hemagglutinate human type O red blood
cells (30). Use of JCV VP1 virus-like particles (VLPs) further sug-
gested that the PML-associated JCV capsid mutations alter viral

tropism, retaining virion binding specificity for CNS glial cells but
not to other non-CNS cell types, and differing from wild type
VLPs in glycan specificity (25). However, pseudoviruses with these
VP1 mutations failed to transduce glial cells, raising the possibil-
ity that these CSF VP1 variants are non-infectious (31). Whether
these VP1 variants confer neurovirulence to JCV, and whether JCV
acquires these VP1 mutations in the periphery or after entry into
the brain, remain to be determined.

Several lines of evidence suggest that humoral immunity selects
VP1 mutant polyomaviruses. Exposure of a library of VP1-
mutagenized SV40 variants to a neutralizing monoclonal anti-
body selected viruses with mutations in solvent-exposed loops of
VP1 that were resistant to neutralization by this antibody (32).
BKV serotypes have been shown to vary in their level of cross-
recognition by neutralizing antibodies generated by VLP immu-
nization (33). Interestingly, BKV isolates from kidney transplant
patients with nephropathy and viremia also had a high frequency
of VP1 substitutions (34). These findings raise the possibility that
VP1-specific neutralizing antibody responses select variant poly-
omaviruses with mutations in VP1 that enable escape from antivi-
ral humoral immunity. Whether T cell immunosuppression/-
modulation favors neutralizing antibody-driven selection of such
polyomavirus escape variants is unknown.

Progress in understanding pathogenesis of JCV-induced PML
and developing effective therapeutic approaches is handicapped
by the low number of PML cases, inadequate understanding of
risk factors (with only three broad risk factors described to date
for natalizumab-treated MS individuals – JCV seropositivity, prior
immunosuppression, and >2-years of therapy), and heterogeneity
among PML patients (e.g., differences in immunosuppression reg-
imens, HLA type, age, and gender). Additional obstacles include
consistent patient compliance in clinical studies, under-reporting
and under-recognition of the disease, and the rapidity of disease
progression following diagnosis (35). Because JCV replicates only
in humans, we have limited understanding of the pathogenesis
of PML and the immune mechanisms needed to keep persis-
tent polyomavirus infection in check. Studying the evolution of
PML pathology rather than the endpoint of disease when PML
is diagnosed is essential for identifying factors that predispose
only a small fraction of immunosuppressed individuals and those
receiving immunomodulatory therapy to PML.

An animal model of polyomavirus-induced CNS disease that
mimics pathologic hallmarks of PML would circumvent these
obstacles and enable us to address important unanswered ques-
tions, including:

1. Which facets of innate and adaptive immunity control
JCV infection in the brain and how does immunosuppres-
sion/immunomodulation interfere with this control?

2. Are there circumstances in which antiviral immune surveillance
in the CNS may prove pathological rather than protective?

3. Does the pathogenesis of PML vary with different
immunomodulatory regimens?

4. How/when does JCV traffic to the CNS?
5. When are PML-associated viral mutations acquired and do

they confer neurotropism/neurovirulence to JCV? Are these
mutations the result of immune selection/evasion?
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6. Why are individuals treated with humoral immune modulatory
agents susceptible to JCV encephalitis but not to encephal-
itides caused by other persistent microbial pathogens (e.g.,
toxoplasmosis, HSV-1)?

A tractable small animal model of CNS infection by a natural
host polyomavirus will provide insight into PML risk factors,
mechanisms of disease, and provide a preclinical model to evalu-
ate candidate antiviral agents. Here, we review current literature
on T cell-mediated control of viral infections in non-lymphoid
organs, including the CNS, describe potential mechanisms to
dampen T cell function in the setting of persistent CNS infec-
tion,and advocate application of the mouse polyomavirus (MPyV)
model to understand immune control of polyomavirus infection
in the CNS.

EVIDENCE THAT JCV-SPECIFIC T CELLS CONFER
PROTECTION FROM PML
Effective immunity to viruses typically depends on CD8+ T
cells and their ability to directly target and kill virally infected
cells. Accordingly, presence of detectable JCV-specific CD8+ T
cells in peripheral blood correlates with improved prognosis and
survival in PML patients (36–38), whereas anti-JCV humoral
responses do not (39, 40). In HIV+ patients, a detectable level
of JCV-specific CD8+ T cells was coincident with a higher num-
ber of CD4+ T cells (41), the presence of which in peripheral
blood has been positively correlated with PML survival (42).
The dominant HLA-A2-restricted CD8+ T cell epitopes found
in JCV-seropositive individuals are directed to determinants cor-
responding to VP1 residues 100–108 (p100) and 36–44 (p36),
with the former being the dominant specificity (43). Staining
with HLA-A*0201-VP1p36 and -VP1p100 tetramers showed that
these JCV-specific CD8+ T cells have an effector-memory phe-
notype (CD62LloCD45RA−CD49dhi) and can be found in the
PBMCs of healthy individuals, perhaps contributing to the over-
all low incidence of PML (44, 45). Indeed, when measured early
after PML diagnosis, the presence of JCV-specific CD8+ PBMCs
predicted control of PML, while the absence of these cells pre-
dicted active PML progression (41). In HIV+ PML patients,
CD8+ T cells can be found infiltrating the brain and co-localizing
with infected oligodendrocytes at the edges of PML lesions (46)
where the T cell receptor ligands MHC I and II are upregulated
(47). Taken together, these findings suggest that JCV infection is
predominantly controlled by CD8+ T cells.

Studies of human JCV-specific T cell responses have been pre-
dominantly based on analysis of PBMCs. Because few JCV-specific
cells can be isolated from healthy individuals and PML patients,
JCV-specific T cells are generally subjected to extended expansion
and selection in tissue culture, which may obscure conclusions
regarding their in vivo phenotype and function, as highlighted
by an early study showing long-term in vitro T cell proliferation
can profoundly underestimate frequencies of antigen-specific T
cells in vivo (48). Although the development of MHC I tetramers
for detecting JCV-specific CD8+ T cells has improved quantifi-
cation of these cells, the low incidence of PML coupled with few
defined HLA class I-restricted JCV epitopes limits direct analy-
ses of JCV-specific CD8+ T cells in PML patients. Additionally,

analysis of CNS-infiltrating T cells is hampered because PML brain
lesions show minimal inflammation, which may be due to the
patient’s immunosuppressive state and to the late stage of disease
at time of diagnosis. Only one study has analyzed CNS-infiltrating
JCV-specific T cells directly ex vivo by flow cytometry using a
fresh brain biopsy of a natalizumab-treated MS patient with a
pronounced T cell infiltrate secondary to IRIS (49). Examination
of immune surveillance prior to diagnosis of PML is limited to
CSF samples, which does not necessarily reflect immune infiltrates
in the brain parenchyma (19). Given the limited data available
regarding the type, function, and location of cellular infiltrates in
the brain parenchyma, little is known about the status of immune
surveillance in the CNS for JCV-infected cells prior to PML and
during its progression.

Insights into the evolution and maintenance of JCV-specific
T cell responses in the human CNS would greatly benefit from
a mouse model of polyomavirus CNS infection. Use of this
animal model would provide insight into the kinetics of anti-
polyomavirus immune surveillance in the CNS, how immune
suppression alters this surveillance and the incidence of neu-
ropathology. Inbred strains of mice simplify identification of viral
peptide T cell epitopes, which is essential to monitor the mag-
nitude, phenotype, and function of virus-specific T cells. Incisive
identification of determinants of effective CNS immune responses
can be achieved using transgenic mice, mice with targeted genetic
deletions, and antibody-mediated blockade of key interactions or
deletion of specific cell types. Mouse models of viral infections
can be optimized for pathogen dose and time postinfection to
yield higher numbers of immune cells to study directly ex vivo.
Furthermore, immune cells can be isolated from mouse tissues,
providing insight into potential differentiation/regulation of cells
in situ in the CNS. Such studies using mouse models are under-
pinned by a newfound appreciation that circulating T cells are
phenotypically and functionally distinct from those resident in
non-lymphoid tissues.

CNS-RESIDENT CD8+ MEMORY T CELLS
Memory CD8+ T cells are heterogeneous in phenotype, dif-
ferentiation, and function; these parameters are linked to their
migration patterns and anatomic location (50). Since the original
description of non-lymphoid organ-homing “effector memory”
versus lymphoid organ-homing “central memory” populations
(51), evidence is quickly accumulating that memory T cell het-
erogeneity is integrated with tissue residence; i.e., depending on
their tissue localization, memory T cells vary in expression of
chemokine receptors, adhesion molecules, and effector capabilities
(52). Effector-memory T cells are now thought to be comprised of
circulating and non-circulating subsets. The latter“tissue resident”
memory T cells or Trm cells are distinguished from circulating
effector-memory cells by upregulation of CD69 and granzyme
B (canonically indicative of TCR activation and cytotoxic effec-
tor capability, respectively) and cell surface expression of the
αE(CD103)β7 integrin. Because the αEβ7 complex binds to E-
cadherin, CD103 expression implicates a role for these integrins
in T cell retention in epithelium. Recent work showed that CD103
is variably expressed by CD8+ Trm cells in different tissues, sug-
gesting that CD103 per se is not a signature Trm cell marker (53).
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CD69 directly antagonizes expression of S1P1, a sphingosine-1-
phosphate receptor expressed by T cells to enable their egress from
peripheral lymphoid organs (54); S1P1 downregulation is essential
for retention of T cells in tissues (53). TGF-β is a key mediator of
CD103 expression by activated CD8+ T cells in the skin and intesti-
nal mucosa, as well as the CNS, and TGF-β may also be involved in
upregulating CD69 (55–57). CD8+ Trm cells persist long-term in
the skin and in mucosal sites such as the respiratory tract, female
reproductive tract, and gut (58–61), and for the intestine at least,
maintenance of CD8+ Trm cells is antigen-independent (56). A
rapidly expanding body of literature demonstrates that Trm cells
contribute to host defense to bacterial and viral reencounter at
mucosal and epidermal sites (62, 63).

Antiviral CD8+ T cells also establish residence in the CNS
but appear to differ in their requirements for function and
survival compared to those in extra-CNS non-lymphoid tis-
sues. Intracranial (i.c.) inoculation of mice with vesicular stom-
atitis virus (VSV), an acutely infecting pathogen, resulted in
the progressive accumulation in the brain of CD103+ CD69hi

granzyme Bhi virus-specific CD8+ Trm cells, whose maintenance
was antigen-independent and required CD103 (64). Differences
in virus interactions with their hosts (e.g., levels of antigen per-
sistence, cytopathic/non-cytopathic cell fate and host cell tro-
pism) will undoubtedly influence the establishment, mainte-
nance, and function of CNS-resident memory T cells and their
immunosurveillance efficacy for infected cells.

The presence of CNS-infiltrating CD8+ T cells circumscrib-
ing demyelinated lesions was associated with improved clinical
outcome in HIV/AIDS-related PML patients (46). This associa-
tion has been extended to explain the development of PML in
MS patients receiving natalizumab. MS progression is character-
ized by two distinct phases: a primary relapsing-remitting stage
in which repetitive and acute infiltration of the brain by myelin-
reactive T cells occurs and inflammation resolves; and a secondary
progressive phase in which little inflammation is observed but
lesions of demyelination and functional disability worsen (65).
Because natalizumab acts to exclude circulating activated T cells
from the CNS, it is possible that no JCV-specific T cells infil-
trate the brains of natalizumab-treated MS patients with active
JCV replication. MS is a difficult disease to diagnose, and patients
likely experience acute autoreactive inflammation prior to initi-
ation of natalizumab therapy. Myelin-reactive inflammation may
render the blood–brain barrier “permeable” to JCV (as free virions
or via infected cells, as discussed below) as well as JCV-reactive T
cells. In this connection, it merits noting that natalizumab is typ-
ically not the first-line treatment option for MS. If JCV infection
in the brain and a subsequent T cell infiltration occurred prior to
the administration of natalizumab therapy, CNS-infiltrating JCV-
specific cells would not be affected and could potentially establish
a resident memory population. Based on data from various animal
models of tissue resident memory T cells, in the context of persis-
tent infection in the CNS functional JCV-specific Trm cells might
survive long-term or be driven to dysfunction and deletion. In the
former case, JCV-specific Trm cells would be protective, whereas
in the latter situation, exhausted Trm cells may predominate and
fail to limit the number of infected oligodendrocytes. Natal-
izumab, then, would prevent replenishment of CNS-infiltrating

JCV-specific T cells from circulating blood and result in defi-
cient T cell-mediated immune surveillance for infected glial cells.
These alternate scenarios may help explain the rarity of PML even
in immunocompromised individuals. Knowing the longevity of
functional Trm cells in the CNS, which would be most readily
studied using a mouse model of polyomavirus CNS infection, may
help explain the increased risk of PML with long-term natalizumab
therapy.

THE INHIBITORY PD-1 RECEPTOR BALANCES IMMUNITY
AND IMMUNOPATHOLOGY IN THE CNS
The brain is widely considered to be an “immune-privileged”
organ. Until recently, immune privilege was thought to result
from a complete exclusion of the immune effector cells; how-
ever, healthy immune-privileged sites are actually subject to active
immune surveillance, requiring the functionality of immune effec-
tor cells be tightly managed to protect vital, non-renewable tissues
(66). Regulating cells of the immune response typically depends on
the balance of activating and inhibitory signals. PD-1 (CD279), a
CD28-family molecule, is expressed by activated T cells and coun-
ters the activation signaling cascade initiated by TCR ligation.
PD-1 expression is significantly elevated on JCV-specific CD4+

and CD8+ T cells from peripheral blood of PML patients (67).
PD-1 is induced by TCR signaling and its expression is maintained
in settings of persistent antigenic stimulation such as chronic viral
infection, cancer, and autoimmunity. PD-1 binds to two ligands,
PD-L1 (also called B7-H1; CD274) and PD-L2 (CD273) that differ
in expression patterns: PD-L1 is broadly expressed by hematopoi-
etic and parenchymal cells; and PD-L2 is inducibly expressed on
DCs and macrophages (68). Recent work indicates that variable
levels of PD-1 signaling translates to differentially dampening T
cell functions,with low PD-1 levels inhibiting TNF-α, IL-2 produc-
tion, and cell proliferation and higher levels inhibiting cytotoxicity
and IFN-γ production (69). Sustained high PD-1 expression in
the setting of chronic viremic infection mediates exhaustion of
virus-specific CD8+ T cells (70).

Although PD-1 regulation of T cells has been intensively
investigated for systemic persistent viral infections, surpris-
ingly little is known about its role in viral encephalitis. In
mouse cytomegalovirus encephalitis, brain-localized CD8+ T cells
express PD-1, activated microglia and astrocytes express its ligand
(PD-L1), and PD-1 blockade in microglia/astrocytes and CD8+

T cell co-cultures increases IFN-γ production (71). CD8+ T cells
infiltrating the CNS of mice persistently infected by the gliatropic
mouse JHM coronavirus are also PD-1hi. IFN-γ receptor signal-
ing by oligodendrocytes induces their expression of PD-L1 (72),
which, in turn, limits effector activity of PD-1hi JHM-specific
CD8+ T cells. Engagement of these PD-1hi cells with PD-L1+

oligodendrocytes prevents T cell-mediated axonal bystander dam-
age, but does so at the cost of negating viral clearance (73, 74).
Interestingly, CNS infection by VSV, a neurotropic and non-
demyelinating pathogen, is associated with robust virus-specific
CD8+ T cells brain infiltrates, but these T cells lack PD-1 expres-
sion (64). PD-1 is elevated on CD8+ T cells from PML patients
(67). These studies raise the possibility that PD-1 upregulation
is a property of T cells responding to gliatropic viral infec-
tions. These data are in line with the concept that PD-1 inhibits
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T cell-mediated immunopathologic demyelination, a concept sup-
ported by studies documenting a protective role for PD-1 in the
experimental autoimmune encephalomyelitis (EAE) mouse model
of MS (75–78).

Because persistent polyomavirus infection establishes a low-
level antigen setpoint, PD-1 upregulation by polyomavirus-
specific T cells is unexpected, and suggests that sustained strong
TCR signaling may not be essential for PD-1 expression in the
brain. In HIV-positive individuals, PD-1 expression is higher on T
cells in the CSF than those in blood, despite viral RNA levels being
lower in the CSF (79). Certain common γ-chain cytokines (IL-2,
IL-7, IL-15, and IL-21) and type I IFNs have been shown to induce
and maintain PD-1 expression on TCR-activated cells (80–82);
and type I and type II IFNs, IL-6, IL-2, IL-7, and IL-15 upregulate
PD-L1 (83). With regard to MPyV, IFN-β transcripts have been
shown to be elevated in brains of mice given MPyV i.c. (84). This
raises the possibility that the polyomavirus-induced proinflamma-
tory environment in the CNS could complement low/intermittent
TCR engagement to upregulate PD-1 on antiviral Trm cells in the
brain. A polyomavirus CNS infection animal model would enable
investigation of the mechanisms of PD-1 upregulation by brain-
resident, virus-specific T cells and the functional role(s) of PD-1
expression by T cells in the CNS.

USING JCV TO MODEL PML IN ANIMALS
A tractable animal model of PML requires sufficient similarities
between hallmarks of disease in humans, including cell targets for
viral replication, mechanisms of immune control, associated risk
factors, and neuropathology. Until recently, however, attempts to
model PML in mice utilizing the etiologic agent of PML, JCV,
have been handicapped by the tight species specificity of Poly-
omaviridae. Lacking a viral DNA polymerase, polyomaviruses rely
on the host cell DNA polymerase apparatus to replicate their
genomes, and thus have devised strategies to override cell cycle
checkpoints (85). The species restriction for polyomaviruses is
controlled at the level of binding by the host cell DNA polymerase
α-primase complex to the viral origin of replication (86, 87), a
molecular interaction reflective of the co-evolution of each Poly-
omaviridae family member with a particular vertebrate species.
Non-productive infection by polyomaviruses can result in the
integration of the viral genome into the host chromosomal DNA
resulting in tumor formation (88–90). Accordingly, experiments
involving i.c. inoculations of non-human primates and mice with
JCV resulted in non-productive infection and development of
astrocytomas or glioblastomas but not PML-like disease (91–
96). Transgenic mice containing the early region of JCV in all
cells predominantly expressed T antigens in oligodendrocytes and
exhibited a dysmyelination phenotype, but did not recapitulate the
demyelination associated with JCV encephalitis in human (97).
These findings have largely obviated the use of JCV infection in
unmanipulated mice to model PML.

To partially preserve the species specificity of JCV infec-
tions in animal hosts, attempts have been made to use JCV
in humanized mouse models. Low levels of JCV DNA were
detected in the urine and blood of JCV-infected NOD/SCID/IL-
2Rα−/− mice reconstituted with human fetal bone marrow, thy-
mus, and liver, as were low numbers of IFN-γ-producing T

cells (98). In the absence of human CNS tissue to provide cel-
lular targets for JCV replication, this system cannot recapitu-
late PML. This obstacle has recently been overcome. Goldman
and colleagues created human glial chimeric mice by engrafting
human bipotential oligodendrocyte-astrocyte progenitor cells into
congenitally hypomyelinated Rag2−/− Mbpshi/shi neonatal mice,
resulting in efficient colonization of the mouse brain with human
astrocytes and oligodendrocytes and myelination (99, 100). Using
these human glial chimeric mice, Kondo et al. recently reported
that intracerebral delivery of Mad-1 JCV resulted in early wide-
spread productive infection of the engrafted human astrocytes,
focal demyelination, and gliosis (101). Only rare oligodendro-
cytes were infected early postinfection, but at late timepoints large
numbers of T antigen+ VP1− oligodendrocytes were detected.
These findings raise the provocative possibility that demyelination
may in large part be accounted for by deficient trophic sup-
port for oligodendrocytes resulting from death of productively
infected astrocytes rather than by elimination of oligodendro-
cytes by lytic JCV infection. Another notable finding in this
study was the rapid emergence of a sizeable number of VP1
genomic mutations, with at least two previously seen in JCV
isolates from PML patients. Thus, astrocytes may be a major
site for emergence of neurovirulent VP1 variant viruses. This
chimeric mouse model represents an important advance toward
understanding mechanisms of pathogenesis of demyelination;
however, infection of these human glia-engrafted mice cannot
provide insight into the role of JCV-specific immune responses
in the CNS.

JCV ENTRY TO THE CNS
A major unresolved question is the mode of transit of JCV to the
CNS; i.e., as free virus and/or via infected “Trojan Horse” cells.
Deep sequencing of JCV NCCR in matched urine, plasma, and
CSF samples from a PML patient provides strong support for a
hematogenous route for viral dissemination (102), a conclusion
in line with earlier evidence that VP1 mutations are detected in
blood and CSF, but not in urine, of PML patients (27). Human
brain microvascular endothelial cells have been demonstrated to
be permissive for JCV infection, a finding supporting the pos-
sibility that JCV may cross the blood–brain barrier by infecting
endothelial cells (103). In favor of cell-based blood-to-brain car-
riage is an early study reporting detection of JCV and BKV DNA
in peripheral blood leukocytes from healthy adults (104). Sub-
sequent work has focused attention on B cells and/or CD34+

hematopoietic progenitor cells (HPCs) as candidate vehicles for
conveying JCV to the CNS. JCV DNA, as well as expression of
T antigen and VP1, has been observed in HPC cell lines, B cell
lines and primary B cells infected in vitro by high-dose virus inoc-
ula, and rare JCV DNA+ B cells have been detected in PBMCs
from a PML patient (4, 105). In addition, the rearranged NCCR
contains multiple binding sites for the Spi-B and NF1-X, tran-
scription factors that enhance JCV replication and are expressed
by B cells, HPCs, and glial cells [reviewed in Ref. (13)]. Notably,
gene expression of unfractionated blood, and sorted CD19+ B
cells, and CD34+ HPCs from MS patients receiving natalizumab
revealed upregulation of genes involved in B cell activation and
differentiation, including Spi-B (106, 107). These findings are in
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line with a proposal that upregulation of specific transcription
factors that bind JCV NCCR underlie a resurgence of JCV replica-
tion in natalizumab-treated individuals (108, 109). Because B cells
are endowed with the recombination apparatus enabling V(D)J
recombination of immunoglobulin gene segments, B cells have
also been proposed to provide an environment conducive for JCV
genome recombination and/or rearrangement (13), despite the
absence of RAG-dependent recombination signal sequence motifs
in the JCV genome. Whether B cells are truly capable of supporting
JCV replication remains to be demonstrated, particularly in light
of recent data suggesting that B cells may carry intact input JCV
virions and transfer them to susceptible glial cells (110). CD49d
antibody-mediated blockade in mice and non-human primates is
associated with elevated circulating CD34+ cells, an observation
recapitulated in natalizumab-treated MS patients (111–113). In
humans, natalizumab has also been reported to mobilize CD34+

cells, pre-B cells, and B cells into the circulation (114, 115). These
observations give additional impetus to the value of an immuno-
competent mouse model of PML to define the cellular vehicle by
which JCV is transported to the brain parenchyma, the status of
JCV replication in these cells, and investigating the possible role
of VLA-4 blockade in promoting JCV spread to the CNS.

MPyV AS A MODEL TO UNDERSTAND HUMAN
POLYOMAVIRUS PATHOGENESIS
Mouse polyomavirus, the founding member of the Polyomaviridae
family, is structurally and genomically similar to JCV, BKV, and
SV40 polyomaviruses. All polyomaviruses consist of a double-
stranded, covalently closed circular ~5-kb DNA genome encap-
sidated by a non-enveloped icosahedral shell composed of 72
pentameric VP1 capsomers. The genomes of all polyomaviruses
have a ~500-bp NCCR containing the origin of replication bidi-
rectional promoters separating the genome into early and late
genes, with respect to the onset of viral DNA synthesis: an
early region encoding the non-structural small T and large T
antigens; and a late region encoding the viral capsid proteins
VP1, VP2, and VP3. Unlike JCV, the MPyV genome does not
encode an agnoprotein in its late region and contains an addi-
tional early region sequence encoding the non-structural middle
T antigen, which mediates cellular transformation and tumor
induction (116).

Mouse polyomavirus also resembles BKV and JCV with regard
to infectivity and interaction with the immune system. Epidemi-
ologic surveys of wild mice showed that MPyV, like its human
counterparts, is a widely prevalent, harmless pathogen in its nat-
ural host reservoir (117, 118). MPyV infects a variety of epithelial
and mesenchymal cells (119), macrophages, and DCs, but not
lymphocytes (120). Neuroectodermal lineage cells were stated
to be non-permissive for MPyV replication (119), but evidence
for this host cell range restriction is lacking. As described above
for PML-JCV variants, strains of MPyV carrying single amino
acid differences in VP1 differed in glycan specificity, which in
turn altered tissue tropism and pathogenesis (121, 122). Simi-
lar to reports of long-term persistence of JCV and BKV DNA
in a variety of human tissues (6, 109, 123), MPyV DNA has
been detected in multiple organs, including those of the CNS,
kidney, and bone marrow, for months after acute infection in

both immunodeficient and immunocompetent mice (124–126),
with decline in immunologic status setting the stage for viral
reactivation. Both human and mouse polyomavirus infections
elicit potent neutralizing antibody responses directed toward VP1
that inhibit capsid binding to sialyated glycolipid and glycopro-
tein receptors on host cells. MPyV persistently infects mice in
the presence of virus-neutralizing VP1 Abs (127). Similarly, neu-
tralizing Abs against JCV, typically present in most individuals,
confer no protection against PML (128). While neither human
nor mouse polyomaviruses cause overt disease in immunocom-
petent adult hosts, immunosuppression provides an opportunity
for both human and mouse polyomaviruses to induce a variety of
disease processes (129). MPyV-induced rejection of mouse renal
allografts has been used to understand how immunosuppression
alters the evolution of polyomavirus-associated nephropathy and
how the immune response to polyomavirus infection contributes
to allograft injury (130, 131).

Mouse polyomavirus replication causes disease in the CNS. Pri-
mary glial cells derived from mouse corpus callosum showed that
type 1 astrocytes, but neither type 2 astrocytes nor oligodendro-
cytes, were infected by MPyV (132). This was not the case in vivo
as infection of congenitally athymic mice with MPyV resulted
in wasting disease and spinal cord demyelination consequent to
infection of oligodendrocytes (133). Demyelinated lesions were
not observed in euthymic mice, emphasizing the role of immune
suppression in disease progression. Infected nude mice eventually
developed hind limb paralysis, which was attributed to vertebral
bone tumors rather than PML-like disease (134, 135). In each
of these early studies, mice were infected by a natural route of
transmission via contamination from a neighboring mouse room.
In a study involving i.c. inoculation of adult nude mice with the
LID strain of MPyV, which caused fatal kidney and brain hemor-
rhages in newborn C3H mice (122), paralysis and vertebral tumors
developed in the absence of demyelination (135). This publica-
tion was largely responsible for the de facto moratorium on use
of MPyV CNS infection as a model for PML. Interestingly, mole-
cular modeling showed that the valine-to-alanine substitution at
VP1 amino acid 296 in LID was orthologous to 269VP1 of JCV,
where a serine to phenylalanine/tyrosine mutation was among the
frequent mutations detected in VP1 genes of JCV isolates from
PML patients (26). Although an MPyV-mouse model of CNS
disease cannot reproduce all aspects of JCV-PML pathology in
humans, just as significant aspects of other mouse models do not
fully recapitulate human disease, new evidence for the existence
of tissue-specific protective antiviral T cells and recent work from
our laboratory using i.c. inoculation of MPyV in tumor-resistant
mice, suggest that MPyV may prove to be an important animal
model of polyomavirus-induced CNS demyelination.

CONCLUSION
Progressive multifocal leukoencephalopathy, a rare complication
of immunosuppression, is caused by infection of the CNS by JC
virus, a highly ubiquitous and silent human pathogen in healthy
individuals. This wide discordance between virus prevalence and
disease incidence appears to stem from the coalescence of multi-
ple predisposing factors including viral determinants that alter
host cell tropism, host immune determinants that affect CNS
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surveillance for infected glial cells, and variability in the under-
lying immunosuppressive disease/treatment regimen. Lack of a
tractable animal model due to the tight species specificity of Poly-
omaviridae has stymied efforts to determine the contributions of
each factor to PML pathogenesis. Here, we have reviewed the lit-
erature describing previous attempts to develop animal models
for PML and propose use of mouse polyomavirus to study the
interplay between the host immune response and infection in the
brain. Significant research using peripheral blood mononuclear
cells and autopsy/biopsy tissue from PML patients implicates a
role for JCV-specific T cell responses in disease outcome. The
MPyV encephalitis model should provide insight into mecha-
nisms of JCV-induced demyelination and evolution of protec-
tive/pathological immune responses to JCV CNS infection in situ,
as well as provide a preclinical platform to evaluate strategies to
prevent and control PML.
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