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Chemoresistance and therapeutic selectivity are major obstacles to successful chemotherapy of ovarian cancer. Manganese
superoxide disumutase (MnSOD) is an important antioxidant enzyme responsible for the elimination of superoxide radicals. We
reported here that MnSOD was significantly elevated in ovarian cancer cells and its overexpression was one of the mechanisms that
increased resistance to apoptosis in cancer cells. Knockdown of MnSOD by small-interfering RNA (siRNA) led to an increase in
superoxide generation and sensitisation of ovarian cancer cells to the two front-line anti-cancer agents doxorubicin and paclitaxel
whose action involved free-radical generation. This synergistic effect was not observed in non-transformed ovarian surface epithelial
cells. Furthermore, our results revealed that this combination at the cellular level augmented activation of caspase-3 and caspase-9,
but not caspase-8, suggesting involvement of an intrinsic apoptotic pathway. Evaluation of signalling pathways showed that MnSOD
siRNA enhanced doxorubicin- and paclitaxel-induced phosphorylation of extracellular signal-regulated kinase 1/2. Akt activation was
not affected. These results identify a novel chemoresistance mechanism in ovarian cancer, and show that combination of drugs
capable of suppressing MnSOD with conventional chemotherapeutic agents may provide a novel strategy with a superior therapeutic
index and advantage for the treatment of refractory ovarian cancer.
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Ovarian cancer is the fourth or fifth most common cancer in North
America and Europe, and it is the leading cause of death from all
types of gynaecologic cancer (Jemal et al, 2006). The majority of
patients present with advanced-stage (stage III or IV) disease and
have a poor prognosis. The 5-year survival rate is only 16– 28%
(Heintz et al, 2001; Tingulstad et al, 2003). Currently, cytotoxic
chemotherapy that kills cancer cells mainly by apoptosis is the
standard treatment to prevent ovarian cancer recurrences after
maximal cytoreductive surgery or to treat recurrences (Aletti et al,
2007). However, commonly used cytotoxic chemotherapeutic
agents often have narrow therapeutic indices due to highly non-
specific cytotoxicity and undesirable side effects. Furthermore,
tumours tend to acquire resistance to cytotoxic chemo-
therapeutic agents, and in most the disease remain incurable.

The molecular basis of drug resistance is not well understood,
although a few speculative mechanisms associated with the
enhanced antioxidant capacity of tumour cells have been
suggested. Superoxide dismutases (SODs) are important antioxidant
enzymes responsible for the elimination of superoxide (O2

K�)

radicals. There are three known SODs, which are cytosolic copper/
zinc-containing SOD (Cu/Zn-SOD) and the mitochondrial manga-
nese-containing SOD (MnSOD). These SODs catalyse dismutation of
O2

K� into hydrogen peroxide which is then catalysed to O2 and H2O
by glutathione (GSH) peroxidase and catalase (Halliwell and
Gutteridge, 1999). As mitochondria respiration is the main source
of O2

K� generation in the cells, MnSOD is of prime importance in
maintaining the cellular ROS balance. Genetic knockout studies in
mice indicate that MnSOD, but not other SODs, is essential for cell
survival (Carlsson et al, 1995; Li et al, 1995; Reaume et al, 1996).
Although numerous studies have demonstrated altered antioxidant
enzyme activity in a variety of solid tumours, ovarian cancer is
unique because generation of ROS appears to be a risk factor for
ovarian cancer (Murdoch, 2005). This is a scenario that may not be
found with most other malignancies and challenges the view of
MnSOD as a tumour suppressor. MnSOD is overexpressed in the
majority (70–80%) of ovarian cancer tissues and the level of
expression of MnSOD is also positively correlated with more
advanced features in ovarian cancer patients, such as tumour grade
and disease progression (Ishikawa et al, 1990; Hileman et al, 2004;
Hu et al, 2005). Most interesting, MnSOD overexpression has been
shown to suppress apoptosis induced by anti-cancer drugs in
various cell types (Hirose et al, 1993). However, the detailed
mechanism underlying MnSOD protection from anti-cancer drug-
induced cell death is still largely unknown.
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In this study, we show for the first time that overexpression of
MnSOD is one of the mechanisms that increases resistance to
apoptosis in ovarian cancer cells. We also report a strategy to
inhibit MnSOD and increase O2

K� generation in ovarian cancer
cells as a novel mechanism to enhance apoptosis induced by
doxorubicin (DOX) and paclitaxel (PTX), the two front-line anti-
cancer agents used in ovarian cancer therapy, leading to a
preferential killing of the cancer cells. Our results further delineate
a novel mechanism for extracellular signal-regulated kinase
(ERK)1/2-dependent up-regulation of caspase-9 that contributes
to this synergistic effect.

MATERIALS AND METHODS

Antibodies and reagents

Polyclonal antibodies against Akt, phospho-Akt, ERK1/2, phos-
pho-ERK1/2, caspase-9, and caspase-3 were purchased from Cell
Signaling (Beverly, MA, USA). Manganese superoxide disumutase,
Cu/Zn-SOD polyclonal antibodies were obtained from Stressgen
(Victoria, BC, Canada). Caspase-8 antibody was from BD
Pharmingen (San Diego, CA, USA) and b-actin antibody was from
Sigma (St Louis, MO, USA). Peroxidase-conjugated secondary
antibodies were obtained from Bio-Rad (Hercules, CA, USA).
Caspase-8 inhibitor Z-IETD-FMK, caspase-9 inhibitor Z-LEHD-
FMK, and pan-caspase inhibitor Z-VAD-FMK were purchased
from R&D Systems, Inc. (Minneapolis, MN, USA). Paclitaxel, DOX,
and the MEK1 inhibitor PD98059 were obtained from Calbiochem
(San Diego, CA, USA). N-Acetyl cysteine (NAC) and GSH were
purchased from Sigma. The human MnSOD expression plasmid
was a gift from Dr Abbadie at the Institute of Biology of Lille,
France (Bernard et al, 2001). Dominant-negative mutants of
human MEK1 (DN-MEK1; Wang et al, 2006) and caspase-9
(Mashima et al, 2005) were described elsewhere.

Cell culture and treatments

Human ovarian carcinoma cell lines (CaOV-3, SKOV-3, and
OVCAR-3) and human OSE cell lines (IOSE-29, IOSE-80, IOSE-
397, and IOSE-398) were generously provided by Dr N Auersperg
at University of British Columbia, Vancouver, BC, Canada. These
cell lines were maintained in medium 199 : 105 supplemented with
5% FBS, 100 U ml�1 penicillin-streptomycin (Invitrogen, Carlsbad,
CA, USA) in a humidified atmosphere of 5% CO2 at 371C. Cells
were grown to about 80% confluence and then treated with 5 mM

DOX or 100 nM PTX for 48 h.

Stable and transient transfections

Stable transfection was performed with pcDNA3.1 plasmid-
containing MnSOD or an empty vector alone, and colonies were
selected in 0.4 mg ml�1 G418 (Invitrogen). For transient transfec-
tion, at 24 h after transfection, the cells were undergone treatments
for further 48 h and lysed for analysis. Each experiment was
repeated with three independent transfections. All transfections
were performed using the Lipofectamine 2000 transfection reagent
according to the manufacturer’s instructions (Invitrogen).

siRNA transfection for knockdown of MnSOD

SKOV-3 cells were transfected with 10 nM MnSOD small-interfer-
ing RNA (siRNA) oligonucleotides or scrambled oligonucleotides
(Dharmacon Research, Lafayette, CO, USA) using siLectFect
(Bio-Rad), according to the manufacturer’s instructions. After
48 h, transfected cells were harvested for examining the expression
of MnSOD protein by western blot analysis, or subjected to drug
treatments, and apoptosis assays.

ROS assay

Intracellular ROS production was measured using the O2
K�-

sensitive probe dihydroethidium (Molecular Probes, Eugene, OR,
USA) as described in previous reports (Yeung et al, 2006). Briefly,
cells were labelled with 2 mM of dihydroethidium for 15 min at
371C, and dye oxidation (increase in fluorescence) was measured
using an EPICS Elite flow cytometer (Beckman-Coulter, Miami, FL,
USA) with excitation and emission settings of 488 and 605 nm
respectively.

MnSOD enzymatic activity assay

The MnSOD enzyme activity level was determined by a SOD Assay
Kit (Cayman Chemical, Ann Arbor, MI, USA) in accordance with
the manufacturer’s protocols as described. In brief, this kit allows
SOD assay by using a highly water soluble tetrazolium salt for
detection of O2

K� radicals generated by xanthine oxidase and
hypoxanthine (Liu et al, 2005). The specific activity of MnSOD was
determined by adding 2 mM KCN to samples to block Cu/Zn-SOD
and extracellular SOD activities completely. MnSOD activity was
calculated by using the equation obtained from the linear
regression of the standard curve substituting the linearised rate
for each sample.

MTT assay

Cell viability was assessed colorimetrically by the mitochondria-
dependent reduction of MTT (3-(4,5-dimethyl-thiazol-2-yl)-2,5-
diphenyltetrazolium bromide) (Sigma) to formazan. The absor-
bance was measured with a microplate reader reading at 570 nm
with 630 nm as the reference wavelength. Relative cell viability was
expressed as the fold change over control cultures.

Apoptosis analysis

Cells were analysed for apoptosis by TUNEL (terminal deoxynu-
cleotidyl transferase-mediated dUTP nick-end labelling) using a
commercially available In situ Cell Death Detection kit (Boehringer
Mannheim, Mannheim, Germany) to find DNA strand breaks
according to the manufacturer’s instructions. To detect morpho-
logic changes in the apoptotic process, cell nuclei were stained with
1 mg ml�1 40,6-diamidino-2-phenylindole (DAPI; Pon et al, 2005).
Apoptotic cells were identified by chromatin condensation and
nuclei fragmentation. The number of TUNEL/DAPI-positive cells
was counted in four different fields with at least 500 cells counted
in each instance and representative fields were photographed. To
confirm the findings, apoptotic cells were also detected by annexin
V staining (BD Pharmingen) following the manufacturer’s
instructions, as described in previous reports (Pon et al, 2005;
Yeung et al, 2006). Briefly, adherent and floating cells were
collected by trypsinisation and washed with PBS twice. Cells were
re-suspended in annexin V binding buffer containing FITC-
conjugated annexin V. Propidium iodide (PI) at 1 mg ml�1 was
then added, and samples were incubated for 15 min at room
temperature in the dark. The percentage of cells with annexin Vþ /
PI� was measured using FACS (Becton Dickinson, San Jose, CA,
USA). Each set of experiments were performed in replicate and
repeated three times.

Western blot analysis

Protein (50mg) was loaded onto 12% SDS–PAGE gels, separated,
and transferred onto nitrocellulose membranes (Bio-Rad). The
membranes were blocked with 3% non-fat milk and incubated with
the appropriate primary antibody overnight at 41C. After washing,
the membranes were incubated with the corresponding per-
oxidase-conjugated secondary antibody for 1 h at room temperature.
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Protein bands were visualised by enhanced chemiluminescence
system (Amersham Biosciences, Piscataway, NJ, USA).

Statistical analysis

Data were expressed as the mean±s.d. of at least three separate
experiments. Statistical analysis was done using one-way analysis
of variance followed by Tukey’s least significant difference t-test
for post hoc analysis (GraphPad Software, San Diego, CA, USA),
and Po0.05 was considered significant.

RESULTS

MnSOD protein levels in OSE and cancer cell lines

It has been shown in earlier studies that the majority of ovarian
cancer tissues exhibited higher levels of MnSOD expression as
compared with normal or benign ovary tissues (Ishikawa et al,
1990; Hileman et al, 2004; Hu et al, 2005). In the present study, we
compared the expression level of MnSOD in three ovarian
carcinoma cell lines (CaOV-3, SKOV-3, and OVCAR-3) against
immortalised, non-tumourigenic OSE cell lines (IOSE-29, IOSE-80,
IOSE-397, and IOSE-398). As shown in Figure 1A, OSE cells
exhibited only a weak MnSOD signal. In contrast, all of the ovarian
cancer cell lines, with the exception of OVCAR-3, showed
substantially higher levels of MnSOD. As MnSOD catalyses the
elimination of O2

K� in the mitochondria where a large portion of
cellular ROS is generated, we measured the O2

K� content by flow
cytometry using the ROS-sensitive probe dihydroethidium. Con-
sistently, CaOV-3 and SKOV-3 exhibited relatively lower levels of
fluorescence (cellular O2

K� level) compared with OVCAR-3
(Figure 1B).

Expression of MnSOD confers resistance to drug-induced
apoptosis

To investigate the role of MnSOD in ovarian carcinoma cells, we
used gain-of-function and loss-of-function strategies. We selected
two cell lines: OVCAR-3, which MnSOD is almost undetectable and
sensitive to standard chemotherapy, and SKOV-3, which express

high levels of MnSOD and are more resistant to chemotherapy
(Gibb et al, 1997). The former cell line was transfected with human
MnSOD expression vector. SKOV-3 cells were transfected with
MnSOD siRNA.

We first transfected OVCAR-3 cells with empty vector
(pcDNA3.1) or MnSOD-expressing vector. After transfection, cells
were cultured in a medium containing 400 mg ml�1 of G418. Each
colony that grew after G418 selection was picked and expanded.
We obtained three independent clones, which expressed MnSOD.
Notably, MnSOD was much expressed (3.7- to 3.9-fold) in all of
three MnSOD-expressing OVCAR-3 clones (M5, M17, and M24)
than in parental (WT) and vector (Neo) control clones (Figure 2A).
It is important to note that the levels of MnSOD in these stable cell
lines were less than those detected in MnSOD-overexpressing
human ovarian carcinoma cell lines, including SKOV-3, indicating
that expression was within normal levels (Figure 2A). Analysis
(RT–PCR) showed that MnSOD mRNA was also significantly
elevated in these stable transfectants (data not shown). Consistent
with the western blots, all MnSOD-overexpressing clones showed
decrease in ethidium fluorescence, showing that MnSOD is
functionally active and able to reduce cellular ROS level (9.4–
27.7%) in these cell lines. The representative result from one of
them (M24) is shown in Figure 2B. To confirm the levels of
MnSOD enzymatic activity, we performed MnSOD activity assays.
As shown in Figure 2C, MnSOD-transfected clones had statistically
significant increases in MnSOD activity compared with WT, and
the activity of Neo was not different from that of WT. The values
obtained from the MnSOD activity correlated well with the
expression level and the O2

K� content (Po0.05), suggesting that
OVCAR-3 constitutively express active MnSOD.

DOX and PTX are two potent and commonly used chemother-
apeutic agents of treating ovarian cancer in the clinic. In addition,
both classes of these drugs are able to generate ROS production in
cancer cells, and ROS was found to be involved in DOX- and PTX-
induced cell death in vitro and in vivo (Conklin, 2004; Ramanathan
et al, 2005; Alexandre et al, 2006). Therefore, it was of interest to
determine whether MnSOD could inhibit their ability to induce
apoptosis. The dosages of both DOX and PTX were determined by
LD50 obtained from MTT assays (Supplementary Figure 1). As
shown, MnSOD-overexpressing cells all had greater cell viability
than WT and Neo control cells in response to 5 mM DOX or 100 nM

PTX (Po0.05 vs WT and Neo cells; Figure 3A). To determine
whether apoptosis accounted for the loss of viability, we first
examined the presence of DNA fragmentation by TUNEL.
Figure 3B shows that the percentage of TUNEL-positive cells was
significantly lower in DOX- or PTX-treated MnSOD-overexpres-
sing cells compared with WT and Neo controls. The ability of
MnSOD to suppress apoptosis was examined also by counting
DAPI-stained cells with condensed nuclei. Similar to the TUNEL
staining experiments, a significant decrease in DOX- or PTX-
induced apoptosis was observed in MnSOD-overexpressing clones
(Figure 3C). Together, the above results suggest that overexpres-
sion of MnSOD rendered OVCAR-3 cells more resistant to
apoptosis induction by chemotherapeutic agents.

Inhibition of MnSOD sensitises ovarian cancer cells to
chemotherapy, whereas OSE cells are unaffected

Subsequently, we used RNA interference to reduce MnSOD
expression in SKOV-3 ovarian cancer cell line, which expressed
high levels of endogenous MnSOD. Western blot analysis revealed
that transfection with MnSOD siRNA specifically suppressed the
protein expression of MnSOD and did not affect the expression of
Cu/Zn-SOD or b-actin. The non-specific (Ctrl) siRNA exhibited no
effect on the expression of all these molecules tested (Figure 4A).
Moreover, flow cytometric analysis showed that there was an 11%
increase in O2

K� content in cells transfected with MnSOD siRNA,
whereas Ctrl siRNA did not cause any significant change in cellular
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Figure 1 Manganese superoxide disumutase (MnSOD) expression in
OSE and ovarian cancer cells. (A) Whole-cell lysates from different ovarian
cell lines containing equal amounts of protein (50 mg) were loaded in each
lane and analysed for expression of MnSOD by western blotting. b-Actin
was also blotted as a protein-loading control. (B) O2

K� level was measured
by flow cytometry analysis using dihydroethidium. Solid histogram, CaOV-3
and SKOV-3 cells; open histogram, OVCAR-3.
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O2
K� level (Figure 4B). Consistently, MnSOD activity was

significantly lower in cells transfected with MnSOD siRNA from
the Ctrl siRNA (Figure 4C). Figure 5A shows an B70% decrease in
cell viability compared with the control. In accordance with this,
5 mM DOX or 100 nM PTX induced 2.5 and 9.6% apoptosis
respectively, whereas a combination of DOX or PTX and MnSOD
siRNA induced 15.6 and 32.7% apoptosis respectively (Po0.001 vs
untransfected control and Ctrl siRNA; Figure 5B). Untreated and
MnSOD siRNA-transfected cells had a very minimal number of
apoptotic cells (Figure 5B). We also examined the reactivity to
annexin V-FITC in conjunction with PI to detect exposure of
dislocated phosphatidylserine to the external face of the plasma
membrane, a process regarded as a marker of apoptosis. In view of
the cells that are positive for both annexin V and PI may also be
cells that are undergoing necrosis, only the percentage of early
apoptotic cells (annexin V positive and PI negative) was quantified
from three individual experiments and shown in Figure 5C.
MnSOD siRNA increased the fraction of apoptotic cells to 12.6 and
23.1% respectively. This magnitude of change was comparable with
the fold induction detected by TUNEL and DAPI assays. The slight
variation using different techniques can be accounted for by their
different sensitivity and detection of specific markers in the
apoptotic pathway. Together, these results indicate that DOX or
PTX, when used in combination with MnSOD siRNA, induce more
efficient (3.5- to 6-fold) anti-cancer effects than each drug alone.

Treatment of cells with antioxidants, such as GSH (5 mM) or
NAC (5 mM), which can scavenge mitochondria-derived ROS,
abolished the effects of MnSOD siRNA on DOX- and PTX-induced
apoptosis (Figure 6A). Moreover, intracellular O2

K� was actually
generated by the treatment of OVCAR-3 (data not shown) and
SKOV-3 (Figure 6B) cells with each anti-cancer drug, suggesting a
role for ROS in the process.

We also studied the combined effect of MnSOD siRNA and
chemotherapeutic drugs in non-transformed OSE cells and did not
find any synergistic effect. Figure 7A shows that a combination
treatment of MnSOD siRNA with DOX and PTX induced 2.2 and
6.5% apoptosis respectively in OSE, which is almost the same as
that by DOX or PTX alone. OSE showed only little, if any, increase
of O2

K� in response to DOX and PTX treatment (Figure 7B) than
did ovarian cancer cells (Figure 6B). Taken together, the above
results suggest that the active generation of O2

K� in ovarian cancer

cells by MnSOD inhibition renders these cells more susceptible to
apoptosis induced by chemotherapeutic drugs.

ERK1/2 is critical for MnSOD siRNA-mediated
chemosensitisation

Because phosphatidylinositol 3-kinase (PI3K) and mitogen-acti-
vated protein kinase (MAPK) are important in the regulation of
survival in human ovarian cancer cells (Mills et al, 2001; Choi et al,
2003), we tested whether PI3K and MAPK are involved in MnSOD
siRNA-mediated chemosensitisation. To this end, we first exam-
ined the activation of Akt and ERK1/2 in MnSOD siRNA-
transfected and control cells by western blotting. As shown in
Figure 8A, MnSOD had no effect on the phosphorylation of Akt.
On the other hand, western blot analysis revealed significant levels
of ERK1/2 phosphorylation in MnSOD siRNA-transfected but not
in the Ctrl siRNA-transfected cells treated with DOX and PTX. In
contrast to ERK1/2, MnSOD had no effect on p38 MAPK and JNK
activation (data not shown).

We further explored whether ERK1/2 activation is involved in
the MnSOD siRNA-mediated sensitivity to apoptosis in response to
chemotherapeutic agents. To address this, SKOV-3 cells were pre-
treated with 50 mM of PD98059 for 30 min, and this was followed by
treatment with DOX or PTX for a further 48 h. Figure 8B shows
that the PD98059 abolished DOX- and PTX-induced apoptotic cell
death in MnSOD siRNA-transfected cells (Po0.05 vs PD98059
untreated control cells). We further transfected DN-MEK1 vector
into siRNA-transfected cells to examine their susceptibility to DOX
and PTX. Again, the reduction in ERK1/2 activation by transfec-
tion with DN-MEK1 greatly suppressed DOX- and PTX-induced
apoptosis in MnSOD siRNA-transfected cells but not the Ctrl
siRNA-transfected cells as demonstrated by the TUNEL assay
(Figure 8C; Po0.05 vs untransfected control cells). These results
clearly demonstrate that MnSOD siRNA potentiates DOX- and
PTX-induced apoptosis through the activation of ERK1/2.

Caspase-9 acts as a downstream effector of ERK1/2

Caspases are major mediators of apoptosis (Lowe and Lin, 2000)
whose activation depends on proteolytic cleavage of the procas-
pase to a smaller, enzymatically active form. To determine the
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Figure 2 Overexpression of manganese superoxide disumutase (MnSOD) reduces ROS production in OVCAR-3. (A) Whole-cell lysates of MnSOD
stably transfected clones (M5, M17, and M24), parental (WT), and vector (Neo) control cells were harvested and analysed for expression of MnSOD by
western blotting. b-Actin serves as a protein-loading control. (B) O2

K� level was measured by flow cytometry analysis using dihydroethidium. Solid
histogram, MnSOD-overexpressing clones; open histogram, Neo control. (C) MnSOD activity was measured. Values are mean±s.d. of three independent
experiments. *Po0.05 vs WT and Neo control cells.
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mechanism underlying the MnSOD siRNA-mediated ERK1/2-
dependent apoptotic effect, we examined the role of caspases by
western blotting using antibodies that recognise both the
procaspases and the cleaved subunits. As shown in Figure 9A,
DOX treatment displayed a significantly enhanced cleavage of
caspase-9, but not caspase-8, in cells transfected with MnSOD
siRNA compared with cells transfected with control oligonucleo-
tides. In addition, caspase-3 level was higher in MnSOD siRNA-
transfected cells than in the Ctrl siRNA-transfected cells, suggest-
ing its activation downstream of caspase-9. These effects were
erased by the inhibition of MEK1 using PD98059. In both
untreated and PTX-treated cells, although we failed to detect
cleavage of caspase-9, procaspase-9 levels was lower in the MnSOD
siRNA transfectants. Furthermore, addition of PD98059 prevented
the processing of procaspase-9 to its active species (Figure 9B).
These results indicate a possible role for the mitochondria
apoptotic pathway rather than the death receptor pathway in
chemosensitisation of DOX- and PTX-induced apoptosis in
ovarian carcinoma cells.

To ascertain the role of caspase-9, we treated siRNA-transfected
cells with a specific inhibitor of caspase-9 (Z-LEHD-FMK) and
then examined their sensitivity to apoptosis. Under these
conditions, the DOX- or PTX-induced apoptosis was clearly
prevented by the caspase-9 inhibitor Z-LEHD-FMK (Figure 9B).
Similarly, treatment the cells with the pan-caspase inhibitor (Z-
VAD-FMK) totally inhibited DOX- or PTX-induced apoptosis. In
contrast, the inhibitor of caspase-8 (Z-IETD-FMK) had no effect on
apoptosis. To confirm these data, a dominant-negative mutant of
caspase-9 was used, and it also effectively inhibited apoptotic
response to DOX and PTX in MnSOD-depleted cells (Figure 9C).
Furthermore, pre-treatment of GSH (data not shown) or its
precursor NAC (Figure 10) prevented the activation of caspase-9
caused by MnSOD siRNA. Consistent with the results described
above, there was no effect on caspase-8 (Figure 10). These data
suggest that cellular oxidative status could affect MnSOD siRNA-
induced apoptosis to DOX or PTX by regulating caspase, the
central component of the apoptotic pathways, and in particular
caspase-9 activation.
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DISCUSSION

DOX and PTX are two of the most widely used anti-cancer drugs in
the clinical treatment of ovarian cancer. In addition to the dose-
limiting toxicity, these two agents induce drug resistance, which
still pose a major problem for their clinical use (Agarwal and Kaye,

2003). In the present study, we demonstrate that MnSOD siRNA
specifically exerts an enhancing role on ovarian cancer cell
apoptosis induced by chemotherapeutic treatment and that this
effect is restricted to the activation of intrinsic apoptotic pathways
through ERK1/2. Importantly, these changes in chemotherapy

MnSOD

�-Actin

M
nS

O
D

 s
iR

N
A

C
trl

C
trl

 s
iR

N
A

Cu/Zn-SOD

MnSOD siRNA
(11%)Ctrl,

Ctrl siRNA

SKOV-3 MnSOD (U per mg protein)

WT 0.318±0.007

Ctrl siRNA 0.234±0.018

MnSOD siRNA 0.109±0.023*

100

0

E
ve

nt
s

M1

100 101 102 103 104

PI-LOG

Figure 4 Suppressing manganese superoxide disumutase (MnSOD) expression by small-interfering RNA (siRNA) increases ROS production in SKOV-3.
(A) Cells transfected with non-specific control (Ctrl siRNA) or MnSOD siRNA were analysed for expression of MnSOD, Cu/Zn-SOD proteins by western
blotting using the respective antibodies. b-Actin serves as a protein-loading control. (B) O2

K� level was measured by flow cytometry analysis using
dihydroethidium. Solid histogram, untransfected and Ctrl siRNA-transfected cells; open histogram, MnSOD siRNA-transfected cells. (C) MnSOD activity was
measured. Values are mean±s.d. of three independent experiments. *Po0.05 vs WT and Neo control cells.

0

5
10

15

20

25
30

35

Ctrl siRNACtrl

DOX + –

+–

%
 o

f a
po

pt
ot

ic
 c

el
ls

–

–PTX

+ –

+–

–

–

MnSOD siRNA

+ –

+–

–

–

**

**

0

0.2

0.4

0.6

0.8

1

1.2

Ctrl siRNACtrl

DOX + –

+–

–

–PTX

+ –

+–

–

–

MnSOD siRNA

+

+–

– –

–

** **

F
ol

d 
ch

an
ge

 in
ce

ll 
nu

m
be

r

0

5

10

15

20

25

Ctrl siRNA

+ –

+–

–

–

MnSOD siRNA

+ –

+–

–

–

DOX

%
 o

f a
nn

ex
in

 V
+

/P
I–

PTX

*

**

Figure 5 Suppressing manganese superoxide disumutase (MnSOD) expression by small-interfering RNA (siRNA) sensitises SKOV-3 cells to doxorubicin
(DOX)- and paclitaxel (PTX)-induced apoptosis. Cells were exposed to DOX (5 mM) or PTX (0.1mM) for 48 h and then harvested for (A) 3-(4,5-dimethyl-
thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The absorbance of wells not exposed to treatments was arbitrarily set as 1, and cell growth after
treatment was expressed as the fold changes compared with the control. Apoptosis was measured by (B) terminal deoxynucleotidyl transferase-mediated
dUTP nick-end labelling (TUNEL) assay and (C) by staining with FITC-annexin V and propidium iodide (PI) and analysed by flow cytometry. The per cent of
apoptotic cells defined as annexin Vþ /PI� (lower right quadrant) were counted. Experiments were repeated three times, and data are shown as mean±s.d.
*Po0.05, **Po0.001 vs untransfected and Ctrl siRNA cells.

MnSOD inhibition mediates chemosensitisation

BHY Yeung et al

288

British Journal of Cancer (2008) 99(2), 283 – 293 & 2008 Cancer Research UK

T
ra

n
sla

tio
n

a
l

T
h

e
ra

p
e
u

tic
s



(56.7%)
DOX

(13%)
PTX

0

5

10

15

20

25

30

35

40

**

*
**

*

*
%

 o
f a

po
pt

ot
ic

 c
el

ls
 

DOX PTX

GSH

DOX PTX– GSH NAC

NAC

DOX PTX

*

TUNEL

DAPI

100

0

E
ve

nt
s

M1

M1

100 101 102 103 104

PI-LOG

100

0

E
ve

nt
s

100 101 102 103 104

PI-LOG

Figure 6 Involvement of ROS production in anti-cancer drug-induced apoptosis in ovarian cancer cells. SKOV-3 cells transfected with manganese
superoxide disumutase (MnSOD) small-interfering RNA (siRNA) were pre-treated with glutathione (GSH, 5 mM) or N-acetyl cysteine (NAC, 5 mM) for
30 min, and then the cells were treated with doxorubicin (DOX, 5 mM) or paclitaxel (PTX, 0.1 mM) for another 48 h. (A) Apoptosis was measured by
terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) assay and 40 ,6-diamidino-2-phenylindole (DAPI) staining. Experiments
were repeated three times, and data are shown as mean±s.d. *Po0.05 vs untreated control cells. (B) O2

K� level of DOX- and PTX-treated cells was
measured by flow cytometry analysis using dihydroethidium. Solid histogram, untreated cells; open histogram, DOX- and PTX-treated cells.

0

2

4

6

8

10

M
nS

O
D

 s
iR

N
A

C
trl

 s
iR

N
A

M
nS

O
D

 s
iR

N
A

C
trl

 s
iR

N
A

MnSOD

� -Actin

IOSE-29 IOSE-398

Ctrl siRNA

MnSOD siRNA

–

+

+

–

%
 o

f a
po

pt
ot

ic
 c

el
ls

 

IOSE-29 IOSE-398

–

+

+

–

–

+

+

–

–

+

+

–

–

+

+

–

–

+

+

–

DOX   PTX DOX   PTX

IOSE-29 IOSE-398 

DOX                                  PTX
DOX                                    PTX

50

0

E
ve

nt
s

100 101 102 103

PI-LOG

80

0

E
ve

nt
s

100 101 102 103

PI-LOG

30

0

E
ve

nt
s

100 101 102 103 104

PI-LOG

80

0

E
ve

nt
s

100 101 102 103 104

PI-LOG

Figure 7 Inhibition of manganese superoxide disumutase (MnSOD) does not sensitise chemotherapy-induced apoptosis in non-transformed OSE cells.
IOSE-29 and IOSE-398 cells were transfected with non-specific control (Ctrl small-interfering RNA, siRNA) or MnSOD siRNA in the presence or absence of
doxorubicin (DOX, 5 mM) or paclitaxel (PTX, 0.1 mM) for 48 h. (A) Expression of MnSOD protein was analysed by western blotting. b-Actin serves as a
protein-loading control. (B) Apoptosis was assessed by the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) assay.
Experiments were repeated three times, and data are shown as mean±s.d. (C) O2

K� level of DOX- and PTX-treated cells was measured by flow cytometry
analysis using dihydroethidium. Solid histogram, untreated cells; open histogram, DOX- and PTX-treated cells.

MnSOD inhibition mediates chemosensitisation

BHY Yeung et al

289

British Journal of Cancer (2008) 99(2), 283 – 293& 2008 Cancer Research UK

T
ra

n
sl

a
ti

o
n

a
l

T
h

e
ra

p
e
u

ti
c
s



sensitivity occurred at pharmacologically attainable drug levels
(Karlsson et al, 1999). Moreover, low concentrations of DOX and
PTX with MnSOD siRNA can also induce an enhanced cytotoxic
response in the cancer cells (data not shown), suggesting potential
utility to improve clinical efficacy.

These intriguing findings are relevant to a large number of
ovarian carcinomas. We and others have observed that ovarian
carcinomas constitutively overexpress MnSOD compared with
normal cells and tissues, and increased MnSOD has been detected
in B70% of malignant ovarian cancer tissues (Ishikawa et al, 1990;
Hileman et al, 2004; Hu et al, 2005), although there was some
variations among the individual samples. This variation likely
reflects the various degrees of ROS stress and other yet unknown
changes in the respective cell lines or cancer tissues. Therapeutic
selectivity is one of the most important considerations in cancer
treatment. The differential expression of MnSOD in ovarian cancer
and normal cells likely is important in mediating the cancer-
selective effects that we observed. Although the precise underlying
mechanisms responsible for the increase of MnSOD expression in
ovarian cancer remain unclear at the present time, MnSOD has
been shown to be inducible by multiple factors such as hypoxia,
ROS, and inflammatory cytokines including interleukin-1 and
tumour necrosis factor (Masuda et al, 1988; Wong and Goeddel,
1988). MnSOD has also been identified as a potential target for the

tumour suppressor protein p53 (Pani et al, 2000), which is
frequently mutated in a variety of human cancers, including those
of the ovary. Moreover, it has been known for a long time that due
to the Warburg effect, cancer cells are under intrinsic oxidative
stress that likely forces these cells to rely more on antioxidant
enzymes such as MnSOD for O2

K� elimination, thus making the
malignant cells more vulnerable to MnSOD inhibition than normal
cells (Pelicano et al, 2004). Supporting this view, high expression
of MnSOD and other antioxidant enzymes such as Cu/Zn-SOD was
observed in ovarian cancer cells (Supplementary Figure 2; Hu et al,
2005). We also showed that the ovarian cancer cells were more
sensitive to DOX and PTX than non-transformed OSE by MnSOD
inhibition, as demonstrated by the significant accumulation of
O2

K� and the subsequent apoptosis.
One mechanism that could underlie the enhancing effect of

MnSOD siRNA on the cytotoxic chemotherapeutic agents is the
reduction in the cellular capacity to withstand the oxidative
damage exerted by these agents. The generation of O2

K� radicals
appears to be a critical event in mediating drug-induced apoptosis,
because both DOX and PTX were able to induce O2

K� generation in
human ovarian cancer cells and inhibition of ROS generation by
NAC or GSH effectively protected the cells from the cytotoxic
effects. The reduction in the cellular activity of the constitutive
enzyme MnSOD to suppress O2

K� elimination could also underlie
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the potentiation of DOX and PTX cytotoxicity. It is worthy to note
here that the MnSOD-expressing SKOV-3 is more resistant to
standard chemotherapy than MnSOD low OVCAR-3 cells (Figures

3B and 5B; Gibb et al, 1997). When accumulated to high levels,
ROS are chemically reactive and toxic to the cells. Given that ROS
stress is dependant on the balance between O2

K� generation and
elimination, interference of both processes is expected to cause a
severe oxidative stress and may enhance the killing of cancer cells.

The signal transduction mechanism by which MnSOD functions
in cell survival or apoptosis of any specific cell type is not clearly
defined. We showed that apoptosis enhancement by MnSOD
siRNA was mediated through the activation of an MEK1-ERK1/2
signalling pathway. The role of ERK1/2 in drug resistance has been
extensively exploited in different cell systems. It has been shown to
be a survival signalling factor. Here, in contrast, we find that the
activation of ERK1/2 is associated with cancer cell apoptosis. The
MEK1 inhibitor PD98059 suppressed ERK1/2 activation and
effectively protected the MnSOD siRNA-transfected cells from
the drug-induced apoptosis. This observation however seems to be
consistent with the mechanism of drug-resistant action in ovarian
cancer. Several studies have demonstrated that ERK1/2 activity is
elevated in human ovarian tumours, and its activation conferred
resistance to chemotherapeutic agents (Pan et al, 2002; Steinmetz
et al, 2004; Lee et al, 2007). Cisplatin, another platinum-based
chemotherapy, has also been found recently to enhance ovarian
cancer cell resistance to apoptosis through activation of ERK1/2
(Lee et al, 2007). Other members of the MAPK family, such as p38
MAPK and JNK, are not involved. It has also been postulated that
MnSOD via O2

K� elimination to regulate cell proliferation and
tumourigenesis through the activation of Ras-mediated signalling
pathway (Yang et al, 1999; Ridnour et al, 2004). How ERK1/2
mediates cellular apoptosis remains poorly understood, but it
appears that this may occur at different levels (Zhuang and
Schnellmann, 2006). Extracellular signal-regulated kinase 1/2 may
act upstream of mitochondrial cytochrome c release and caspase-3
activation through upregulation of Bax and p53. Alternatively,
ERK1/2 can regulate the apoptotic pathway at the level of caspase-
8. There is also evidence that ERK1/2 can promote apoptosis
through suppression of Akt-mediated survival signal. However,
although PI3K/Akt is important in ovarian cancer biology and
tumourigenesis (Yuan et al, 2000; Mills et al, 2001), our results
suggest that it is not involved in the apoptosis induced by MnSOD
siRNA in combination with DOX and PTX.
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a protein-loading control. Right, apoptosis was assessed by the TUNEL
assay. Experiments were repeated three times, and data are shown as
mean±s.d. *Po0.05 vs untreated MnSOD siRNA-transfected cells as
indicated.
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There are two major cellular pathways of drug-induced
apoptosis: the mitochondrial pathway, initiated by release of
cytochrome c, and the death receptor pathway, initiated by ligation
of the Fas receptor by its ligand FasL (Green, 1998). Previously,
Fujimura et al (1999) reported that MnSOD inhibits release of
cytochrome c to the cytosol and reduces apoptosis after permanent
focal cerebral ischaemia. Here we showed that MnSOD siRNA
increased caspase-9 activation and drug-induced apoptosis
through an MEK1-ERK1/2-dependent mechanism, thereby enhan-
cing the ability of chemotherapeutic agents to kill tumour cells.
The caspase-8/death receptor pathway of apoptosis is shown to be
activated by chemotherapy-induced apoptotic signals such as ROS
(Xia et al, 2005). Evidence is also emerging that death receptor
function may be involved in the control of ovarian cancer cell
apoptosis (Wajant, 2003). However, in this study, we ruled out this
possibility because MnSOD inhibition had no effect on caspase-8
activity. Nor did treatment of cells with a caspase-8 inhibitor
(Z-IETD-FMK) affect apoptosis.

In conclusion, this study reveals important mechanism-based
knowledge of the synergism between MnSOD inhibition and
clinically relevant anti-cancer agents. These findings warrant
further consideration as a novel strategy of treating refractory
tumours to convey survival benefits for ovarian cancer patients.
Our results also suggest that higher levels of MnSOD in ovarian
cancer may be a good prognostic marker for chemotherapy.

ACKNOWLEDGEMENTS

We thank Ms A Mak for excellent technical assistance. The present
work was supported by Earmarked Research Grant HKU 7484/04M
(to ASTW) of the Research Grant Council, Hong Kong SAR
Government.

Supplementary Information accompanies the paper on British
Journal of Cancer website (http://www.nature.com/bjc)

REFERENCES

Agarwal DR, Kaye SB (2003) Ovarian cancer: strategies for overcoming
resistance to chemotherapy. Nat Rev 3: 502 – 516

Aletti GD, Gallenberg MM, Cliby WA, Jatoi A, Hartmann LC (2007)
Current management strategies for ovarian cancer. Mayo Clin Proc 82:
751 – 770

Alexandre J, Batteux F, Nicco C, Chereau C, Laurent A, Guillevin L, Weill B,
Goldwasser F (2006) Accumulation of hydrogen peroxide is an early and
crucial step for paclitaxel-induced cancer cell death both in vitro and
in vivo. Int J Cancer 119: 41 – 48

Bernard D, Quatannens B, Begue A, Vandenbunder B, Abbadie C (2001)
Antiproliferative and antiapoptotic effects of cRel may occur within the
same cells via the up-regulation of manganese superoxide dismutase.
Cancer Res 61: 2656 – 2664

Carlsson LM, Jonsson J, Edlund T, Marklund SL (1995) Mice lacking
extracellular superoxide dismutase are more sensitive to hyperoxia. Proc
Natl Acad Sci USA 92: 6264 – 6268

Choi KC, Auersperg N, Leung PC (2003) Mitogen-activated protein kinases
in normal and (pre)neoplastic ovarian surface epithelium. Reprod Biol
Endocrinol 1: 71

Conklin KA (2004) Cancer chemotherapy and antioxidants. J Nutr 134:
3201S – 3204S

Fujimura M, Morita-Fujimura Y, Kawase M, Copin JC, Calagui B, Epstein
CJ, Chan PH (1999) Manganese superoxide dismutase mediates the early
release of mitochondrial cytochrome C and subsequent DNA fragmenta-
tion after permanent focal cerebral ischemia in mice. J Neurosci 19:
3414 – 3422

Gibb RK, Taylor DD, Wan T, O’Connor DM, Doering DL, Gercel-Taylor C
(1997) Apoptosis as a measure of chemosensitivity to cisplatin and taxol
therapy in ovarian cancer cell lines. Gynecol Oncol 65: 13 – 22

Green DR (1998) Apoptotic pathways: the roads to ruin. Cell 94: 695 – 698
Halliwell B, Gutteridge J (1999) Free Radicals in Biology and Medicine, 3rd

edn. Oxford University Press: New York
Heintz AP, Odicino F, Maisonneuve P, Beller U, Benedet JL, Creasman WT,

Ngan HY, Sideri M, Pecorelli S (2001) Carcinoma of the ovary.
J Epidemiol Biostat 6: 107 – 138

Hileman EO, Liu J, Albitar M, Keating MJ, Huang P (2004) Intrinsic
oxidative stress in cancer cells: a biochemical basis for therapeutic
selectivity. Cancer Chemother Pharmacol 53: 209 – 219

Hirose K, Longo DL, Oppenheim JJ, Matsushima K (1993) Overexpression
of mitochondrial manganese superoxide dismutase promotes the
survival of tumor cells exposed to interleukin-1, tumor necrosis factor,
selected anticancer drugs, and ionizing radiation. FASEB J 7: 361 – 368

Hu Y, Rosen DG, Zhou Y, Feng L, Yang G, Liu J, Huang P (2005)
Mitochondrial manganese-superoxide dismutase expression in ovarian
cancer: role in cell proliferation and response to oxidative stress. J Biol
Chem 280: 39485 – 39492

Ishikawa M, Yaginuma Y, Hayashi H, Shimizu T, Endo Y, Taniguchi N
(1990) Reactivity of a monoclonal antibody to manganese superoxide
dismutase with human ovarian carcinoma. Cancer Res 50: 2538 – 2542

Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, Thun MJ (2006)
Cancer statistics, 2006. Cancer J Clin 52: 23 – 47

Karlsson MO, Molnar V, Freijs A, Nygren P, Bergh J, Larsson R (1999)
Pharmacokinetic models for the saturable distribution of paclitaxel. Drug
Metab Dispos 27: 1220 – 1223

Lee S, Yoon S, Kim DH (2007) A high nuclear basal level of ERK2
phosphorylation contributes to the resistance of cisplatin-resistant
human ovarian cancer cells. Gynecol Oncol 104: 338 – 344

Li JJ, Oberley LW, St Clair DK, Ridnour LA, Oberley TD (1995) Phenotypic
changes induced in human breast cancer cells by overexpression of
manganese-containing superoxide dismutase. Oncogene 10: 1989 – 2000

Liu Y, Borchert GL, Donald SP, Surazynski A, Hu CA, Weydert CJ, Oberley
LW, Phang JM (2005) MnSOD inhibits praline oxidase-induced apoptosis
in colorectal cancer cells. Carcinogenesis 26: 1335 – 1342

Lowe SW, Lin AW (2000) Apoptosis in cancer. Carcinogenesis 21: 485 – 495
Mashima T, Oh-hara T, Sato S, Mochizuki M, Sugimoto Y, Yamazaki K,

Hamada J, Tada M, Moriuchi T, Ishikawa Y, Kato Y, Tomoda H,
Yamori T, Tsuruo T (2005) p53-defective tumors with a functional
apoptosome-mediated pathway: a new therapeutic target. J Natl Cancer
Inst 97: 765 – 777

Masuda A, Longo DL, Kobayashi Y, Appella E, Oppenheim JJ, Matsushima
K (1988) Induction of mitochondrial manganese superoxide dismutase
by interleukin 1. FASEB J 2: 3087 – 3091

Mills GB, Lu Y, Fang X, Wang H, Eder A, Mao M, Swaby R, Cheng KW,
Stokoe D, Siminovitch K, Jaffe R, Gray J (2001) The role of genetic
abnormalities of PTEN and the phosphatidylinositol 3-kinase pathway in
breast and ovarian tumorigenesis, prognosis, and therapy. Semin Oncol
28: 125 – 141

Murdoch WJ (2005) Carcinogenic potential of ovulatory genotoxicity. Biol
Reprod 73: 586 – 590

Pan ZZ, Bruening W, Giasson BI, Lee VM, Godwin AK (2002) Gamma-
synuclein promotes cancer cell survival and inhibits stress- and
chemotherapy drug-induced apoptosis by modulating MAPK pathways.
J Biol Chem 277: 35050 – 35060

Pani G, Bedogni B, Anzevino R, Colavitti R, Palazzotti B, Borrello S, G
aleotti T (2000) Deregulated manganese superoxide dismutase expres-
sion and resistance to oxidative injury in p53-deficient cells. Cancer Res
60: 4654 – 4660

Pelicano H, Carney D, Huang P (2004) ROS stress in cancer cells and
therapeutic implications. Drug Resist Updat 7: 97 – 110

Pon YL, Auersperg N, Wong AS (2005) Gonadotropins regulate N-
cadherin-mediated human ovarian surface epithelial cell survival at both
post-translational and transcriptional levels through a cyclic AMP/
protein kinase A pathway. J Biol Chem 280: 15438 – 15448

Ramanathan B, Jan KY, Chen CH, Hour TC, Yu HJ, Pu YS (2005) Resistance
to paclitaxel is proportional to cellular total antioxidant capacity. Cancer
Res 65: 8455 – 8460

Reaume AG, Elliott JL, Hoffman EK, Kowall NW, Ferrante RJ, Siwek DF,
Wilcox HM, Flood DG, Beal MF, Brown Jr RH, Scott RW, Snider WD

MnSOD inhibition mediates chemosensitisation

BHY Yeung et al

292

British Journal of Cancer (2008) 99(2), 283 – 293 & 2008 Cancer Research UK

T
ra

n
sla

tio
n

a
l

T
h

e
ra

p
e
u

tic
s

http://www.nature.com/bjc


(1996) Motor neurons in Cu/Zn superoxide dismutase-deficient mice
develop normally but exhibit enhanced cell death after axonal injury.
Nat Genet 13: 43 – 47

Ridnour LA, Oberley TD, Oberley LW (2004) Tumor suppressive effects of
MnSOD overexpression may involve imbalance in peroxide generation vs
peroxide removal. Antioxid Redox Signal 6: 501 – 512

Steinmetz R, Wagoner HA, Zeng P, Hammond JR, Hannon TS, Meyers JL,
Pescovitz OH (2004) Mechanisms regulating the constitutive activation
of the extracellular signal-regulated kinase (ERK) signaling pathway in
ovarian cancer and the effect of ribonucleic acid interference for ERK1/2
on cancer cell proliferation. Mol Endocrinol 18: 2570 – 2582

Tingulstad S, Skjeldestad FE, Halvorsen TB, Hagen B (2003) Survival and
prognostic factors in patients with ovarian cancer. Obstet Gynecol 101:
885 – 891

Wajant H (2003) Targeting the FLICE inhibitory protein (FLIP) in cancer
therapy. Mol Interv 3: 124 – 127

Wang X, Li M, Wang J, Yeung CM, Zhang H, Kung HF, Jiang B, Lin MC
(2006) The BH3-only protein, PUMA, is involved in oxaliplatin-induced
apoptosis in colon cancer cells. Biochem Pharmacol 71: 1540 – 1550

Wong GH, Goeddel DV (1988) Induction of manganese superoxide
dismutase by tumor necrosis factor: possible protective mechanism.
Science 242: 941 – 944

Xia S, Rosen EM, Laterra J (2005) Sensitization of glioma cells to Fas-
dependent apoptosis by chemotherapy-induced oxidative stress. Cancer
Res 65: 5248 – 5255

Yang JQ, Li S, Domann FE, Buettner GR, Oberley LW (1999) Superoxide
generation in v-Ha-ras-transduced human keratinocyte HaCaT cells.
Mol Carcinog 26: 180 – 188

Yeung BH, Huang DC, Sinicrope FA (2006) PS-341 (bortezomib) induces
lysosomal cathepsin B release and a caspase-2-dependent mitochondrial
permeabilization and apoptosis in human pancreatic cancer cells. J Biol
Chem 281: 11923 – 11932

Yuan ZQ, Sun M, Feldman RI, Wang G, Ma X, Jiang C, Coppola D, Nicosia
SV, Cheng JQ (2000) Frequent activation of AKT2 and induction of
apoptosis by inhibition of phosphoinositide-3-OH kinase/Akt pathway in
human ovarian cancer. Oncogene 19: 2324 – 2330

Zhuang S, Schnellmann RG (2006) A death-promoting role for extracellular
signal-regulated kinase. J Pharmacol Exp Ther 319: 991 – 997

MnSOD inhibition mediates chemosensitisation

BHY Yeung et al

293

British Journal of Cancer (2008) 99(2), 283 – 293& 2008 Cancer Research UK

T
ra

n
sl

a
ti

o
n

a
l

T
h

e
ra

p
e
u

ti
c
s


	Chemosensitisation by manganese superoxide dismutase inhibition is caspase-9 dependent and involves extracellular signal-regulated kinase 1sol2
	MATERIALS AND METHODS
	Antibodies and reagents
	Cell culture and treatments
	Stable and transient transfections
	siRNA transfection for knockdown of MnSOD
	ROS assay
	MnSOD enzymatic activity assay
	MTT assay
	Apoptosis analysis
	Western blot analysis
	Statistical analysis

	RESULTS
	MnSOD protein levels in OSE and cancer cell lines
	Expression of MnSOD confers resistance to drug-induced apoptosis
	Inhibition of MnSOD sensitises ovarian cancer cells to chemotherapy, whereas OSE cells are unaffected

	Figure 1 Manganese superoxide disumutase (MnSOD) expression in OSE and ovarian cancer cells.
	ERK1sol2 is critical for MnSOD siRNA-mediated chemosensitisation
	Caspase-9 acts as a downstream effector of ERK1sol2

	Figure 2 Overexpression of manganese superoxide disumutase (MnSOD) reduces ROS production in OVCAR-3.
	Figure 3 Overexpression of manganese superoxide disumutase (MnSOD) protects cells from doxorubicin (DOX)- and paclitaxel (PTX)-induced apoptosis in OVCAR-3.
	DISCUSSION
	Figure 4 Suppressing manganese superoxide disumutase (MnSOD) expression by small-interfering RNA (siRNA) increases ROS production in SKOV-3.
	Figure 5 Suppressing manganese superoxide disumutase (MnSOD) expression by small-interfering RNA (siRNA) sensitises SKOV-3 cells to doxorubicin (DOX)- and paclitaxel (PTX)-induced apoptosis.
	Figure 6 Involvement of ROS production in anti-cancer drug-induced apoptosis in ovarian cancer cells.
	Figure 7 Inhibition of manganese superoxide disumutase (MnSOD) does not sensitise chemotherapy-induced apoptosis in non-transformed OSE cells.
	Figure 8 Inhibition of extracellular signal-regulated kinase (ERK)1sol2 abolishes chemotherapy-induced apoptosis in manganese superoxide disumutase (MnSOD) small-interfering RNA (siRNA)-transfected SKOV-3 cells.
	Figure 9 Manganese superoxide disumutase (MnSOD) small-interfering RNA (siRNA)-augmented apoptosis is involved in the activation of caspases.
	Figure 10 Involvement of ROS production in the manganese superoxide disumutase (MnSOD) small-interfering RNA (siRNA)-mediated activation of caspase-9.
	ACKNOWLEDGEMENTS
	REFERENCES


