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Distinct CD4+ T cell signature
in ANA-positive young
adult patients

Flavia Dei Zotti , Chiara Moriconi, Annie Qiu, Anabel Miller
and Krystalyn E. Hudson*

Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University
Irving Medical Center, New York, NY, United States
Failure of immune tolerance can lead to autoantibody production resulting in

autoimmune diseases, a broad spectrum of organ-specific or systemic

disorders. Immune tolerance mechanisms regulate autoreactive T and B

cells, yet some lymphocytes escape and promote autoantibody production.

CD4+ T cell dysregulation, characterized by decreased or impaired regulatory

cells (Tregs) and/or accumulation of memory and effector T cells such as TH17,

plays a crucial role in the pathogenesis of these diseases. Antinuclear antibody

(ANAs) testing is used as a first step for the diagnosis of autoimmune disorders,

although most ANA-positive individuals do not have nor will develop an

autoimmune disease. Studying the differences of T cell compartment among

healthy blood donors, ANA-negative patients and ANA-positive patients, in

which loss of tolerance have not led to autoimmunity, may improve our

understanding on how tolerance mechanisms fail. Herein, we report that

ANA-positive patients exhibit a distinct distribution of T cell subsets:

significantly reduced frequencies of recent thymic emigrants (RTE) and naïve

T cells, and significantly increased frequencies of central memory T cells, TH2

and TH17 cells; modulations within the T cell compartment are most profound

within the 18-40 year age range. Moreover, CD4+ T cells in ANA-positive

patients are metabolically active, as determined by a significant increase in

mTORC1 and mTORC2 signals, compared to ANA-negative patients and

healthy blood donors. No significant impairment of Treg numbers or pro-

inflammatory cytokine production was observed. These results identify a

unique T cell signature associated with autoantibody production in the

absence of autoimmune disease.
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Introduction

Establishment and maintenance of immunological tolerance

prevents development of autoimmune disease. Tolerance induction

involves many mechanisms (e.g., deletion, anergy, etc.) and occurs

in primary and secondary lymphoid organs. In most instances,

autoreactive T and B cells are eliminated, become anergic, develop

into regulatory T cells (Tregs) or are actively suppressed by Tregs

(1, 2). When autoreactive lymphocytes escape tolerance

mechanisms, it can lead to autoimmune pathology such as

autoantibody production. Presence of abnormal levels of

autoantibodies before disease onset can be clinically useful for the

diagnosis of autoimmune disorders (3). Antinuclear antibodies

(ANAs) are detected in up to 20% of the general population and

are associated with autoimmune diseases, such as systemic lupus

erythematosus (SLE), rheumatoid arthritis (RA), Sjögren’s

syndrome (SjD) and multiple sclerosis (MS) (4–7). Although

most ANA-positive individuals do not have an autoimmune

disease and the probability of developing one during their

lifetime is low, ANAs can appear many years prior to associated

clinical features of disease (8–12). Because most cases of ANA

positivity are not associated with pathology, studying immune cells

from ANA-positive individuals may provide insight into how

tolerance mechanisms to autoantigens fail.

T cell dysregulation is often associated with autoimmune

diseases. Despite central and peripheral tolerance mechanisms,

autoreactive T cells persist in the repertoire. Failure of T cell

tolerance, and thereby initiation of autoimmune disease, can be

due to environmental triggers, defective regulation, and/or

genetic factors; these events have profound effects on the T cell

compartment (13–15). For instance, decreased numbers or

impaired function of Tregs can promote expansion of

proinflammatory TH17 CD4+ T cells. Given their antagonistic

functions, an imbalance of the Treg : TH17 CD4+ T cell ratio can

signal active autoimmune disease; increased frequencies of TH17

cells is associated with autoimmune diseases due to their ability

to secrete proinflammatory IL-17, promote B cell activation and

elicit autoantibody production (16). Other T cell correlates with

autoimmune disease include reduced frequencies of naïve T

cells, accumulation of effector and memory T cells, mTOR

activation, and elevated levels of inflammatory cytokines (17–

21). Lastly, the aging process itself is associated with T cell

dysregulation and increased risk of autoimmunity (22–25).

Aging is accompanied by marked changes in the T cell

compartment and chronic low levels of inflammation. Of note,

age-related thymic involution leads to significant reductions in

newly-generated naïve T cells, which stimulates compensatory

peripheral expansion of T cells to maintain stable T cell levels

(26, 27); this process may contribute to autoimmunity by

inappropriately activating autoreactive T cell clones (28, 29).

Additionally, thymic atrophy impairs efficient negative selection,

leading to release of autoreactive T cells into the periphery (30).
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The cumulative effects of these changes within the T cell

compartment have been characterized in autoimmune disease

(17, 31); however, it is unclear how loss of humoral tolerance to

autoantigens, in the absence of active autoimmune disease,

affects the T cell compartment.

In many cases, production of ANAs is CD4+ T cell-

dependent as autoreactive B cells have undergone antigen-

driven clonal expansion and somatic mutation (32). Herein, we

test the hypothesis that CD4+ T cells fromANA-positive patients

are distinct from ANA-negative patients and healthy blood

donors. To test this hypothesis, we analyzed and compared

CD4+ T cells collected from ANA-positive patients, ANA-

negative patients, and healthy blood donors. Because of age-

related changes to the T cell compartment, data was analyzed

based on age ranges. The most profound effects of ANA-

positivity were observed in the 18-40 year age range whereby

ANA-positive patients had significantly reduced frequencies of

recent thymic emigrants (RTEs) and naïve T cells, compared to

ANA-negative patients and healthy blood donors. In contrast,

there was a significant increase in the frequencies of central

memory, TH17, and TH2 CD4+ T cells detected in samples from

ANA-positive patients, along with elevated plasma levels of IFNb
and IL-17, compared to controls. Unexpectedly, there were no

differences observed in the frequency of Tregs or the ratio of

Tregs to TH17 T cells. Finally, irrespective of age, CD4+ T cells

from ANA-positive patients were significantly more

metabolically active, compared to controls. Together, these data

identify a T cell signature associated with production of ANAs

that is distinct from age-related changes and unassociated with

hospital admission.
Materials and methods

Human peripheral blood samples

Anonymized residual whole blood samples from individuals

aged ≥ 18 years old were collected in EDTA and received from

the Center for Advanced Laboratory Medicine at Columbia

University or from consented healthy blood donors in an

ongoing clinical trial (ClinicalTrials.gov #NCT02889133).

Samples were de-identified and only age, sex, race, and ICD10

codes were collected (Table 1 and Supplementary Figure 1).
TABLE 1 Demographic characteristics of ANA-positive (ANA+), healthy
blood donor (Healthy) and ANA-negative (ANA-) groups. Mean ± SEM
was used.

ANA+ Healthy ANA-

Age (mean±SEM) 52±3.6 47±3 57±3.7

Sex (F/M) 9/11 15/17 10/10
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Human subject participation was approved by the Columbia

University Institutional Review Board.
Sample processing and flow cytometry

Samples were spun at 400 x g for 10minutes to separate plasma

from white blood cells (WBCs) and red blood cells (RBCs). Plasma

was collected for detection of cytokines (IL-1b, IL-6, IL12(p70), IL-
8, IL-10, GM-CSF, TNFa, IFNg, IFNa2, IFNb, IFNl1 and IFNl2-
3: LEGENDplex™ Biolegend #740390, and for IL-17A/F: Legend

Max Biolegend #435807). Plasma samples were diluted 2-fold and

analyzed per manufacturer’s instructions. Peripheral blood

mononuclear cells (PBMCs) were isolated from whole blood by

Ficoll density gradient centrifugation (Ficoll-Paque™ PLUS GE

Healthcare #17-1440-02). Samples were washed with FACS buffer

(phosphate buffered saline (PBS) supplemented with 2% fetal

bovine serum and 0.4% of Ethylenediaminetetraacetic acid

(EDTA)), stained for surface and intracellular markers for 30

minutes at 4°C with antibodies specific for CD4 (RPA-t4), CD3

(SK7), CD45RA (HI100), CD45RO (UCHL1), CD25 (CD25-4E3,

BC96, M-A251), CCR7 (G043H7), CD31 (WM-59), FoxP3

(PCH101), CD194 (CXCR4;1G1), CD183 (CXCR3;1C6), CD196

(CCR6;11A9), CCR10 (1B5), CD185 (CXCR5;MU5UBEE), CD279

(PD1;J105), CD278 (ICOS;ISA3), p-Akt (SDRNR) and p-S6

(D57.2.2E). Staining for intracellular FoxP3, p-Akt and p-S6 was

performed according to the protocol from Invitrogen using

eBioscience™ FOXP3/Transcription kit (#00552300). Samples

were collected using an Attune NxT flow cytometer

(ThermoFisher) and data were analyzed with FlowJo software

(BD Biosciences).
Statistical analysis

Subjects were divided into age groups (18-40, 40-60 and 60-

80 years old) a priori due to the acceleration of thymic atrophy

and cessation of active thymopoiesis after 40 years of age (33, 34)

and the increase in immunosenescence that can alter T cell

functionality after 60 years of age (35, 36). Between-group

differences were compared using an analysis of variance

(ANOVA) with Sidak’s multiple comparison test and age as a

categorical variable. Analyses were performed using Prism,

version 9 (GraphPad Software, Inc.). For added rigor, the

frequency of each T cell subset was also analyzed by

multivariable linear regression incorporating age as a

continuous variable and patient type (i.e., ANA-positive,

ANA-negative and Healthy blood donors) as a categorical

variable using SAS studio version 3.8 (SAS Institute Inc.). For

comparisons that yielded different statistical results between

ANOVA and multivariable linear regression analyses,

additional supplemental figures were included. A p-value less

than 0.05 was considered significant.
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Results

Reduced frequencies of detectable
recent thymic emigrants (RTEs) in young
ANA-positive patients

Blood samples were collected from patients previously

screened for antinuclear autoantibodies (ANAs) (N=40; 20

each of ANA-positive and ANA-negative) and healthy blood

donors (N=32; Table 1 and Supplemental Tables S1, 2). T cell

tolerance prevents many autoimmune diseases; thus, we

hypothesized that T cell dysregulation would be evident in

patients with prior ANA-positive results. Peripheral blood

mononuclear cells (PBMCs), isolated from whole blood, were

stained to identify CD4+ T cells. Absolute numbers of CD4+ T

cells were unchanged in ANA-positive, compared to ANA-

negative and healthy blood donors (Figure 1A). RTEs are the

youngest peripheral T cells susceptible to peripheral T cell

tolerance mechanisms. Due to thymic involution, the number

of RTEs decrease with age, with a notable reduction in thymic

output after 40 years of age (34, 37); as such, samples were

evaluated in groups based on age ranges: (i) 18 to 40 years

(young), (ii) 40 to 60 years (middle), and (iii) 60 to 80 years

(old). RTEs, defined phenotypically as CD4+CD3+CD45RA

+CD45RO-CD31+CD25-, were readily identified by flow

cytometry (Figure 1B, gating strategy Supplemental Figure 1).

Young ANA-positive patients had significantly fewer RTEs,

compared ANA-negative patients and healthy controls

(Figure 1C, p<0.05). To increase the statistical rigor, ANA-

positive, ANA-negative and healthy controls were analysed

with a multiple regression analysis with age as a continuous

variable. ANA-positive had a significant reduction in the

frequency of RTEs compared to healthy controls (statistical

analysis Figure 1D). No significant differences in RTEs were

noted with either statistical analysis approach between young

ANA-negative patients and healthy controls. Consistent with

prior observations (38, 39), the frequency of RTEs declined with

age in ANA-positive patients, ANA-negative patients and

healthy blood donors (Figure 1D; respectively R2 = 0.44, R2 =

0.54 and R2 = 0.83). These data demonstrate that the RTE

population in patients with ANAs is reduced compared to

healthy controls, suggesting these patients may have perturbed

differentiation into naïve, effector, and memory CD4+ T

cell subsets.
Altered peripheral T cell populations
detected in ANA-positive patients

In response to antigen exposure with co-stimulation, naïve T

cells proliferate and differentiate into effector and memory T

cells (40). To determine how generation of ANAs effected T cell
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subsets, CCR7 and CD45RA were used to discriminate naïve

(CD45RA+CCR7+), central memory (TCM; CD45RA-CCR7+),

effector (TEF; CD45RA-CCR7-) and terminally differentiated

effector memory (TEMRA; CD45RA+CCR7-) CD4+ T cell

subsets (Figure 2A) (41). Young ANA-positive patients had

significant reductions in the frequency of circulating naïve T

cells and increased percentages of TCM, compared to ANA-

negative patients and healthy blood donors (Figures 2B, C,

p<0.05). Based on prior reports (42), we expected the

frequency of TEMRA cells T cells to increase with age. In

ANA-positive and healthy blood donors, TEMRA T cells

showed moderate correlation with age (Figure 2D and

Supplemental Figure 2; R2 = 0.44 and R2 = 0.38, respectively).

No correlation between TEMRA T cells and age was observed in

samples from ANA-negative patients (R2 = 0.09). Comparing the

frequency of TEMRA T cells in older individuals, the

percentages were significantly increased in ANA-positive

patients, compared to ANA-negative patients and healthy

blood donors (Figure 2D). Analysis of other differentiated T

cell subsets revealed no differences in the percentages of TEF or

T follicular helper (TFH) CD4+ T cells (Figures 2E, F, gating

strategy shown in Supplemental Figure 3).
Qualitative differences in TEF and TFH
CD4+ T cells from ANA-positive patients

Upon activation, CD4+ T cells differentiate into specialized

effector T helper (TH) subsets, characterized by distinct
Frontiers in Immunology 04
cytokine profiles and function. To test for differences in the

distribution of TH subsets, TH1 (CCR4-CXCR3+CCR10-

CCR6-), TH2 (CCR4+CXCR3-CCR10-CCR6-), and TH17

(CCR4+CXCR3-CCR10-CCR6+) CD4+ T cel ls were

identified in PBMCs (gating strategy shown in Figure 3A). In

all age groups, similar frequencies of TH1 CD4+ T cells were

observed between ANA-positive patients, ANA-negative

patients, and healthy blood donors (Figure 3B). In contrast,

increased frequencies of TH2 and TH17 CD4+ T cells were

observed in young ANA-positive patients, compared to ANA-

negative patients and healthy blood donors (Figures 3C, D).

Differences in TH subset distribution was not correlated with a

particular disease state at the time of whole blood collection

(Supplemental Figure 4). Finally, a specialized subset of

circulating TFH CD4+ T cells, co-expressing PD-1 and

ICOS, has been shown to reflect activated memory TFH and

can facilitate B cell differentiation into plasma and memory

cells (43). Young ANA-positive patients also had significantly

higher percentages of PD1+ICOS+ TFH cells, compared to

ANA-negative patients and healthy controls (Figure 3E, gating

strategy shown in Supplemental Figure 3).

The mTOR pathway plays a key role in shaping T cell

differentiation by differential activation of mTORC1 and

mTORC2. And, mTOR activation in T cells has been noted

during the development of several autoimmune diseases such as

SLE, MS and RA (19, 44–47). To test whether CD4+ T cells were

metabolically active, mTORC1 and mTORC2 activation was

determined by detection of phosphorylated (p) -S6 and -Akt,

respectively. Young ANA-positive patients had significantly
B C

D

A

FIGURE 1

Young ANA-positive patients have fewer RTEs. PBMCs were isolated from whole blood and stained with antibodies to identify recenty thymic emigrants
(RTEs). (A) The absolute number of CD4+ T cells per 1mL of blood was determined. (B) Representative flow plots of CD4+CD3+CD45RA+CD45RO-
CD31+CD25- RTEs in ANA-positive patients, healthy blood donors, and ANA-negative patients. Subjects were analyzed in groups based on age ranges:
18-40 (young), 40-60 (middle), and 60-80 (old) years old. (C) The frequency of RTEs of total CD4+ T cells was calculated and data are shown as mean
± SEM and analyzed by a one-way ANOVA test followed by Tukey’s multiple comparison test; *p<0.05. (D) The correlation between the frequency of
RTEs and age was plotted. Linear regression analysis was used for all three groups and R2 are reported. Each data point reflects one subject (ANA-
positive = 20, ANA-negative = 20, healthy blood donors = 32). Subjects were analysed using multiple regression analysis incorporating age as a
continuous variable and type of blood donors (ANA-positive, ANA-negative, healthy blood donors) as a categorical variable followed by Tukey’s multiple
comparison test; *p<0.05; ns, non significant.
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higher frequencies of p-S6, compared to ANA-negative patients

and healthy blood donors (Figure 3F); no differences were noted

in older cohorts. Frequencies of TH2 cells and mTORC1 in

ANA-positive patients were significantly increased only

compared healthy controls, after multiple linear regression

analysis with age as a continuous variable were performed. In

contrast to ANA-positive patients, TH2 cells and mTORC1

accumulate with age in ANA-negative patients (Supplemental

Figures 5A, B). CD4+ T cells from ANA-positive patients in all

age groups had significantly elevated frequencies of p-Akt,

compared to ANA-negative and healthy blood donors

(Figure 3G). Together, these data demonstrate that CD4+ T

cells from ANA-positive patients are metabolically activated and

have preferentially differentiated into TH17 effector T cells.
ANA production does not correlate with
reduction in regulatory T cells

An imbalance between regulatory and inflammatory immune

cells and a pro-inflammatory environment are associated with

autoimmune diseases (10, 17, 18, 21). To assess whether

regulatory T cell (Treg) frequencies were altered in PBMCs

from ANA-positive patients, Tregs were identified by staining

with antibodies against CD25 and FoxP3. The percentage of Tregs

was similar in every subject group and in all age ranges

(Figure 4A). Because we observed an increased frequency of

proinflammatory TH17 CD4+ T cells, we calculated the Treg:

TH17 CD4+ T cell ratio. Indeed, a decreased ratio correlates with
Frontiers in Immunology 05
many autoimmune diseases (48, 49). No significant difference in

the Treg : TH17 ratio was observed; however, there was a trend of

decreasing ratios observed upon aging (Figure 4B). A distinctive

subset of FoxP3+ Treg cells, defined by CXCR5+ expression, are

bona fide circulating T follicular regulatory cells (TFR). Presence

of TFR in blood is indicative of ongoing humoral activity and

significantly increased in patients with Sjögren syndrome (50, 51).

There was no significant difference in the ratio of TFRwithin TFH

T cells for any age group (Figure 4C). However, multiple linear

regression analysis showed a significant decreased in the ratio of

TFR : TFH T cells in both type of patients (ANA-positive and

ANA-negative) compared healthy blood donors (Supplemental

Figure 5C). The environment was studied by quantifying

circulating cytokines with protective or deleterious role. Of the

cytokines analyzed, only IFNb was significantly higher in ANA-

positive patients, compared ANA-negative patients and healthy

blood donors (Figure 4D). Elevated levels of IL-17 were detected

in ANA-positive patients, compared to healthy blood donors. Of

note, higher data points observed in ANA-positive and ANA-

negative patients correspond to different individuals. Together,

these data suggest that ANA-positive patients do not have

decreased Treg subsets nor can they be defined by a particular

inflammatory cytokine profile.
Discussion

The data presented herein demonstrate that the T cell

compartment in ANA-positive patients, in which tolerance
B

C D E F

A

FIGURE 2

Young ANA-positive patients have reduced naïve and increased differentiated CD4+ T cells. PBMCs were isolated from whole blood and stained
with antibodies to identify T cell subsets. (A) Gating strategy to visualize naïve, T central memory (TCM), terminally differentiated effector
memory (TEMRA), and T effector (TEF) CD4+ T cells by flow cytometry. The frequencies of (B) naïve, (C) TCM, (D) TEMRA, (E) TEF, and (F) T
follicular helper (TFH) T cell subsets of total CD4+ T cells was determined in ANA-positive patients, ANA-negative patients, and healthy blood
donors. Each data point reflects one subject (ANA-positive = 20, ANA-negative = 20, healthy blood donors = 32). Data are shown as mean ±
SEM and analyzed by a one-way ANOVA test followed by Sidak’s multiple comparison test; *p<0.05, ****p<0.0001.
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mechanisms have failed but have not led to active autoimmune

disease, are distinct from ANA-negative patients and healthy

blood donors. The most significant differences were observed in

young 18-40 year old individuals whereby ANA-positive

patients had significantly reduced numbers of naïve T cells

and increased frequencies of effector T helper cell populations

such as TH17 and TH2 CD4+ T cells. Unexpectedly no

significant differences were observed in Tregs or the ratio of

Treg : TH17 CD4+ T cells between groups. More generalizable to

all age groups analyzed, ANA-positive patients had

metabolically active CD4+ T cells and elevated levels of

plasma IFNb and IL-17 cytokines, compared to ANA-negative

patients and healthy blood donors. Together, these data show

that generation of ANAs, without active autoimmune disease,

correlates with distinct changes in the CD4+ T cell compartment

in young patients.

While age is not a significant predictor of autoantibody

positivity (52), some studies report that the prevalence of ANAs

increases with age in absence of autoimmune disease (4, 53).

However, the aging process does siginificantly impact the T cell

compartment due to antigen exposure, low-grade inflammation,
Frontiers in Immunology 06
cellular senescence and thymus involution (54). By analyzing

subjects based on age ranges, significant changes within T cell

subsets were observed. In particular, the frequency of RTEs

progressively decreased with age in all groups, as expected (37).

While age was a good predictor of the frequency of RTEs in

healthy blood donors (i.e., R2 = 0.83), it was not a strong correlate

for ANA-positive or ANA-negative patients. This could be due

to other, underlying medical conditions as these patients were

currently in the hospital. Of interest, however, the presence of

ANAs in young patients significantly reduced the frequency of

CD4+ RTEs. RTEs are the youngest peripheral naïve T cells and

are susceptible to tolerance induction (55); studies have shown

that tolerance failure can induce autoimmune disease. Thus, the

observed decreased frequencies of RTEs in ANA-positive

patients may be due to premature differentiation into effector

T cells and reflect tolerance failure. In general, aging also led to

decreased frequencies of naïve T cells and an accumulation of

TCM and TEF CD4+ T cells, as expected. However, consistent

with the observation that young ANA-positive patients had

decreased naïve T cell populations, these patients had a

significant increase in TCM T cells; thus, there was no
B C D

E F G

A

FIGURE 3

Young ANA-positive patients have increased frequencies of TH2 and TH17 CD4+ T cells that are metabolically active. PBMCs were isolated from whole
blood collected from ANA-positive patients, ANA-negative patients, and healthy blood donors. Cells were stained with antibodies to identify CD4+ T
helper (TH) subsets, activated TFH, and mTOR activation. (A) Representative gating strategy to visualize TH1, TH2 and TH17 CD4+ T cells. The
frequencies of (B) TH1, (C) TH2, (D) TH17 and (E) ICOS+PD1+ TFH CD4+ T cells of total CD4+ T cells was determined. mTOR activation was evaluated
by (F) p-S6 (marker for mTORC1) and (G) p-Akt (marker for mTORC2) on total CD4+ T cells. Each data point reflects one subject (ANA-positive = 20,
ANA-negative = 20, healthy blood donors = 32). Data are shown as mean ± SEM and analyzed by one-way ANOVA test followed by Sidak’s multiple
comparison test; *p<0.05, **p<0.01, ****p<0.0001.
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observed increase in TCM upon aging in this group. Finally,

terminally differentiated effector memory (TEMRA) T cells that

re-express CD45RA after antigen-stimulation have been

documented to accumulate with age. TEMRA T cells exhibit

multiple characteristics of senescent cells including DNA

damage, low proliferative potential, high levels of reactive

oxygen species (ROS) and can also be cytotoxic as it has the

ability to secrete inflammatory cytokines such as IFNg and

TNFa (56, 57). In our study, the frequency of TEMRA cells

slightly increase with age in all groups. However, older ANA-

positive individuals have significantly increased percentages of

TEMRA T cells, compared to ANA-negative patients and

healthy controls; these data suggest that an accumulation of

TEMRA T cells may be due to, or the result of, autoimmunity.

And, although there is significant accumulation of differentiated

T cell subsets in young ANA-positive patients, the data show

that these T cells do not become senescent. Further studies will

be required to investigate the role of ANAs in TEMRA T cell

differentiation. Together, these data show that the presence of

ANAs is associated with alterations in the T cell compartment,

especially in 18-40 year old patients.
Frontiers in Immunology 07
T cell lineage commitment can be influenced by the metabolic

status of T cells. Antigen recognition triggers robust mTOR

activation, which drives the differentiation of naive CD4+ T cells

into the TH1, TH2 and TH17 cell effector lineages, while also

inhibiting the induction of Tregs and T cell anergy (19, 58, 59). Our

data showed that both mTOR complexes, mTORC1 andmTORC2,

were significantly increased in CD4+ T cells of ANA-positive

patients. While mTORC1 activation can promote expansion of

TH1 and TH17 subsets, mTORC2 activation leads to TH2

differentiation; as increased frequencies of mTORC1 and

mTORC2 activation was observed in CD4+ T cells from young

ANA-positive patients, this could explain the elevated numbers of

TH17 and TH2 T cell subsets. However, despite the fact that ANA-

positive subjects had higher frequencies of TH2 cells and mTORC1

activation, compared healthy blood donors in all age groups, in

ANA-negative patients these frequencies increased with age and are

comparable to ANA-positive subjects suggesting that diseases state

alone can influence T cell differentiation and activation. Increased

frequencies of TH2 and TH17 CD4+ T cells are associated with

autoimmune diseases such as SLE, RA and systemic sclerosis (60–

62). The frequency of T helper cells can be altered by the presence of
B C

D

A

FIGURE 4

ANA-positivity does not correlate with changes in regulatory CD4+ T cells. PBMCs were isolated from whole blood collected from ANA-positive
patients, ANA-negative patients, and healthy blood donors. Cells were stained with antibodies to identify (A) FoxP3+CD25+ regulatory T cells (Tregs).
The ratios between (B) Tregs and TH17 and (C) T follicular regulatory (TFR) and TFH CD4+ T cells were calculated. (D) Plasma cytokines were measured
by multiplex immunoassay. Each data point reflects one subject (ANA-positive = 20, ANA-negative = 20, healthy blood donors = 32). Data are shown as
mean ± SEM and analyzed by a one-way ANOVA followed by Sidak’s multiple comparison test; *p<0.05, ***p<0.001.
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other pathologies such as inflammation or immunodeficiency (63,

64). However, no significant correlation between diseases and

distribution of T helper cells were observed. Despite the high

frequencies of CD4+ T cells with mTOR activation, it was

surprising that no overt alterations in Tregs were noted. However,

Tregs were only determined by phenotype and were not assayed for

functional capabilities. mTORC1 and mTORC2 can also promote

differentiation of TFH cells (65–67), another specialized CD4+ T

subset involved in the pathogenesis of autoimmune diseases (68).

Both TFH and CD4+ helper T cells interact with and provide help

to B cells to induce differentiation and antibody production (69). It

has been shown that increased frequencies of circulating TFH are

detectable in patients with autoimmune diseases (70). PD1 and

ICOS are co-stimulatory molecules essential for the development

and function of TFH. In our study, while the frequency of TFH cells

was similar in all subjects, the frequency of circulating PD1+ICOS+

TFH cells in ANA-positive patients was higher than that in ANA-

negative and healthy controls. Increased numbers of ICOS+ TFH

cells in peripheral blood are detectable in patients with autoimmune

diseases including SLE, SjD, RA, and autoimmune thyroid diseases

(71, 72). ICOS plays an important pro-inflammatory role in the late

effector phase and T memory-dependent B cell response (73) and

PD1 is expressed on activated T cells (74). Taken together, we

speculate that high levels of mTOR activation in T cells from ANA-

positive patients contribute to autoantibody production by

expanding effector T cells and PD1+ICOS+ TFH, which may

eventually promote future development of autoimmune disease.

Dysregulated immunoregulation also contributes to failure

of immune tolerance. Prior studies have shown that

development of autoimmune diseases is influenced by

decreased numbers or function of Tregs and a corresponding

expansion of effector cells, reflecting an imbalance between

immunoregulatory and inflammatory cells. The decreased

ratios of Treg : TH17 and TFR : TFH have been proposed as

useful metrics for active autoimmune diseases such as SjD and

RA (50, 75, 76). However, there is disagreement between studies

on whether these ratios differ between ANA-positive patients,

ANA-negative patients, and patients with an autoimmune

disease (77, 78). Our data showed no significant differences in

the ratios of Treg : TH17 or TFR : TFH between ANA-positive

and ANA-negative patients; both patient groups had

significantly decreased ratio of TFR : TFH compared to

healthy blood donors. Thus, the underlying factor(s) that

promote naïve T cell differentiation into TCM or TEF remain

unclear. Although no numerical differences were observed in

Tregs from ANA-positive patients, there was a significant

increase in proinflammatory TH17 T cells, an observation

consistent with other publications (79, 80). TH17 T cells

secrete proinflammatory cytokine IL-17, which is detectable in

plasma of patients with autoimmune disease. Increased

inflammatory cytokines are also reported in ANA-positive

patients (77), albeit to a lesser degree than those found in

patients with autoimmune disease (17, 77, 81). Of the
Frontiers in Immunology 08
cytokines measured in our study, only IFNb and IL-17 were

elevated in plasma from ANA-positive patients, compared to

ANA-negative patients and healthy blood donor controls. The

absence of an overt pro-inflammatory cytokine signature in

plasma from ANA-positive patients is consistent with the lack

of active autoimmune disease. Additionally, IFNb was described

with a protective role in acute viral infections and deleterious

role in bacterial infection (82); in autoimmune diseases, IFNb is

used as an effective treatment to reduce recurrence in multiple

sclerosis (83) by activating regulatory T cells thereby limiting the

generation of TH17 response and modulating pro-inflammatory

mediators (84). Moreover, IFNb is involved in down-regulating

the inflammatory response by inhibiting antigen presenting

cells, increasing Treg activity, reducing the ability of B cells to

present antigens (85) and shifting Th1/Th2/Th17 polarization to

an anti-inflammatory state (86, 87), this could be a protective

mechanism to prevent disease onset. Together, these data

highlight that, although differences in the T cell compartment

were evident in ANA-positive patients, there was no significant

alteration observed in regulatory T cell subsets nor strong

upregulation of multiple pro-inflammatory cytokines, as

observed in active autoimmune disease.

The current study has several limitations. Each patient (both

ANA -positive and -negative) was in the hospital for an organ

transplant or had been diagnosed with other diseases (e.g., heart

failure, cancers, hypertension, kidney failure, fever, and respiratory

issues) which can, in and of itself, elicit different immune responses

that impact T cells. Additionally, the samples analyzed in this study

were de-identified and data regarding medical treatment, which

would influence immune cells, were not collected. Moreover,

although demographic data were collected, subjects were not

matched by age, sex, or ethnicity. Finally, no patient was diagnosed

with an autoimmune disease at the time of blood collection and, due

to the nature of the study design, it is impossible to perform a long-

term follow up to assess longlasting effects T cell compartment

changes and determine the rate of autoimmune disease.

Herein,we show that CD4+T cells fromANA-positive patients

are distinct fromANA-negative patients and healthy blood donors.

Although ANA-positive patients do not have an active

autoimmune disease, the production of ANAs correlated with

marked changes in the T cell compartment. As such, these data

provide new insights on the distribution of T cell subsets, mTOR

activation, and cytokine production in the absence of pathogenic

autoimmune responses. Investigating these mechanisms in a

longitudinal study of ANA-positive subjects would improve our

knowledge in the development of T cell distribution at the onset

and upon progression of autoimmune disease.
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