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Abstract

Central venous pressure (CVP) is the blood pressure in the venae cavae, near the right atrium of 

the heart. This signal waveform is commonly collected in clinical settings, and yet there has been 

limited discussion of using this data for detecting arrhythmia and other cardiac events. In this 

paper, we develop a signal processing and feature engineering pipeline for CVP waveform 

analysis. Through a case study on pediatric junctional ectopic tachycardia (JET), we show that our 

extracted CVP features reliably detect JET with comparable results to the more commonly used 

electrocardiogram (ECG) features. This machine learning pipeline can thus improve the clinical 

diagnosis and ICU monitoring of arrhythmia. It also corroborates and complements the ECG-

based diagnosis, especially when the ECG measurements are unavailable or corrupted.

Keywords

Automatic Arrythmia Detection; Central Venous Pressure; Junctional Ectopic Tachycardia; 
Physiological Signal Feature Extraction

1 Introduction

Central venous pressure (CVP) is the average blood pressure measured in either superior or 

inferior vena cava, one of the largest vessels that return blood from the body to the right 

atrium [13]. This signal reflects the amount of the blood that is returned to the heart [1] and 

the filling pressure of the right ventricle [5]. The characteristics and amplitude of the CVP 

waveform components can change significantly with arrhythmias and tricuspid valve 

pathology [19, 10]. Thus, this signal provides valuable clinical information for arrhythmia 

diagnosis and automatic detection. However, this signal has been overlooked by most 
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arrhythmia detection literature, which focuses solely on the feature engineering and 

modeling of ECG signals. This approach can become unreliable when the ECG signal 

contains artifacts. Thus, a corroborating signal is needed to improve the quality and 

reliability of an automatic arrhythmia detector.

This paper presents a novel feature extraction and automatic arrhythmia detection pipeline of 

CVP signal with a focus on pediatric junctional ectopic tachycardia (JET) detection as an 

exemplar. It contributes to the literature by introducing a CVP signal preprocessing and 

feature extraction pipeline. We then compare the machine learning model based on extracted 

CVP features with the one based on gold standard ECG features [20, 18].

The rest of the paper is organized as follows. Section 2 provides a background on the 

pediatric JET and the clinical basis of JET detection from CVP signal waveforms. Section 3 

introduces our method of preprocessing, feature engineering, and machine learning 

modeling. Section 4 presents the feature performance in both between-subject and within 

subject-study. In the end, section 5 concludes this paper.

2 Background

Congenital heart diseases are among the most common birth defects, affecting ~1% of live 

births in the United States [3]. Of the postoperative pediatric cardiac patients, up to 48% 

develop post-operative arrhythmias [12]. JET is one of the most common types of 

tachyarrhythmia seen during early post-operative care [12] and is very dangerous and 

difficult to treat in an infant [15]. Currently, there are no automated bedside JET detection 

methods that are available to clinicians, often leading to delay in diagnosis and subsequent 

provision of life-saving therapeutic interventions. Most of the current arrhythmia detection 

algorithms are based on electrocardiogram (ECG) waveforms and result in a staggering 

number of false alarms (~72-99% of clinical alarms are false [9]). Also, the absence of the 

P-wave of ECG is considered to be one of the primary morphological features of JET, while 

current methods cannot robustly detect and measure P-wave, which results in sub-optimal 

performance for ECG based classifier.

Instead, the JET morphological features are more obvious for the CVP signal. Normal CVP 

waveforms have 3 systolic components (c wave, x descent, v wave) and 2 diastolic 

components (y descent, a wave). During JET, the characteristics and amplitude of the CVP 

waveform components change significantly. A tall a wave, termed a cannon a wave is 

observed [19, 10]. Figure 1 presents a processed and aligned median stack of CVP 

waveform. Upon on JET onset, the fusion of a and c wave leads to an obvious cannon a 
wave.

Figure 2 compares the percentile plot of CVP waveform during JET (left) and sinus 

waveform (right, sinus refers to normal electrical activity within the heart) with the same 

scale. 4.5 hours of CVP waveform are used to generate this comparative plot. Significant 

morphological differences can be observed in the a and c waveform of the CVP cycle during 

JET compared to sinus rhythm. Although this morphological difference has been used 

extensively in clinical diagnosis, there has not been formal methods of extracting these 
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features and build an arrhythmia detection model. The major challenge is that the CVP 

waveforms are very easily distorted by artifacts occurring through the water-filled, tubing 

transducer system and by respiration-induced cyclic changes. These artifacts and signal 

noises make CVP more difficult to analyze than the ECG signal. To solve this issue, we have 

developed a robust pipeline of removing these artifacts and extract useful features to detect 

JET onset.

3 Methods

In this section, we describe the proposed model for extracting features from CVP signal and 

detecting JET onset.

3.1 Pre-processing

We have developed an elaborate pipeline for CVP data preprocessing, which contains 

frequency filtering, spike removal, amplitude filter, median filtering, and dynamic alignment. 

These steps can remove most artifacts and noise in CVP data.

Band filters were modified for CVP data: a 1.5 Hz high pass filter and a 25 Hz low pass 

filter were used. These two filters can remove the noise caused by infusion, patient breathing 

patterns, and body movement. Abnormal spikes in segmented 500mm Hg non-overlapping 

windows were removed using a process introduced by [2]. The raw CVP data is also 

influenced by multiple noises, which cause the CVP signal to deviate significantly from its 

theoretical range (2 ~ 6 mmHg). To account for these noises, data points for each patient 

were ranked in sequence by amplitude, and the values falling outside the 1% – 99% 

percentile were decreased or increased to this bound.

ECG signals were collected along with the CVP signals. For the ECG signal, WFDB 

toolbox [21, 11] was used to detect the R-peak and segment each cardiac cycle. Thus, the 

CVP signal can be segmented and re-sampled accordingly. A median filter with the step of 

10 cycles was then applied to reduce the impact of noisy cycles and create a stack. When the 

ECG signal is unavailable or noisy, the CVP cycle segmentation can still be performed by 

reference-based waveform matching. Segmenting and stacking the CVP data according to 

the cardiac cycles results in time offsets because cardiac cycles and CVP cycles are not 

perfectly synced. In Figure 3 (a), the CVP cycle stacks do not align perfectly. In some 

scenarios, the offsets can cause peaks in the CVP data to be cut into halves, causing 

difficulties in feature extraction. Therefore, instead of segmenting and aligning CVP cycles 

solely by cardiac cycles, ‘dynamic alignment’ is used to align the cycles. This strategy takes 

the first CVP cycle in the resampled CVP stack as the reference. Then, it realigns every 

other cycle in the stack according to the position that yields the greatest cross-correlation 

with the reference stack. In Figure 3 (b), the offsets are removed and the cycles align 

perfectly with each other. ‘Dynamic alignment’ is superior to the maximum value alignment 

because it takes into account the entire signal waveform in search for the best position offset.
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3.2 Feature Engineering

As demonstrated by clinical study [10, 19] and Figure 1 and 2, the primary morphological 

feature of JET onset lies in the a peak. We propose the following features extraction strategy 

to measure characteristics of the a peak and the overall CVP cycle waveform.

We use four features to characterize the CVP a peak. Peak prominence measures how much 

a peak stands out from the surrounding baseline of the signal. In other words, it is the 

vertical distance between the peak and its lowest baseline (marked red in Figure 4). The 

peak height and width are the yellow line and red line identified in Figure 4. The width is 

identified as the distance between the detected endpoint in the peak, where the height is the 

distance from the peak to the baseline identified by the endpoint. The width of different 

relative height can also be obtained. As shown in the graph, the green line represents the 

peak width at the 50 % level of the peak. The peak slop is calculated as height/width.

Beyond features of the a wave, we introduce another 5 statistical features to characterize the 

overall shape of the waveform: waveform mean value, variance, and kurtosis, maximum 

value, and range. The CVP cycles during JET will display higher mean values and waveform 

of higher variance [19, 10]. The change in waveform morphology will be reflected in the 

cycle mean value and variance. Also, since the a wave will be disproportionately larger than 

the other waves in the cycle, the skewness should shift toward the cannon a wave. Lastly, we 

introduce a template-based distance feature, where we measure the cross-correlation 

between each patient cycle with a standard JET CVP cycle. Despite that each patient has 

disparate baseline waveform morphology, this distance feature is able to measure the level of 

similarity between each cycle and a standard typical JET cycle.

These four features can effectively capture the difference between JET and sinus CVP 

cycles. In Figure 5, feature in each boxplot display clear separation between sinus group and 

JET group. It demonstrates that the proposed features are able to characterize the 

morphological difference and provide reliable JET onset detection.

3.3 Models

We use a random forest model [6] with maximum depth of 15 to classify JET vs sinus 

cardiac cycles from the 10 CVP features and 13 ECG features.

4 Experiment and Results

4.1 Data Introduction

The data contains 23.3 hours of signal with 6.3 hours of JET and 17 hours of sinus for 8 

patients. Throughout the data, there are 4 channels available for the ECG signal and 2 

channels for the CVP signal. We only select the channel that contains the best-quality signal 

to conduct feature engineering and subsequent classification experiment.

4.2 Benchmark ECG features

To demonstrate the effect of our proposed features, we compare them against 24 gold-

standard ECG features that measure the temporal characteristics of the ventricular 
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depolarization waves (QRS complex) [18, 20]. It includes the following: QRS complex 

widths, QS width, PR width, Peak Heights (P, R, Q, S), Peak Differences (PQ, RQ, RS), and 

normalized heart rate features, etc. These are well-validated features characterizing ECG 

waveform, and they have also been extensively utilized in ECG-based arrhythmia detectors 

[4, 7, 8, 14, 16, 18, 17].

4.3 Experiment Design

We designed two experiments to demonstrate the effectiveness of proposed CVP 

features.The first experiment conducts within-patient training and testing. The testing data 

and training data both come from the same patient with a 30%–70% split. The second 

experiment conducts cross-patient training and testing. In this experiment, the testing data 

comes from a single patient, and the training data comes from every other patient in the 

dataset. For each experiment, we report the sensitivity, specificity, and area under curve 

(AUC) of the random forest model trained with CVP features, ECG features, and CVP + 

ECG features combined respectively. Finally, we also report the average feature importance 

of CVP and ECG features in the joint model. Thus, we can compare the importance of 

proposed CVP features versus ECG features.

4.4 Results

In both experiments, the model relying on CVP features alone achieves comparable 

performance with the model relying on ECG features. The within-patient experiment 

generally yields better performance than the cross-patient experiment. The reason is that 

each patient has underlying diseases, which creates a morphological disparity in the CVP 

waveform. Despite the waveform disparity, the performance of the model relying on CVP 

features still matched the performance of the model relying on ECG features. As shown in 

Figure 6, when ECG features and CVP features are jointly utilized in the model, CVP 

features have importance scores than the ECG features.

4.5 Limitations

As mentioned in the introduction, changes in CVP could be due to triscuspid pathology. 

However, the patients in this analysis all had JET as the inciting event for changes in CVP. 

Additionally, we looked at relative change in CVP morphology due to JET, which takes into 

account any pre-existing tricuspid valve abnormalities. Usually, more than one channel of 

CVP signal will be available. However, this model only selects the single signal channel 

with the best quality to experiment. Future work can focus on developing models for 

multichannel signals.

Morphological disparity across different patients exist in both ECG and CVP signal. Despite 

that the JET vs sinus cycles are easily separable during the within-patient experiment, the 

morphological disparity undermines the cross-patient experiment result. The reason could be 

that the patients have other cardiac disease or they are under certain medication, which 

complicate the waveform.
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5 Conclusion

We have proposed a novel pipeline to process and extract features from Central Venous 

Pressure with a case study on the automatic detection of junctional ectopic tachycardia. The 

preprocessing pipeline and feature engineering pipeline provide a solution to remove 

complex artifacts in the CVP waveform and extract clinically valuable information. The 

within-patient and cross-patient experiment demonstrate that the CVP signal is as reliable as 

the ECG signal in detecting JET onset, and CVP features have higher importance scores 

than ECG features in the joint model. Thus, the quality and performance of arrhythmia 

detectors can be improved by incorporating CVP signals, and it can be particularly important 

when ECG signals are unavailable or contain major artifacts.
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Fig. 1. 
Cannon a wave is the primary CVP morphology during JET onset
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Fig. 2. 
CVP Waveform Comparison
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Fig. 3. 
CVP Cycle Dynamic Alignment
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Fig. 4. 
Measure a, c, v waves during a single CVP cycle
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Fig. 5. 
Selected CVP Features Comparison

Tan et al. Page 12

Artif Intell Med Conf Artif Intell Med (2005-). Author manuscript; available in PMC 2021 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Feature Importance Scores
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Table 1.

Within-Patient Experiment Result

Test Patient: 1 2 3 4 5 6 7 8

CVP features

 Sensitivity 1 0.99 1 1 0.53 1 0.95 1

 Specificity 1 0.91 0.98 1 0.99 1 1 1

 AUC 1 0.99 0.99 1 0.94 0.99 0.98 1

ECG features

 Sensitivity 1 1 1 1 0.79 0.98 0.98 1

 Specificity 1 1 1 1 1 1 1 1

 AUC 1 1 1 1 0.99 0.99 1 1

ECG + CVP

 Sensitivity 1 1 0.98 1 0.86 0.98 0.94 0.99

 Specificity 1 1 1 1 1 1 1 1

 AUC 1 1 1 1 0.98 0.99 0.99 1
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Table 2.

Cross-Patient Experiment Result

Test Patient: 1 2 3 4 5 6 7 8

CVP features

 Sensitivity 1 0.38 0.98 0 0.26 0.99 0.93 0

 Specificity 1 0.99 0.2 0.28 0.83 0.99 0.7 1

 AUC 0.99 0.95 0.24 0.07 0.5 0.99 0.95 3.99

ECG features

 Sensitivity 1 0.17 0.89 0 0.3 0.97 0.93 0

 Specificity 1 0.99 0.01 0.54 0.76 1 0.95 1

 Auc 0.99 0.93 0.14 0.01 0.58 0.99 0.96 0.63

ECG + CVP

 Sensitivity 1 0.24 0.9 0 0.32 0.97 0.94 0

 Specificity 1 0.98 0.01 0.36 0.77 1 0.91 1

 AUC 1 0.91 0.2 0.01 0.6 0.99 0.96 0.61
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