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Abstract

Chikungunya virus (CHIKV) is an arthritogenic alphavirus causing epidemics of acute and

chronic arthritic disease. Herein we describe a comprehensive RNA-Seq analysis of feet

and lymph nodes at peak viraemia (day 2 post infection), acute arthritis (day 7) and chronic

disease (day 30) in the CHIKV adult wild-type mouse model. Genes previously shown to

be up-regulated in CHIKV patients were also up-regulated in the mouse model. CHIKV

sequence information was also obtained with up to�8% of the reads mapping to the viral

genome; however, no adaptive viral genome changes were apparent. Although day 2, 7 and

30 represent distinct stages of infection and disease, there was a pronounced overlap in up-

regulated host genes and pathways. Type I interferon response genes (IRGs) represented

up to�50% of up-regulated genes, even after loss of type I interferon induction on days 7

and 30. Bioinformatic analyses suggested a number of interferon response factors were pri-

marily responsible for maintaining type I IRG induction. A group of genes prominent in the

RNA-Seq analysis and hitherto unexplored in viral arthropathies were granzymes A, B and

K. Granzyme A-/- and to a lesser extent granzyme K-/-, but not granzyme B-/-, mice showed a

pronounced reduction in foot swelling and arthritis, with analysis of granzyme A-/- mice

showing no reductions in viral loads but reduced NK and T cell infiltrates post CHIKV infec-

tion. Treatment with Serpinb6b, a granzyme A inhibitor, also reduced arthritic inflammation

in wild-type mice. In non-human primates circulating granzyme A levels were elevated after

CHIKV infection, with the increase correlating with viral load. Elevated granzyme A levels

were also seen in a small cohort of human CHIKV patients. Taken together these results
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suggest granzyme A is an important driver of arthritic inflammation and a potential target for

therapy.

Trial Registration: ClinicalTrials.gov NCT00281294

Author summary

The largest chikungunya virus (CHIKV) epidemic ever recorded began in 2004 in Africa

and spread across Asia reaching Europe and recently the Americas, with millions of cases

reported. We undertook a detailed analysis of the mRNA expression profile during acute

and chronic arthritis in an adult wild-type mouse model of CHIKV infection and disease.

Gene induction profiles showed a high concordance with published human data, provid-

ing some validation of the mouse model. The host response was overwhelmingly domi-

nated by type I interferon response genes, even after type I interferon induction was lost.

The analysis also provided information on CHIKV RNA, with no adaptive viral genome

changes identified. An important goal of the analysis was to identify new players in

arthritic inflammation. Granzyme A was prominent in the RNA-Seq data and granzyme

A deficient mice showed reduced arthritis, with no effects on viral loads. Arthritic disease

could also be ameliorated in wild-type mice with a granzyme A inhibitor. Elevated circu-

lating granzyme A levels were seen in non-human primates infected with CHIKV and in

human CHIKV patients. Granzyme A thus emerges to be a major driver of CHIKV-medi-

ated arthritic inflammation and a potential target for anti-inflammatory interventions.

Introduction

Chikungunya virus (CHIKV) belongs to a group of mosquito-borne arthritogenic alphaviruses

that include the primarily Australian Ross River and Barmah Forest viruses, the African

o’nyong-nyong virus, the Sindbis group of viruses and the South American Mayaro virus [1].

The largest documented outbreak of CHIKV disease ever recorded began in 2004 in Africa

and spread across the Indian Ocean to Asia, east to Papua New Guinea and several pacific

islands, with small outbreaks also seen in Europe. In late 2013 the epidemic reached the Amer-

icas, spreading through the Caribbean, Central and South America, with autochthonous trans-

mission also reported in the USA [2,3]. Millions of cases have been reported. Symptomatic

infection of adults with CHIKV is nearly always associated with acute and often chronic poly-

arthralgia and/or polyarthritis, which can be debilitating and usually lasts weeks to months,

occasionally longer [1,4]. At present, no particularly effective drug or licensed vaccine is avail-

able for human use for any of these alphaviruses; although paracetamol/acetaminophen and

non-steroidal anti-inflammatory drugs can provide relief from rheumatic symptoms [1,5] and

CHIKV vaccines are in development [6,7].

CHIKV infection usually results in a 5–7 day viraemia, which is primarily controlled by a

rapid type I IFN response [8–11] and subsequently by anti-viral antibodies [12–15]. Infection

also drives a pro-inflammatory response with the up-regulation of multiple inflammatory

mediators [16–24]. CHIKV arthropathy is generally viewed as an immunopathology

[13,25,26], with the pro-inflammatory arthritogenic response sharing similarities with rheu-

matoid arthritis [27]. The arthritogenic response is triggered by viral infection of joint tissues

and is associated with a robust mononuclear cell infiltrate comprised primarily of monocytes,
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macrophages, NK cells and some T cells [28,29]. An important role for CD4 T cells in driving

CHIKV arthritis has been established [27,30], although the role of IFNγ is less clear [27,30,31].

A major burden of CHIKV disease is chronic or persistent polyarthralgia/polyarthritis

[4,32], with the evidence currently suggesting that such ongoing arthritic disease is due to per-

sistence of virus and/or viral material in joint tissues [13,20,33]. Whether such viral material

(i) represents replicating virus or replicating viral RNA [13] with mutations that promote per-

sistence [34,35] or (ii) simply represents delayed clearance of non-replicating viral material

[2], remains unclear. Whether chronic rheumatic disease is associated with the development

of new inflammatory processes (distinct from those prominent during the acute phase) is also

unclear.

We have developed an adult C57BL/6J (wild-type) mouse model of acute and chronic

CHIKV infection and arthritis that recapitulates many aspects of human disease [13,28]. The

model has been widely adopted for testing new interventions [25,36–43], although how well

the mouse recapitulates the full spectrum of inflammatory responses seen in humans remains

unclear.

A key goal of CHIKV arthritis research is to identify potential new targets for anti-inflam-

matory drug interventions to improve treatment options for CHIKV arthritis [25,26] and per-

haps related diseases [44]. Such interventions should clearly neither compromise anti-viral

immunity [25,45] nor trigger other immunopathologies [46]. Herein we describe an RNA-Seq

study of lymph nodes and feet in the adult wild-type mouse model of CHIKV infection. The

study was undertaken to explore in depth the anti-viral and pro-inflammatory responses in

acute and chronic infection, and to identify new players in arthritic inflammation.

Results

Transcriptional profiling of CHIKV infection in adult wild-type mice

We undertook transcriptional profiling of whole hind feet and inguinal lymph nodes using the

previously described adult wild-type mice model of acute and chronic CHIKV infection and

arthritic disease [13,28]. Poly-adenylated RNA from whole hind feet (days 2, 7 and 30 post

infection) and lymph nodes (days 2 and 7 post infection) from infected mice, and from feet

and lymph nodes of mock infected mice were analyzed by RNA-Seq. Day 2 represents the day

of peak viraemia, day 7 acute arthritis [28], with day 30 representing chronic arthritic disease

[13]. Three biological replicates, each comprising pooled RNA from 4 mice, were sequenced

using 3 lanes of the Illumina HiSeq 2000 platform. Quality control analyses and read alignment

data are shown in S1 Fig. The Tuxedo pipeline was used to identify differentially expressed

genes (DEGs) in the infected tissues at the different times post infection compared to mock

infected controls. The DEG lists (where q<0.01 and fold change >2) and the up and down-

regulated genes (with the additional filter of FPKM > 1 in at least one sample) are provided in

S1 Table.

Concordance with human inflammatory gene expression

The genes and/or proteins reported to be up-regulated in previous studies on CHIKV patients

were all identified in this RNA-Seq analysis of mouse tissues (Table 1). Most of these genes/

proteins are associated with inflammation (Table 1), suggesting a good concordance in pro-

inflammatory gene expression in this mouse model and in human patients following CHIKV

infection.

Many of the up-regulated genes identified in this RNA-Seq analysis have also been shown

to be up-regulated (at the gene and/or protein level) in previously published mouse and mon-

key studies (S2 Table).
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Table 1. Concordance of up-regulated genes identified by RNA-Seq in the current study of CHIKV infected mice and previously published protein

and mRNA expression studies in human CHIKV patients. For studies showing protein expression of mouse mediators see S2 Table.

Genes RNA-Seq in mice Human CHIKV studies

Day 2 Day 7 Day 30 Acute Chronic In vitro

Cytokines IFNα Ft (▲2) USR (+6.1) USR (+5.2) [16–19]1 PBMC & synovium [20]

USR (6.3) PBMC [20]

IFNβ Ft (▲2) USR (+7.7) USR (+5.3) [47]

USR (6.16)

LN (▲2)

IFNγ LN (▲10.7) Ft (▲211) 3 Ft (▲21.6) 3 [16–19,22]1 [21]1

USR (6.04) USR (5.0) USR (3.8) T cells [48] [48]

IL1β Ft (▲2.4) Ft (▲3.7) Ft (▲1.4) [16]1 [47]

LN (▲2.4) USR (+6.3)

IL2 Ft (▲2) Ft (▲2) USR (+4.78) [16–20,23,24]1

IL4 Ft (▲1.47) LN (▲2.81) USR (+0.75) [16–20,24]1

IL6 LN (▲14.4) Ft (▲2.2) Ft (▲2.2) [18,21]1 [47]

Ft (▲22.8) USR (+4.7) Synovial fluid [20]

IL7 USR (+3.2) USR (+4.4) USR (+2.8) [16–19,24]1

IL10 Ft (▲16.4) LN (▲2.2) Ft (▲3.9) [16–20,22–24]1 Synovium [20]1

Ft (▲30.1)

IL12 USR (+5.6) USR (+6.5) USR (+2.7) [16–18,20,23,24]1 [20]

IL15 Ft (▲5.2) Ft (▲2.3) Ft (▲1.9) [16–19] 1

IL17 USR (+6.0) USR (+4.7) USR (+4.8) [16–19,23,24,49]1

IL18 USR (+5.5) USR (+5.8) USR (+4.2) [19,50]1

IL18bp Ft (▲4.76) Ft (▲7.53) NS [50]1

TNFα Ft (▲4.29) Ft (▲7.89) Ft (▲1.8) [16,20,21,23,24]1 [18,20,21]1

USR (+8.4)

G-CSF Ft (▲4.02) NS NS [16–19,24]

LN (▲6.12)

Chemokines CCL1 Ft (▲1.58) Ft (▲1.67) Ft (▲ 3.47) PBMC[20]

CCL2 Ft (▲36.6) Ft (▲21.6) Ft (▲3.3) [16–19,22–24,49]1 Synovial fluid [20]

LN (▲6.7)

CCL3 Ft (▲16.6) Ft (▲11.7) Ft (▲3.1) [16–19]1 PBMC[20] [47]

LN (▲7.0) LN (▲10.7)

CCL4 Ft (▲56.6) Ft (▲37.4) Ft (▲4.6) [16–19,24]1 PBMC[20]

LN (▲10.0)

CCL7 Ft (▲29.75) Ft (▲23.4) Ft (▲ 4.38) PBMC[20]

LN (▲6.47)

CCL11 Ft (▲3.75) Ft (▲2.02) USR (+1.71) Sera[18]

CCL19 Ft (▲5.17) Ft (▲3.44) NS PBMC[20]

CXCL1 Ft (▲5.08) Ft (▲1.97) Ft (▲3.02) PBMC[20]

LN (▲2.13)

CXCL2 Ft (▲2.38) NS NS PBMC[20]

LN (▲3.93)

CXCL3 Ft (▲4.28) Ft (▲4.09) Ft (▲2.86) PBMC[20]

CXCL5 Ft (▲2.66) Ft (▲2.39) Ft (▲1.68) PBMC[20]

LN (▲2.16) LN (▲1.68)

CXCL8 (IL8) USR (2.0) USR (2.65) (USR (2.76) [18,20] PBMC[20]

CXCL9 Ft (▲391.5) Ft (▲322.4) Ft (▲62.1) [16–19,22,23]1 PBMC[20] [47]

LN (▲11.1)

CXCL10 Ft (▲869.2) Ft (▲185.0) Ft (▲31.4) [16–19,22,23]1 [51] [47]

LN (▲16.0)

CXCL11 Ft (▲116)

LN (▲125)

Ft (▲51.68) Ft (▲2.08) PBMC[20]

(Continued)
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Global gene expression patterns

Venn diagram presentation of the up-regulated genes in feet illustrated that many up-regu-

lated genes were shared between days 2, 7 and 30, with these shared genes also showing the

highest mean fold change (Fig 1A). These 247 shared genes (fold change>2, FPKM>1,

q<0.01, S3 Table) were overwhelmingly type I IRGs (as defined by Interferome [53]) and con-

tained many anti-viral effectors, some of which have previously been described in alphavirus

studies, such as Mx1 [54], viperin [55], ISG15 [56] and Ifit1 [57] (Table 2). Sensing and signal-

ing proteins were also prominent and included IRF7 [9], Usp18 [58], Stat1, IRF1, IRF5 and

IRF8. Tmem731 (STING) [59] (Table 2) and Trex1 [60] (S1 Table) were up-regulated,

although the mechanisms and implications remain to be established [61–63]. CXCL10 was the

most up-regulated chemokine (Table 2), with only some chemokines, such as CCL2, well stud-

ied in alphavirus infections [33,46]. As might be expected, complement [64], immunoprotea-

some genes and T cell response associated genes [27,30] were present (Table 2). Although

granzyme B up-regulation has been noted previously [65], its prominence (Table 2, Gzmb)

was perhaps unexpected given the limited role played by cytotoxic T cells and NK cells in pro-

tection against alphavirus infections [13,30,65,66]. Also prominent were interferon-inducible

guanylate binding proteins, immunity related GTPases [67], C-type lectins and membrane-

spanning 4-domains subfamily A (Ms4a) genes (Table 2), which have not been extensively

studied in alphavirus infections. Most of the genes in the latter two groups and Cd300a,

Table 1. (Continued)

Genes RNA-Seq in mice Human CHIKV studies

Day 2 Day 7 Day 30 Acute Chronic In vitro

Receptors CCR1 Ft (▲1.7) Ft (▲4.12) Ft (▲1.93) PBMC[20]

LN (▲1.7)

CCR2 NS Ft (▲5.69) Ft (▲3.98) PBMC[20]

CCR3 NS NS Ft (▲2.13) PBMC[20]

CCR5 Ft (▲9.24) Ft (▲33.6) Ft (▲14.9) PBMC[20]

LN (▲3.26)

CCR8 NS Ft (▲2.44) Ft (▲1.34) PBMC[20]

CCRL2 Ft (▲15.4) Ft (▲3.76) NS PBMC[20]

LN (▲7.58)

CXCR6 NS Ft (▲5.85) Ft (▲2.98) PBMC[20]

CYFIP2 NS Ft (▲1.99) Ft (▲1.44) PBMC[20]

IL1RA Ft (▲3.49) Ft (▲2.48) NS [16–19,22]1

LN (▲18.6)

PARP-1 USR (407) USR (+4.5) USR (+4.2) Synovium [20]

Others CASP1 Ft (▲2.50) Ft (▲3.0) NS [47]

FGFβ USR (+2.6) USR (+1.7) USR (+1.8) [16–19]1

MMP2 NS NS Ft (▲1.57) PBMC[20]

MYD88 Ft (▲1.89) Ft (▲3.33) NS PBMC[20]

LN (▲3.71)

PTX3 Ft (▲18.27) Ft (▲2.56) NS [52]

Lymph node (LN); Feet (Ft); Fold change (▲); Upstream regulator (USR) with activation z-score; not significant (NS).
1 from human sera/plasma samples.
2 infinite fold change (nominally given a value of log2 of 21 in S1 Table).
3 FPKM<1.

doi:10.1371/journal.ppat.1006155.t001
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recently reported as a virus attachment factor [68], are expressed by monocytes/macrophages

[69], which dominate the CHIKV inflammatory infiltrate.

Ingenuity pathway analysis (IPA) of up-regulated genes illustrated a high degree of similar-

ity in the upstream regulators (direct and indirect) identified at the 3 time points in feet (Fig

1B). IPA canonical pathway analysis also showed considerable overlap (with many pathways

associated with T cells) (S2 Fig). Gene induction profiles and inflammatory pathways were

therefore surprisingly similar despite the different stages of infection and disease; day 2 (peak

viraemia), day 7 (acute arthritis, no viraemia) and day 30 (chronic disease, persistent viral

RNA) [13,28]. IPA analysis of genes uniquely up-regulated on day 30 (i) identified pathways

Fig 1. Global analysis of gene expression. (A) Venn diagram [70] of up-regulated genes in feet. Only genes with q<0.01, fold

change >2 and FPKM >1 were included. Numbers in parenthesis represent the mean fold change of all the genes in the segment; note

genes which are shared between all time points show the highest mean fold changes. (B) Heat map of−log10 z scores from Ingenuity

upstream regulator analysis of the genes shown in A. Scores are ranked highest to lowest (mean of the 3 time points). The top and

bottom 10 upstream regulators are shown on the figure; the full data set is shown in S3 Table. (C) Venn diagram of down-regulated

genes in feet. Numbers in parenthesis represent the mean fold change. (D) Heat map of p values from Ingenuity canonical pathway

analysis of the genes shown in C, with day 7 pathways ranked most to least significant. A DAVID analysis of the same genes (bar

chart) showing similarity scores. The full data sets for these figures are provided in S3 Table. (E) Venn diagram of up-regulated genes

in lymph nodes on days 2 and 7. (F) Venn diagram of up-regulated genes on day 2 in lymph nodes (LN) and feet (Ft); and heat map of

−log10 z scores from Ingenuity upstream regulator analysis of these genes. The first column of the heat map shows z scores from day

2 lymph nodes ranked highest to lowest (the full data set is provided in S3 Table). (G) Venn diagram of up-regulated genes in lymph

nodes on days 7 and feet on day 7. (H) Venn diagram of down-regulated genes in lymph nodes on days 2 and 7.

doi:10.1371/journal.ppat.1006155.g001
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Table 2. Grouping of selected genes from the 247 shared up-regulated genes in feet.

Day 2 Day 7 Day 30 Day 2 Day 7 Day 30

Effectors Chemokines

Mx1 (MxA) 339.9 29.8 4.4 Cxcl10 869.2 185.0 31.4

Iigp1 250.0 72.4 15.3 Cxcl9 391.5 322.4 62.0

Isg15 226.8 44.6 4.9 Ccl5 62.8 41.3 9.3

Rsad2 (Viperin) 221.1 15.5 4.4 Ccl4 56.6 37.4 4.6

Ifi44 215.5 44.8 10.6 Ccl2 36.7 21.6 3.3

Ifit1 204.6 24.8 7.8 Ccl7 29.8 23.5 4.4

Ifit3 125.2 23.1 5.8 Ccl12 29.3 27.1 9.8

Mx2 (MxB) 111.7 9.6 2.3 Ccl3 16.6 10.0 3.1

Ifit2 (ISG54) 75.6 10.8 2.7 Ccr5 9.2 33.6 14.9

Zbp1 (DAI) 49.7 59.0 11.8 Ccr7 7.1 10.8 2.2

Oas2 29.2 15.0 3.4 Ccl8 3.9 9.9 2.6

Samhd1 10.3 9.5 3.5 Cxcl16 2.1 5.0 3.0

Apobec3 5.1 7.9 2.1

Apobec1 3.7 8.2 3.3 Complement

Rnase6 2.6 5.7 3.6 C2 7.4 3.9 2.2

C3ar1 2.4 7.1 4.1

Sensing/Signalling

Oasl1 152.1 37.1 5.2 Immunoproteasome

Irf7 116.2 38.8 4.2 Psmb8 12.9 14.9 4.6

Apol9b 68.1 19.1 7.6 Psmb9 12.1 14.8 4.4

Usp18 62.0 10.4 3.2 Psmb10 10.9 10.7 2.7

Apol9a 59.6 19.1 9.6

Oasl2 54.0 20.6 5.5 Inflammasome

Stat1 22.5 18.6 2.8 Pyhin1 26.8 22.8 4.3

PARP9 17.3 7.0 2.4 Nlrc5 18.9 12.8 4.0

DTX3L 15.8 7.5 2.2 Nlrp3 3.4 7.3 3.1

Tlr9 11.2 17.5 3.3 Naip2 2.3 4.6 2.6

Irf1 9.8 13.6 2.9

Trim14 8.8 5.3 2.2 Guanylate binding proteins (p65 GTPases)

Tlr2 6.8 3.7 3.1 Gbp5 79.0 44.4 8.3

Trim12c 5.6 3.4 2.0 Gbp2 63.5 53.5 13.0

Traf1 4.8 6.3 3.2 Gbp3 45.3 29.2 7.7

Tmem173 3.7 6.2 2.2 Gbp7 33.3 16.5 5.2

Tlr13 3.6 10.6 4.4 Gbp6 28.6 28.8 2.6

Irf8 3.3 9.4 3.0 Gbp8 11.5 52.5 8.0

Irf5 2.8 4.8 2.0

Immunity related GTPases

T cell associated Mx genes (see above)

Gzmb 67.5 623.4 18.3 Gm4841 (Ifgga3) 686.9 322.9 10.8

H2Q6 27.9 17.6 7.7 Gm12185 269.2 183.7 13.2

H2Q7 20.3 17.6 7.5 Iigp1 250.0 72.4 15.3

H2T24 18.5 17.6 3.9 Gm12250 130.9 129.0 13.8

H2Q4 16.1 17.6 4.7 Tgtp1 76.4 88.0 8.3

H2Q8 14.1 17.6 4.4 Igtp 64.2 45.5 6.4

Tap1 13.0 11.4 3.2 Gm4951 (Ifgga2) 46.7 39.2 7.1

H2T10 11.5 17.6 3.0 Irgm1 39.4 26.9 3.9

(Continued )
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already identified for days 2 and 7 and (ii) showed that many of the genes were associated with

tissue repair (using the IPA Diseases & Functions feature).

For the down-regulated genes in feet, a large number of genes were uniquely down-regu-

lated on day 7 (Fig 1C). IPA canonical pathway analysis also showed minimal overlap in path-

ways between the 3 time points (Fig 1D, heat map; S3 Table). These analyses and the low mean

fold change (-2.5) suggest that a major influence on this data set is the pronounced cellular

infiltration seen on day 7 [28], which would effectively dilute (and down-regulate) the mRNA

of resident cells. This contention is supported by the observation that the top 10 terms identi-

fied by DAVID (v6.7) functional gene annotation analysis were associated with keratinocytes

(Fig 1D, bar chart; S3 Table), cells that are not a major target of infection in C57BL/6 mice [9].

The top IPA canonical pathways for day 7 were associated with muscle (Fig 1D, heat map; S3

Table), with both the dilution effect and viral infection [9,71] likely responsible.

In contrast to feet, DEGs up-regulated in lymph nodes showed only minimal overlap

between days 2 and 7 (Fig 1E). However, up-regulated genes in lymph nodes on day 2 showed

a considerable overlap with genes up-regulated in feet on day 2 (Fig 1F, Venn diagram). IPA

upstream regulator analysis also showed a high degree of concordance between pathways in

lymph nodes and feet on day 2 (Fig 1F, heat map). This likely reflects the systemic nature of

the infection and argues that early innate responses are not overly tissue specific.

Up-regulated genes on day 7 in lymph nodes, as might be expected, were dominated by

immunogobulin genes, which represent 60% of the top 150 genes (S1 Table). The top terms

from a DAVID functional gene annotation analysis were associated with cell division, consis-

tent with the expected proliferation of B and T cells. In contrast with day 2 (Fig 1F), there was

minimal overlap between up-regulated genes in lymph nodes and feet on day 7 (Fig 1G). By

the time adaptive immune responses are developing and arthritis is peaking, the infiltrates in

lymph nodes and arthritic feet thus appear to share relatively few genes.

Table 2. (Continued)

Day 2 Day 7 Day 30 Day 2 Day 7 Day 30

H2T23 9.8 17.6 3.0 Irgm2 37.7 23.2 5.0

H2K1 7.6 17.6 4.0

B2m 7.3 8.7 4.2 C-type lectins

Hck 6.8 19.2 4.5 Clec4e 10.5 14.1 12.0

Tapbp 6.8 4.8 2.2 Clec4d 3.0 4.5 9.4

Tap2 6.3 3.7 2.3 Clec4a3 2.9 9.5 3.1

H2M3 5.9 17.6 4.4 Clec4a1 2.5 8.7 3.2

H2D1 4.9 17.6 4.0 Clec12a 2.1 11.4 7.0

Cd53 3.0 5.8 2.9 Clec7a 2.0 5.6 3.4

Lck 2.6 12.3 3.2

Ccdc88b 2.5 7.4 2.2 Membrane-spanning 4-domains

Lyn 2.3 5.7 2.7 subfamily A member

Tagap 2.0 3.4 2.1 Ms4a4c 65.8 67.0 5.1

Ms4a4b 9.5 39.3 6.1

Virus attachment factor Ms4a6c 5.3 13.5 3.7

Cd300a 2.8 6.6 2.7 Ms4a6d 5.0 10.2 3.4

Ms4a6b 4.7 10.3 2.8

Ms4a8a 4.6 7.1 2.6

Refer to Fig 1A for derivation of the 247 genes. Mean fold change for days 2, 7 and 30 are shown. The full gene list is provided in S3 Table (feet shared).

doi:10.1371/journal.ppat.1006155.t002
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The down-regulated genes from lymph nodes on days 2 and 7 showed some overlap (Fig

1D). IPA upstream regulator analysis also showed some overlap in pathways, with top path-

ways (as expected) generally indicative of immune activation.

CHIKV genome sequence data

Reads that did not map to the mouse genome were mapped to the CHIKV genome (S1D Fig).

For feet on day 2,>8% of all sequencing reads aligned to the CHIKV genome, with 84% of

reads aligning to the mouse genome (Fig 2A, S1D Fig). The number of reads aligning to the

CHIKV genome dropped to 0.003% by day 30 (Fig 2A, S1D Fig), a reduction consistent with

previous qRT-PCR data [13]. Examples of read alignments to the CHIKV genome are shown

in Fig 2B and S3A Fig. The higher sequence coverage for the structural genes (evident at all 3

Fig 2. CHIKV genome. (A) The percentage of all the reads that aligned to the mouse genome for each tissue

and time point. Read alignment numbers are provided in S1D Fig. (B) Examples of alignments of RNA-Seq

reads from 3 foot samples mapped to the CHIKV genome (map quality threshold 20) viewed using Integrated

Genomics Viewer (IGV version 2.3.34). The CHIKV genome is shown at the top for reference (arrow

represents position of the sub-genomic promoter). Upper graphs (dark grey) show sequence coverage (log

scale) for each nucleotide position in the CHIKV genome with y axis scale ranges (e.g. 0–300,000) shown in

the left hand corners. The bottom graphs are “squished” views of the 100 bp reads aligned to the CHIKV

genome (each grey horizontal bar represents one read). Black spots represent deletions/insertions within

each read.

doi:10.1371/journal.ppat.1006155.g002
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time points), reflects the known higher levels of subgenomic 26S RNA (encoding C to E1)

compared to genomic RNA present in alphavirus infected cells [34]. The 30 bias in sequence

coverage, clearly evident on day 30 (Fig 2B), may represent an artifact of the Illumina HiSeq

sequencing platform [72].

Although the low fidelity RNA replication of CHIKV [73] might predict the rapid emer-

gence of sequence variants, we were unable to identify any consistent or high frequency

changes (S3B Fig). Although some changes were identified (i) for each nucleotide position the

percentage of reads showing a different nucleotide to the reference sequence rarely exceeded

10%, (ii) nucleotide sites with>2% of reads showing changes from the reference sequence

were associated with areas of low read coverage (S3B Fig) and (iii) some consistent deletions/

insertions (present in up to 10% of reads) were associated with runs of identical polynucleo-

tides. Changes above a background sequencing error rate of�2% thus appear largely to repre-

sent sequencing artifacts. The ratios of synonymous to non-synonymous mutations were also

consistent with random changes (S3C Fig).

Dominance of interferons and interferon regulated genes

The importance of the type I interferon (IFN) response for protection against lethal CHIKV

infection is well established [9–11]. The upstream regulator analysis also showed that many of

the top upstream regulators were associated with the type I IFN response (Fig 1B). qRT-PCR

analysis illustrated a good correlation between IFNβ or IFNα6 mRNA levels and the tissue

CHIKV titers, with feet and lymph nodes (the tissues analyzed by RNA-Seq in this study)

showing the highest levels of both CHIKV and IFNβ/IFNα6 mRNA levels (Fig 3A). Type I IFN

induction was thus more virus titer-dependent than tissue-dependent.

Interferome (v2.01) analysis of the DEGs identified by RNA-Seq (S1 Table) illustrated that

about half of up-regulated genes (in all samples except day 7 lymph nodes), and 10–20% of

down-regulated genes, were type I IFN regulated genes (IRGs) (Fig 3B). In addition, 10–30%

of up-regulated genes in all samples were identified as genes regulated by IFNγ (type II IRGs)

(Fig 3B). This analysis provides the first quantitative assessment of the very considerable domi-

nance of IFN responses, particularly the type I IFN response, during both acute and chronic

CHIKV infection.

The RNA-Seq analysis provided the first detailed picture of all the type I IFN genes induced

after CHIKV infection, with IFNβ and α4 dominating (Fig 2C and S4 Fig). The surprising

observation (given Fig 3B) was the overall low abundance of type I IFN transcripts, which did

not exceed an FPKM = 7 and was often close to FPKM = 1 (Fig 3C, S4 Fig), a frequently used

cut-off for expression analyses [74,75]. Low abundance of type I IFN mRNAs may also explain

why reporter mice expressing GFP from IFNα or IFNβ promoters [76] express undetectable

levels of GFP after CHIKV infection [77]. These results suggest high bioactivity for type I IFN

proteins and/or highly efficient translation of type I IFN mRNAs [9–11]. Despite persistence

of viral RNA (Fig 2A), by day 7 and 30 type I IFN mRNA levels had dropped to background

levels (Fig 3C, S4 Fig).

Transcription factor analyses

The continued dominance of type I IRGs on days 7 and 30 (Fig 2C) despite the loss of signifi-

cant type I IFN mRNA induction (Fig 2B, S4 Fig), argues that type I IFN-independent induc-

tion of type I IRGs (although well described [63,78,79]) essentially takes over after the brief

period of type I IFN production. To better understand this process, an examination of tran-

scription factor usage was undertaken. The direct upstream regulator function of IPA identi-

fied IRF7, STAT1, IRF3, IRF1 and IRF5 [80] in the top 10 upstream regulators for each time
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point (ranked by activation Z scores), with these transcription factors also showing (i) high

fold change (with the exception of IRF3) and (ii) high FPKM (mRNA expression) values (Fig

3D). Other transcription factors identified by this analysis were IRF8 [81], Stat3 [82], IRF1

[83,84], IRF2 [85], and Stat2/IRF9 (with unphosphorylated ISGF3 able to signal [86]) (Fig 3D,

S5A Fig). RELA was also identified in the top 10 (ranked by activation Z scores), but was only

marginally up-regulated (Fig 3D, S5A Fig). These results were supported by a transcription

factor site analysis using a new program (CiiiDER, Gearing et al, in prep) (S5B Fig). Although

Fig 3. The interferon signature. (A) Expression of IFNα6 and IFNβ as determined by qRT-PCR in different tissues on day 2

post CHIKV infection (n = 3 mice), the time of the peak IFNα/β response [28]. Values are normalized to RPL13a mRNA levels

and expressed as fold induction relative to mock infected controls (n = 3). CHIKV titres in the tissues were determined as

described [28]. Spearman’s correlation tests showed a significant relationship between IFN mRNA levels and viral titres (IFNα6

Spearman’s rho = 0.829 p = 0.042, IFNβ Spearman’s rho = 0.943 p = 0.005). (B) For all samples the up- and down-regulated

DEGs (for which FC>2, q<0.01 and FPKM>1, see S1 Table) were analyzed using Interferome and the percentage of these

DEGs that are interferon regulated genes (IRGs) is shown. (Interferome does not distinguish between genes directly or

indirectly stimulated by IFNs, and some type I and/or II IRGs may not be identified by Interferome). (C) Heat map of FPKM

values for all IFN genes identified by the RNA-Seq analysis (the same data is plotted as bar chart in S4 Fig). (D) Transcription

factors associated with IFN responses in feet. Fold change of indicated transcription factors with vertical numbers representing

the mean FKPM values (for the 3 biological replicates). Horizontal bold numbers represent the activation Z scores for the

indicated transcription factor as determined by the direct function of the upstream regulator analysis of IPA; corresponding p

values are provided in S5 Fig. (E) CiiiDER analysis of putative transcription factor site enrichment in the up-regulated type II

IRGs in feet (as identified by Interferome). Color and size of circles reflect p values of the enrichment. Calculations for x and y

values and the input/output data for the labeled transcription factors are provided in S7 Fig.

doi:10.1371/journal.ppat.1006155.g003

RNA-Seq of chikungunya virus infection and the role of granzyme A

PLOS Pathogens | DOI:10.1371/journal.ppat.1006155 February 16, 2017 11 / 32



identification of IRF7 and IRF3 would be expected [9,78,87]; the role(s) of the other transcrip-

tion factors identified herein remain to be fully explored in alphaviral infections

[79,81,83,84,86].

The role of IFNγ
The accumulated data might suggest IFNγ plays an important role in CHIKV infections [28]

(Figs 1B and 3B–3D, S4 and S5B Figs.), both to promote inflammation [27,31] and to mediate

anti-viral activity [88–90]. However, CHIKV infection of IFNγ-/- mice led to only a slightly ele-

vated/extended RNAemia [30] or viraemia (S6A Fig), and only a marginal decrease in arthritic

disease (S6B Fig), which was largely due to a reduction in edema (S6C and S6D Fig).

The limited effects of IFNγ deficiency prompted an analysis of putative transcription factor

sites in the promoters of the type II IRGs up-regulated in feet (white bars, Fig 3B) using the

CiiiDER program. Contrary to expectations, putative IRF7, ISGF3, IRF8 and consensus IRF

sites were significantly over-represented in these genes (Fig 3E; formulas for calculating x and

y values and the analysis inputs and outputs are provided in S7 Fig). Putative Stat1:Stat1 sites,

although present in�45% of the type II IRGs, were also present in�34% of background genes

thereby reducing significance scores (Fig 3E, S7 Fig). The mild phenotype in IFNγ-/- mice

might thus be explained by redundancy in the induction of type II IRGs. The reverse, a com-

pensatory role for IFNγ in the absence of IFNα/β has also previously been suggested [91].

Prominence of granzymes A, B and K in the RNA-Seq data

An important objective of the RNA-Seq analysis was to identify new players in arthritic inflam-

mation that may present new targets for intervention. Interrogation of the data revealed that

granzyme A, B and K often show highly significant induction, high fold change, and for gran-

zyme A and B, high FKPM values (Fig 4, Table 2). These granzymes are classically associated

with cytolytic activities and their expression and secretion by cytotoxic T cells and NK cells is

well described [92–95]. However, granzymes (particularly A and K) have also been associated

with promoting inflammation in a number of settings [92–94,96,97].

CHIKV infection in granzyme deficient mice

To assess the role of granzymes A, B and K in CHIKV infection and disease, mice deficient in

these proteases (GzmA-/-, GzmB-/- and GzmK-/- mice) were infected with CHIKV. Strikingly,

GzmA-/- mice showed a dramatic reduction in foot swelling (Fig 4B). An independent repeat

experiment with similar results is shown in (S8A Fig). No significant effect on foot swelling

was evident in GzmB-/- mice, but GzmK-/- mice showed a significant, but less dramatic, reduc-

tion in foot swelling (Fig 4B).

None of the granzyme deficient mice showed significant changes in the viraemia (Fig 4C),

consistent with the general view that controlling the viraemia of cytopathic viruses (such

as alphaviruses) is not overly reliant on T cell- or NK cell-dependent cytolytic activities

[65,66,98]. Granzyme A deficiency has been associated with a failure to clear certain viral

infections [99,100]; however, feet tissue titers were not significantly affected in GzmA-/- mice

(Fig 4D, Feet). In addition, the level of persistent CHIKV RNA in feet on day 30 post infection

was not increased in GzmA-/- mice when compared with C57BL/6 mice (S8B Fig). (In both

humans and C57BL/6 mice, viral RNA persists for extended periods and is associated with

chronic arthritic disease [13,20]). Cytotoxic T cells have been reported to be important for

clearing alphavirus from muscle tissues in certain settings [101]; however, muscle tissue

titers were also not significantly different in GzmA-/- mice (Fig 4D, Muscle). The reduced
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Fig 4. Granzyme gene expression and CHIKV infection in granzyme deficient mice. (A) Volcano plots of host gene expression

from the RNA-Seq analysis of feet and lymph nodes (LN) at the indicated day post infection. Only genes where FPKM�1 in at least one

sample in the pair wise comparisons were included in the plots. Positions of the granzyme (Gzm) genes are indicated by arrows, with

values in parenthesis representing FPKM values. (B) Foot swelling in granzyme deficient mice. Mice were infected as above and foot

swelling monitored. GzmA-/- mice; * p<0.03, ** p<0.001 (Kolmogorov-Smirnov tests, n = 8–10 mice per group). GzmK-/- mice; *p<0.031

(Mann Whitney U tests, mean of two independent experiments is shown, n = 12–14 per group). (C) Viraemia in granzyme deficient mice.

Granzyme deficient mice were infected with CHIKV and the viraema measure on the indicated days. No significant differences in

viraema were apparent: GzmA-/- vs C57BL/6 controls (n = 6 mice per group); GzmB-/- vs C57BL/6 controls (n = 8–10 mice per group);

GzmK-/- vs C57BL/6 controls (n = 12–14 mice per group). (D) Tissue CHIKV titers in GzmA-/- and C57BL/6 mice. Feet; n = 6–12 GzmA-/-

and n = 12–20 C57BL/6 feet per time point; data obtained from 2 independent experiments. Muscle; n = 3–6 mice per time point.

doi:10.1371/journal.ppat.1006155.g004
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inflammation in GzmA-/- mice (Fig 4B and Fig 5) was thus not due to an effect of granzyme A

deficiency on virus levels in inflamed tissues.

GzmA-/- mice did not show any significant differences from C57BL/6 mice in their CHIKV-

specific IgG2c and IgG1 responses (S8C Fig), indicating that anti-CHIKV antibody responses

and the Th1/Th2 balance [102] were not significantly affected by granzyme A deficiency.

Histology and immunohistochemistry of CHIKV infected GzmA-/- mice

Histological examination of feet from GzmA-/- mice showed that the densities of cellular infil-

trates (a prominent feature of CHIKV arthritis [28]) were significantly reduced when

Fig 5. Histology and immunohistochemistry of GzmA-/- mice feet. (A) H&E staining of feet on day 6 post infection in C57BL/6

and GzmA-/- mice. Cellular infiltrates are characterized by high densities of blue staining nuclei; areas with pronounced cellular

infiltrates are indicated by white oval outlines. (B) Aperio Positive Pixel Count determination of the ratio of blue (nuclear) to red

(cytoplasmic) staining areas in whole foot sections day 6 post infection. Leukocytes tend to have a higher nuclear/cytoplasmic area

ratio, so elevated ratios reflect increased leukocyte infiltrates [13]; (n = 6 feet from 6 mice per group, 3 sections per foot; statistics

by 2 way ANOVA including a term for section). (C) Immunohistochemical staining for NK cells (anti-CD335/NKp46) clearly visible

(brown staining) in muscle tissue of feet from CHIKV-infected C57BL/6 mice 6 days post infection (left). NK cell staining was less

pronounced in GzmA-/- mice (right). Blue counter staining with haematoxylin. (D) Aperio Positive Pixel Count determination of NK

cell staining; strong brown pixels per μm2 in whole feet sections (3 sections per foot; n = 11–12 feet from 11–12 mice per group

from 2 independent experiments. Statistics by Mann Whitney U test). (E) As for C for T cell (anti-CD3) staining. (F) As for D for T

cell staining. Statistics by Kolmogrov Smirnov test. (G) As for C for monocyte/macrophage (F4/80) staining, which was prominent

in subcutaneous tissues (* indicates epidermis). (H) As for D for monocyte/macrophage staining.

doi:10.1371/journal.ppat.1006155.g005

RNA-Seq of chikungunya virus infection and the role of granzyme A

PLOS Pathogens | DOI:10.1371/journal.ppat.1006155 February 16, 2017 14 / 32



compared with C57BL/6 mice (Fig 5A and 5B). This result is consistent with the reduction in

foot swelling and supports the contention that granzyme A has a role in promoting arthritic

inflammation.

Immunohistochemical analyses of whole foot sections from CHIKV-infected mice during

peak arthritis illustrated that the densities of NK (Fig 5C and 5D) and T cells (Fig 5E and 5F),

but not monocytes/macrophages (Fig 5G and 5H), was significantly reduced in GzmA-/- when

compared with C57BL/6 mice.

Granzyme A inhibitor, Serpinb6b

The pro-inflammatory activity of granzyme A is believed to be due to its proteolytic activity

[92,96,103,104], with extracellular or circulating granzyme A remaining proteolytically active

[105,106]. Furthermore, a potent and specific endogenous inhibitor of mouse granzyme A has

been identified, Serpinb6b [107]. To determine whether Serpinb6b might show therapeutic

activity, C57BL/6 mice were injected i.v. with purified recombinant Serpinb6b [107] from day

2 to 6 post CHIKV infection. Treatment with this granzyme A inhibitor significantly reduced

foot swelling (Fig 6A) without impacting the viraemia (Fig 6B). (Treatment was not associated

with any noticeable side-effects during daily monitoring of mice). Proteolytic inactivation of

Serpinb6b with trypsin reversed the anti-inflammatory activity back to that seen in untreated

mice (Fig 6A). H&E staining also showed a reduction in the arthritic infiltrates in the feet of

Serpinb6b treated mice (Fig 6C). These results support the view that granzyme A has an extra-

cellular pro-inflammatory role in this setting, and that granzyme A represents a potential tar-

get for anti-inflammatory drugs.

Evaluated plasma granzyme levels A in a non-human primate model of

CHIKV infection

Elevated levels of circulating granzyme A have been detected in humans with a number of

viral infections [105,108,109] or suffering from rheumatoid arthritis [110]. We have previously

reported a non-human primate (NHP) model of CHIKV infection [33]. Using commercial

ELISA kits, granzyme A and K levels were determined in plasma samples from such CHIKV-

infected NHPs. In 9 out of 11 NHPs, plasma granzyme A levels increased relative to levels on

day -1 (prior to infection) and usually peaked on day 4–8 post infection (Fig 6D). (The initial

drop in granzyme A levels in NHPs 3, 5, 6 and 7 on day 2 coincides with the transient lympho-

penia often seen at this time [33]). Taken as a group, the peak granzyme A levels for the 9 ani-

mals were significantly elevated when compared with levels prior to infection (day -1) (Fig

6E). Using data from all 11 animals, significance was retained (S9A Fig). In addition, when

mean levels of granzyme A for all NHPs were plotted over time, a significant elevation was

again evident (S9B Fig). A similar treatment of granzyme K data showed no significant eleva-

tion in mean circulating granzyme K levels (S9C Fig). This may in part reflect a sensitivity

issue, as increases in circulating granzyme K levels after viral infections can be substantially

more modest than those seen for granzyme A [111].

For most plasma samples in which granzyme levels were tested, viral loads were also mea-

sured; viral loads for all nine animals over time are shown in S9D Fig. No correlation between

granzyme A level and viral load was apparent when using data from individual samples (S9E

Fig). However, when peak viral loads (which occurred on day 2 post infection, S9D Fig) were

plotted against the increase in granzyme A levels (i.e. the increase from day -1 to the peak) for

each of the 9 NHPs in Fig 6D, a clear and significant positive correlation was observed (Fig

6F). Plotting peak viral loads against peak granzyme A levels also showed a significant
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correlation (S9F Fig). Thus the higher the viral load (the higher the disease severity [33] and)

the higher the subsequent increase in circulating granzyme A levels.

Evaluated circulating granzyme A levels in CHIKV patients

Serum levels of granzyme A were also measured in serum from control patients and a small

cohort of deidentified symptomic CHIKV patients who had tested IgM positive for CHIKV.

(IgM usually remains detectable by serology for 1–3 months [1]). The CHIKV patients showed

significantly higher levels of serum granzyme A than controls (Fig 6F), suggesting that CHIK-

infected humans, like NHPs, show elevated granzyme A levels after CHIKV infection.

Fig 6. Granzyme A inhibitor and granzyme levels in CHIKV infected primates. (A) On days 2 to 6 post infection with CHIKV,

C57BL/6 mice were treated i.v. with 10 μg of the granzyme inhibitor, Serpinb6b, or Trypsinized (inactivated) GzmA inhibitor (green

arrows) or were left untreated. The data represents results from 2 independent experiments: GzmA inhibitor (n = 14 feet, 7 mice);

Trypsinized GzmA inhibitor (n = 6 feet, 3 mice); untreated mice (n = 30 feet, 15 mice). Statistics by t test; p values provided for

comparisons between granzyme A inhibitor and Trypsinized granzyme A inhibitor and are only provided where comparisons between

granzyme A inhibitor and untreated mice were also significant. (B) Viraemia for the same mice as shown in A. (C) Aperio Positive Pixel

Count determination of the ratio of blue (nuclear) to red (cytoplasmic) pixels in H&E stained whole foot sections day 6 post infection (as

in Fig 5B). (n = 6 feet from 3 mice per group, 3 sections per foot; statistics by Kolmogorov Smirnov test). (D) Granzyme A levels in

plasma samples from CHIKV-infected non-human primates (NHPs) measured using an ELISA kit. Data for 9 NHPs is shown; all NHPs

had samples collected day -1, one day prior to CHIKV infection. (E) Granzyme A levels on day -1 and peak granzyme A levels plotted

for the 9 NHPs. Statistics by paired t test. (F) Correlation between peak viral load (S9D Fig) and the increase in granzyme A levels from

day -1 to peak (i.e. peak levels minus day -1 levels). Statistics by Spearman correlation. (G) Serum granzyme A levels in healthy

controls and IgM positive symptomatic CHIKV patients. Granzyme A levels were determined using cytokine bead array and FACs. The

limit of detection is deemed to be 3.7 pg/ml. Statistics by Kruskal-Wallis test.

doi:10.1371/journal.ppat.1006155.g006

RNA-Seq of chikungunya virus infection and the role of granzyme A

PLOS Pathogens | DOI:10.1371/journal.ppat.1006155 February 16, 2017 16 / 32



Discussion

Herein we describe the first detailed RNA-Seq analysis of CHIKV infection, covering the time

of peak viraemia, and acute and chronic arthritis, in a widely adopted adult wild-type mouse

model of CHIKV infection and disease [77]. The inflammatory mediators identified previously

in CHIKV infected humans were also identified by this RNA-Seq analysis (Table 1), illustrat-

ing that the mouse model recapitulates known aspects of the human inflammatory response to

CHIKV infection. This analysis also highlights the potential for using RNA-Seq data to provide

a level of validation of mouse models in general.

The RNA-Seq analysis provided information on CHIKV genome expression and sequence.

In feet up to 8% of all the reads from poly adenylated RNA mapped to the CHIKV genome

(S1D Fig), attesting to the remarkably high replicative capacity of this virus [112]. We are

unaware of any study suggesting such a high proportion of viral RNA to host mRNA in vivo,

although it should be noted in this model CHIKV infection is via s.c. inoculation into the feet

[28]. The persistence of CHIKV RNA in joint tissues seen herein is also consistent with previ-

ous reports of persistent CHIKV RNA in mice, monkeys and humans [13,20,33]. The notion

that the viral genome might undergo adaptive changes to promote persistence [34,35,113] was

not supported by the RNA-Seq analysis, with no consistent or abundant genomic changes

identified. The lack of changes in persisting CHIKV RNA thus suggests the CHIKV RNA is

either not replicating [2] or is replicating, but not adapting over time. Continuous viraemia in

Rag1-/- mice for 100 days also resulted in surprisingly few changes in the CHIKV genome [13].

Global expression profiles for feet and lymph nodes on day 2 (peak viraemia), feet day 7

(acute arthritis, no viraemia) and feet day 30 (chronic arthritis, persistent viral RNA) showed a

surprisingly high level of overlap in both up-regulated genes and pathways, despite the differ-

ences in levels of infection, disease manifestations, immunity and tissues types [13,28]. This

might in part be explained by the dominance of the IFN and inflammatory responses, which

are largely independent of time and tissue in this robust systemic infection [58]. The high

degree of overlap between feet on day 7 and 30 in both genes and pathways also argues that

chronic arthritic disease represents a tailing off or extension of acute disease, rather than the

activation of some fundamentally new inflammatory immunopathology [44]. This notion is

further supported by the observation that only two of the genes, that were shared between

days 2, 7 and 30 in feet, showed significantly higher fold change on day 30 than day 7. These

were Tnip3 and Clec4d (S1 Table), which are genes associated with inflammation resolution

[114,115].

Interferome analysis of up-regulated genes provided a quantitative assessment of the domi-

nance of the type I IFN response after CHIKV infection, with�50% of genes identified as type

I IRGs at all time points and tissues tested except day 7 lymph nodes. This dominance of type I

IRGs was retained (in feet) on day 7 and 30, despite the loss of type I IFN gene induction. The

loss of type I IFN gene induction also occurred despite the persistence of viral RNA. Type I

IFN-independent induction of type I IRGs (although well described [63,78,79]) thus entirely

and seamlessly takes over after the brief period of type I IFN-dependent induction of IRGs. A

number of transcription factors potentially responsible were identified; some were perhaps

expected (e.g. IRF7, IRF3 [78,79,116]), whereas others (e.g. IRF1, IRF2, IRF5, IRF8) have not

been extensively studied in alphavirus infections.

Therapeutic targeting of IFNγ would appear to have limited utility for treating CHIKV

arthropathy, as CHIKV infection in IFNγ-/- mice produces a relatively mild phenotype

(reduced edema), despite abundant type II IRG induction and a robust IFNγ signature. The

discrepancy may, at least in part, be explained by the transcription factor analysis, which sug-

gested that genes induced via Stat:Stat1 can also be induced via other transcription factors
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(with several interferon response factors implicated). One might also speculate that the large

volume of data sets on type II IRG induction may result in some pro-IFNγ bias in bioinformat-

ics programs. Perhaps of note (given the similarities in the expression profiles of CHIKV and

rheumatoid arthritis [27]), a phase II study of the anti-IFNγ agent, fontolizumab, in rheuma-

toid arthritis patients failed to show efficacy (ClinicalTrials.gov Identifier: NCT00281294).

Herein we describe the first phenotype of the recently generated GzmK-/- mouse, which

showed no evidence of anti-viral or cytolytic functions in lymphocytic choriomeningitis virus

or ectromelia virus infections (manuscript in preparation). The reduction in foot swelling in

CHIKV-infected GzmK-/- mice reported here is consistent with previous suggestions of a non-

cytolytic, pro-inflammatory role for granzyme K [117–119]. Granzyme A and granzyme K are

related tryptic proteases that have arisen by gene duplication [120], and have overlapping sub-

strate specificities [121].

Herein we illustrate for the first time that granzyme A is a key proinflammatory mediator

during CHIKV arthritis, and (to our knowledge) are the first to show (in any setting) that inacti-

vating granzyme A may have therapeutic benefit. The observation is consistent with the view that

granzyme A’s proinflammatory role is associated with its proteolytic activity [92,96,103,104]. Our

evidence argues against granzyme A having a significant role in suppressing CHIKV replication

or in promoting viral clearance. Instead, our data is consistent with a number of studies in vari-

ous systems that granzyme A promotes inflammation in both mice and humans [94,96,97,102–

104,108,110,122–124]. Although a role for granzyme A in driving IL-1β-mediated inflammation

in macrophages was recently reported [97], treatment with anakinra (a licensed IL-1 receptor

antagonist) [125] provided only marginal amelioration of foot swelling in the CHIKV mouse

model (manuscript in preparation).

The reduced arthritic disease in CHIKV-infected GzmA-/- mice was associated with the

reduction of NK cell and T cell infiltrates, with NK cells and CD4 T cells previously shown to

promote arthritis in this model [27,30,65]. NK cells and CD4 T cells are also well described in

human alphaviral arthritides [126,127], and both NK cells and cytotoxic CD4 T cells express

and secrete granzyme A (as well as granzyme K) [128,129]. Although cytotoxic CD4 T cells are

prominent in dengue infections [130], they have yet to be formally demonstrated in alphavirus

infections. However, CRTAM was recently identified as critical for differentiation of cytotoxic

CD4 T cells at sites of inflammation [93], and CRTAM was up-regulated in feet (but not lymph

nodes) on days 2 and 7 with a fold change of 3.3 and 3.8, respectively (S1 Table). How loss of

granzyme A expression by NK cells and T cells might lead to reduced numbers of these cells in

arthritic lesions remains unclear. A role for granzyme A in type IV collagen degradation and

lymphocyte migration has been reported [131], although migration through matrigel was not

impaired in GzmA-/- lymphocytes [132]. Perhaps of note, both granzyme A and K activate the

protease activated receptor 1 (PAR1) [118,133], with PAR1 previously shown to be involved in

inflammation [134,135], chemotaxis [136,137], and NK and T cell recruitment [138,139].

Granzyme A/K and thrombin (also known to activate PAR1) are trypsin-like proteases that

cleave behind positively charged amino acids, with canonical proinflammatory signaling by

PAR1 induced by cleavage at arginine 41 (Arg41) [140]. Granzyme B specifically cleaves

behind aspartic acid residues; cleavage of PAR1 at Arg41 by granzyme B would thus be

unlikely, perhaps explaining the lack of a CHIKV arthritis phenotype in GzmB-/- mice.

Granzyme A (rather than IFNγ) from differentiated NK cells [126,141] and CD4 T cells

[27,65] thus appears to be an important driver of CHIKV arthritis, with granzyme A dispens-

able for control of CHIKV infection [25]. We also show that granzyme A is elevated in

CHIKV-infected NHPs and in CHIKV patients, with circulating granzyme A levels in NHPs

peaking day 4–8 post infection, which coincides with the peak of circulating IFNγ levels [33].

Circulating granzyme A levels have previously been shown to be elevated in patients suffering
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from infections with dengue [105], EBV, HIV-1 [108], primary CMV [109], malaria [142], and

bacteria [106,143], and also in rheumatoid arthritis patients [110]. Taken together these obser-

vations argue that granzyme A represents a potential target for anti-inflammatory interven-

tions not only in alphaviral arthritides, but perhaps also in other inflammatory diseases.

Methods

Ethics statements

All mouse work was conducted in accordance with the “Australian code for the care and use of

animals for scientific purposes” as defined by the National Health and Medical Research

Council of Australia. Mouse work was approved by the QIMR Berghofer Medical Research

Institute animal ethics committee (P1060 A705603M) and was conducted in biosafety level-3

facility at the QIMR Berghofer. Mice were euthanized using carbon dioxide.

NHP plasma samples were available from previous CHIKV studies [33,144]; a full ethics

statement is provided in [144]. No additional NHPs were used for this study.

Human CHIKV serum samples were provided by the Centre for Infectious Diseases and

Microbiology Laboratory Services (CIDMLS), Westmead Hospital (Sydney, Australia). Sam-

ples had been obtained from symptomatic patients who had returned to Australia from over-

seas and were collected for diagnostic purposes. All samples were IgM positive for CHIKV.

Serum samples from healthy individuals were provided by the Australian Red Cross. Written

and oral informed patient consent was obtained from all patients. No new human samples

were collected as part of this study. Serum samples were deidentified before being provided for

the research project and no patient data was provided or accessed. The study was approved by

Griffith University Human Research Ethics Committee (BDD/01/12/HREC).

Mice and CHIKV infection

C57BL/6J mice (6–8 weeks) were purchased from Animal Resources Center (Canning Vale,

WA, Australia). Interferon-γ deficient mice (IFNγ-/-) mice (JR3288 B6.129S7-Ifng/J) were

obtained from the Jackson Laboratory. Granzyme A deficient (GzmA-/-) and granzyme B defi-

cient (GzmB-/-) mice were generated as described [145] and were backcrossed onto C57BL/6J

mice a total of 12 times and were provided by the Peter MacCallum Cancer Centre, Mel-

bourne, Victoria, Australia [146]. GzmK-/- mice on a C57BL/6J background were provided by

Prof Phillip Bird (manuscript submitted). Female mice were inoculated with 102 or 104

CCID50 of the Reunion Island isolate (LR2006-OPY1) in 40 μl of medium (RPMI1640 supple-

mented with 2% fetal calf serum), s.c. into both hind feet as described previously [13,28]. The

virus (GenBank KT449801) was grown in C6/36 cells [13]. Serum viraemia was determined as

described [9,13]. Foot swelling was measured using digital calipers and is presented as a group

average of the percentage increase in foot height times width for each foot compared with the

same foot on day 0 [13].

RNA isolation for RNA-Seq analysis

C57BL/6 mice were infected with 104 CCID50 CHIKV as described above and whole feet (cut

above the ankle) and inguinal lymph nodes harvested on days 2, 7 and (for feet) 30 post infec-

tion. Mock infected mice were injected s.c. in the feet (i) with medium (and harvested 2 days

later) or (ii) with heat inactivated (60˚C, 30 mins) viral inocula (and harvested on day 30). Tis-

sues were placed in RNAlater (Life Technologies) overnight at 4˚C and then homogenized in

TRIzol (Invitrogen) using 4 x 2.8 mm ceramic beads (MO BIO Inc., Carlsbad, USA) and a Pre-

cellys24 Tissue Homogeniser (Bertin Technologies, Montigny-le-Bretonneux, France) (3 x 30
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s, 6000 rpm on ice). Homogenates were centrifuged (12,000 g x 10 min) and RNA extracted

from the supernatants as per manufacturer’s instructions. RNA concentration and purity was

determined by Nanodrop ND 1000 (NanoDrop Technologies Inc.). Eight RNA pools were

generated in triplicate with each of the 24 samples containing equal amounts of RNA from

four different mice; (i) feet day 2, (ii) feet day 7, (iii) mock feet day 2, (iv) feet day 30, (v) mock

feet day 30, (vi) lymph node day 2, (vii) lymph node day 7 and (viii) mock lymph node day 2.

The 24 samples were DNase treated using RNAse-Free DNAse Set (Qiagen), purified using

an RNeasy MinElute Kit, and sent to the Australian Genome Research Facility (Melbourne,

Australia).

RNA-Seq analysis

Library preparation and sequencing were conducted by the Australian Genome Research

Facility (Melbourne, Australia). cDNA libraries were prepared using a TruSeq RNA Sample

Prep Kit (v2) (Illumina Inc. San Diego, USA), which includes isolation of poly-adenylated

RNA using oligo-dt beads. cDNA libraries were mixed and sequenced from both ends (100

bp) using Illumina HiSeq 2000 Sequencer (Illumina Inc.). To obtain a high sequencing depth

(total�55,000,000 paired end reads per sample) each library was sequenced three times using

independent lanes. The CASAVA v1.8.2 pipeline was used to separate the bar-coded sequences

and extract 100 base pair, paired end reads into FASTQ files.

Differentially expressed genes

Bowtie v2.0.2 and Tophat v2.0.6 [147,148] were used to align paired end read sequences to the

UCSC mus musculus full genome build (mm10, Dec. 2011) to generate bam files (default

parameters). The Cufflinks suite v2.1.1 (default parameters) [148,149] was then used to assem-

ble transcripts (MapQ > 20) and calculate relative abundance and generate differentially

expressed gene (DEG) lists. Differential gene expression for day 2 and 7 post CHIKV infection

was determined relative to mock inoculated mice that had received medium 2 days previously,

and differential gene expression for day 30 post CHIKV infection was determined relative to

mice that had received heat inactivated viral inocula 30 days previously. For further analysis,

DEGs were selected where (i) the q-value (false discovery rate adjusted p-value) was < 0.01,

(ii) the fold change was > 2 relative to mock and (iii) FPKM was > 1 in the mock or the

infected sample [74,75]. DEGs were analyzed by the Database for Annotation, Visualization

and Integrated Discovery (DAVID) v6.7 [150], Ingenuity Pathway Analysis (IPA; Ingenuity

Systems) and Interferome v2.01 [53].

CHIKV genome alignment

Reads that did not map to the mouse genome where aligned to the CHIKV genome (LR2006-

OPY1; GenBank KT449801) (excluding the polyA tail) using Bowtie v2.0.2. The frequency

allele threshold was set to 5% with a mapQ>20. Reads alignments were visualized using the

Integrative Genomics Viewer (IGV) version 2.3.34 [151]. Single nucleotide polymorphism

analyses of the CHIKV sequences was undertaken using Geneious v. 7.1.5 [152] using mini-

mum coverage of 20 reads per position and a minimum variant frequency of 0.5%.

Transcription factor binding site analysis

Gene lists were analyzed by the recently developed software, CiiiDER (Gearing et al., in prep),

which predicts key transcription factors regulating co-expressed genes. Using motifs released

by TRANSFAC (2011), the software used a Java-based implementation of the Match algorithm
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[153] to identify putative tissue factor binding sites in sets of up-regulated gene, as well as in

sets of background genes (for each time point), whose expression was not significantly

changed by viral infection. A Fisher’s exact test was used to identify sites significantly over-rep-

resented (enriched) in the up-regulated genes compared to the background genes and to pro-

vide p values as described [154].

Histology and immunohistochemistry

Histology, immunohistochemistry and quantitation was performed as described previously

[13,28,46]. Briefly, feet were fixed in paraformadehyde, decalcified and embedded in paraffin,

and sections stained with hematoxylin and eosin (H&E). For immunohistochemistry, sections

were stained with anti-NKp46 (rabbit polyclonal; Biorybt, Berkeley, CA) or anti-CD3 (A0452;

Dako, North Sydney, Australia), with detection using MACH 2 (Biocare, Concord, CA) and

Nova Red. F4/80 staining was undertaken as described [28]. Sections were scanned using

Aperio AT Turbo (Aperio, Vista, CA) and analyzed using Aperio ImageScope software (v10)

and the Positive Pixel Count v9 algorithm.

Granzyme A inhibitor, recombinant Serpinb6b

His-tagged recombinant Serpinb6b was produced at the Monash University Protein Produc-

tion Unit using Pichia pastoris and purified using a nickel column followed by HiTrap Q col-

umn anion exchange chromatography (GE Healthcare Life Sciences) [107,155]. As a negative

control the recombinant Serpinb6b was digested with tissue culture grade trypsin (Sigma) (1:1

molar ratio) for 30 mins at 37˚C prior to injection. Serpinb6b (0.6 mg/ml) was diluted in

RPMI 1640 and injected i.v. daily, 10 μg in 100 μl.

Granzyme A protein levels in primates

Plasma samples were available from previous experiments in which Macaca fascicularis NHPs

had been infected with a range of doses of CHIKV as described [33,144]. Granzyme levels

were determined using Monkey Granzyme A and K ELISA Kits (MyBioSource, San Diego,

CA) according to manufacturer’s instructions. Viral loads were measured by quantative RT

PCR as described [33].

Human serum samples were tested for granzyme A using the Human Granzyme A Flex Set

(BD Cytometric Bead Array) and the LSRFortessa Cell Analyser (BD Biosciences, San Diego,

CA, USA) according to manufacturer’s protocols.

Statistics

Statistical was performed using IBM SPSS Statistics (version19). The t test was used if the dif-

ference in the variances was <4, skewness was >-2, and kurtosis was <2; where the data was

nonparametric and difference in variances was<4, the Mann Whitney U test was used, if >4

the Kolmogorov-Smirnov test was used [13]. A 2 way ANOVA was used for some Aperio data

and included a term for section. For NHP data paired t tests, Pearson and Spearman correla-

tions were also used. The Kruskal-Wallis test was used for human serum granzyme A levels.

Supporting information

S1 Fig. Quality control analyses and read alignment data. (A) A raw data quality analysis for

paired end reads; total number of nucleotides sequenced was 675,021,384 paired reads x 100 b.

p. per read x 2 paired end reads (top graph for forward reads, the bottom graph reverse reads).

The analysis was undertaken using the FastQC program (http://www.bioinformatics.
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babraham.ac.uk/projects/fastqc/) (v 0.11.4). The vast majority of reads were of high quality

(green zone). The figure is representative of forward and reverse reads for all 3 sequencing

runs. No reads required trimming prior to analysis. (B) RLE plot illustrating normalization of

all data sets. The box plot was generated by the function plotRLE in R package “EDASeq”

[156], which produces a Relative Log Expression (RLE) plot of the counts illustrating the dif-

ferences between the distributions of read counts across samples. (C) PCA plot. The PCA plot

shows clustering of biological triplicates for foot and control samples. Day 2/7 and Day 30

samples were are derived from separate experiments and were sequenced on separate sequenc-

ing runs; Day 2 mock represents injection with medium day 0 and harvesting day 2, and Day

30 mock represents injection of heat inactivated virus in medium on day 0 and harvesting on

day 30. The PCA plot was generated by the function plotPCA in R package “EDASeq”. (D)

Read alignment data (MapQ> 20) to the mouse genome, mm10 (UCSC Mus musculus full

genome build; Dec. 2011), and the CHIKV genome (LR2006-OPY1; GenBank KT449801)

(excluding the polyA tail). Twenty four libraries were sequenced, representing 8 samples each

with 3 biological replicates (each representing pooled samples from 4 mice). Read alignment

data for the 2 experiments is shown. 1Both paired end read mates mapped to the mm10

genome. 2Neither read mate mapped to the mm10 genome.

(PDF)

S2 Fig. IPA canonical pathway analysis. IPA canonical pathway analysis of up-regulated

genes (only pathways where�4 DEGs are present on at least one time point are shown). The p

values are shown as−log10 p values. Where−log10 p<1.3 (p>0.05) the pathway is indicted with

yellow and grey in the heat map.

(PDF)

S3 Fig. The CHIKV genome. (A) Examples of alignments of RNA-Seq reads from 2 lymph

node samples mapped to the CHIKV genome (mapQ� 20) viewed using Integrated Genomics

Viewer. (B) Mutation analysis showing three sets of graphs; % change, Coverage, and % change

vs coverage. % change; for each nucleotide position in the CHIKV genome and for each of the

3 biological replicates (represented in green, purple and blue), the percentage of reads showing

a different nucleotide from the parental sequence was calculated. Only nucleotide positions

which had at least 20 reads covering that position were included. MapQ >20 was used. Per-

centage values>0.5% are shown. “Coverage” shows the read coverage for each replicate and

represents the number of reads obtained for each nucleotide position in the CHIKV genome.

Data for day 7 lymph node is not shown as read coverage was too low. The “% change vs cover-

age” represents the % of reads (for a given position in the genome) showing a nucleotide

change inversely correlated with read coverage. (Note x axis label for day 2 lymph node is not

x1000). (C) Graph showing the percentage of changes that were non- synonymous for CHIKV

sequences from each tissue and time point. For day 7 lymph nodes there was insufficient

sequence data for amino acid coding regions.

(PDF)

S4 Fig. Bar charts of the data shown in Fig 1F. Error bars show variance between the three

pooled biological replicates. Note mock infection samples for day 2/7 are distinct from mock

infection samples for day 30.

(PDF)

S5 Fig. Transcription factor usage for up-regulated genes in feet. (A) Ingenuity upstream

regulator analysis−log10 p values for the data shown in Fig 3D. (B) Using the same DEG sets

as in Fig 3D, a new program (CiiiDER, Gearing et al, in prep) was used to determine what

putative transcription factor sites (motifs provided by TRANSFAC) were predicted to be
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significantly enriched in promoters of up-regulated genes when compared with promoters in

control genes, whose mRNA abundance was not significantly altered by CHIKV infection.

(TRANSFAC has no motifs for IRF5).

(PDF)

S6 Fig. IFNγ-/- mice. (A) Viraemia in IFNγ-/- mice infected with 2 different doses of the

Reunion Island isolate of CHIKV. At the higher dose (left) no significant differences were

observed (n = 5 KO and 10 C57BL/6 mice) [27]. At a lower dose (right) the viraemia was sig-

nificantly higher (red arrow) in IFNγ-/- mice on day 5 post infection (n = 6 mice per group, sta-

tistics by Mann Whitney U test). (B) Foot swelling in IFNγ-/- mice with low dose CHIKV

inoculums was significantly increased (red arrow). Statistics by t test; � p<0.004, # p = 0.01,

(n = 6 mice per group). (C) Overt subcutaneous edema in foot sections measured using Aperio

pixel count (3 sections per foot, n = 6 feet from 6 mice, statistics by Kolmogorov-Smirnov

test). (D) H & E staining showing overt subcutaneous edema in wild-type (black oval), but not

IFNγ-/- mice.

(PDF)

S7 Fig. Putative transcription factor site analysis of up-regulated type II IRGs in feet. (A)

Formulas for calculating x and y values plotted in Fig 3E. The x axis provides a measure of the

proportion of the genes with the putative transcription factor site in their promoter. The y axis

provides a measure of the over or under-representation of genes with the putative transcrip-

tion factor in each IRG gene set. (B) The data plotted in Fig 3E in table form, with transcription

factor motif identifiers (TRANFAC) and input/output data provided.

(PDF)

S8 Fig. GzmA-/- mice; repeat experiment, persistent CHIKV RNA and antibody responses.

(A) Independent repeat experiment comparing viremia (left) and foot swelling (right) in

GzmA-/- mice and C57BL/6 control mice. There were no significant differences in the virae-

mias. The foot swelling was significantly lower (red arrow) in GzmA-/- mice vs C57BL/6 con-

trol mice on days 1–10 (n = 5/6 mice per group; Kolmogorov-Smirnov and Mann Whitney U

tests, � p = 0.023, �� p<0.003). (B) Quantitative RT PCR of CHIKV RNA from mouse feet day

30 post infection undertaken as described [13]; n = 6 feet from 6 mice per group. (C) Antibody

responses in serum day 30 post infection in GzmA-/- mice and C57BL/6 mice. Results from 2

independent experiments are shown (n = 5/6 mice per group).

(PDF)

S9 Fig. Plasma granzyme A and K levels in CHIKV-infected NHPs. (A) As for Fig 6E but

including data from all 11 animals. (B) Mean granzyme A levels using data from all NHPs plot-

ted over time; includes data for an additional NHP for whom day -1 data was not available

(n = 12). Differences between day -1 and day 7 were significantly different (t test). (C) As for B

for plasma granzyme K levels. (D) Viral loads as determined by qRT PCR for the 9 NHPs

shown in Fig 6D. (E) Dot plot of all plasma samples for which both viral load and granzyme A

levels were available; each data point shows the granzyme A level and the viral load in one sam-

ple. (F) Correlation between peak viral loads (log) and peak granzyme A levels. Statistics by

Pearson correlation.

(PDF)

S1 Table. Differentially expressed gene (DEG) lists. DEG lists for feet (Ft) (days 2, 7, and 30)

and lymph node (LN) (days 2 and 7) where fold change (FC) >2 (i.e. log2 FC >1) and q<0.01

are provided. Subsequent tabs contain lists of up and down regulated DEGs, with an additional

filter whereby only DEGs are listed where FPKM>1 for at least one of the two time points in
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the pair wise comparisons. Where FC is infinite, a nominal log2 FC value of 21 has been

entered. For day 7 LN, immunoglobulin genes have been highlighted in yellow.

(XLSX)

S2 Table. Concordance of up-regulated genes identified by RNA-Seq in the current study

of CHIKV infected mice and mRNA and protein expression studies in CHIKV infected

mice and monkeys.

(DOCX)

S3 Table. Gene lists from the bioinformatics analyses. The gene lists for Fig 1A (the 247

shared genes), Fig 1B, 1D and 1F are provided.

(XLSX)
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