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Abstract: Real-time information on key state variables during fermentation is crucial for
the effective optimization and control of bioprocesses. Specialized sensors for online or
at-line monitoring of these variables are often associated with high costs, especially during
early-stage process optimization. In this study, fed-batch processes of an L-phenylalanine
(L-phe) production process were carried out using a recombinant Escherichia coli strain
under varying inducer concentrations. The available online process variables from the
L-phe production process were used to estimate the state variables biomass, glycerol, L-phe,
acetate, and L-tyrosine (L-tyr) via partial least-squares regression (PLSR). These predictions
were then incorporated as measurements into an unscented Kalman filter (UKF). The
filter uses a coarse-grained model as a state estimator, which, in addition to extracellular
variables, also provides information on intracellular states. The results of PLSR showed
very good prediction accuracy for L-phe, moderate accuracy for glycerol, biomass, and
L-tyr and poor performance for acetate concentrations. In combination with the UKF,
the estimation of the L-phe concentrations was greatly improved compared to the CGM,
whereas further improvement is still needed for the remaining state variables.

Keywords: soft sensor; coarse-grained modeling; partial least-squares regression; unscented
Kalman filter

1. Introduction
Biotechnological processes offer a more sustainable alternative to petroleum-based

processes. However, in order to be used industrially, they must be economically feasible [1].
This often requires numerous steps in strain and process optimization to achieve, for
example, a desired yield or productivity. During the process optimization steps, samples
have to be taken, usually manually, resulting in high labor input and cost, especially for
long and complex processes. Also, as a result, important process information in longer
processes is often lost, for instance, due to missing sample collections during the night [2].
Moreover, typically only extracellular concentrations in the reactor are measured, while
intracellular process states remain unconsidered. One way to gain additional process
information is through so-called soft sensors. Soft sensors combine measurement data from
physical sensors with a model to predict unknown process variables and have been used
in bioprocesses for over 20 years [3–6]. Based on the amount of process understanding
included in the model, it can be classified as either data-driven, knowledge-based, or a
combination of both (hybrid) [7].
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Data-driven soft sensors allow the prediction of unknown variables, even without
detailed mechanistic knowledge, by only applying a black-box model. These models are
easy to implement but require large amounts of high-quality training data. While they
often fit the training data well, their prediction performance on unknown processes is
often limited due to biological variability and process modifications [8]. Various modeling
techniques are available to implement data-driven soft sensors, such as principal component
regression, support vector regression (SVR), artificial neural networks (ANNs), and partial
least-squares regression (PLSR) [7]. In PLSR, the original input and output variables
are transformed into latent variables (LVs), thereby reducing the dimensionality of the
dataset. A linear relationship is then identified by maximizing the covariance between the
projections of the input and output variables [9]. Typical input variables for data-driven
approaches include online available process parameters such as stirrer speed, temperature,
pH, dissolved oxygen (pO2), off-gas CO2/O2, and flow rates [10,11]. In addition, advanced
online and at-line measurement techniques based on various spectroscopic methods, such
as Raman spectroscopy, near-infrared spectroscopy (NIR), and 2D fluorescence, can be
integrated [12–15].

If more knowledge about the functional relations in the process is available, a
knowledge-based soft sensor can be implemented. Those mechanistic (white-box) models
are derived based on the physical and chemical properties of the system. They are often
more complex to implement but provide more explainable information about the process
and require less data [16]. The Kalman filter (KF) is a knowledge-based soft sensor. It
makes a prediction based on a mathematical model, which is then corrected in the next step
using sensor or measurement data. However, the classical KF is only applicable to linear
processes. To model nonlinear processes, the extended Kalman filter (EKF) can be used,
which approximates the state transition and measurement functions at each measurement
step via a first-order Taylor expansion. For highly nonlinear models, the unscented Kalman
filter (UKF) provides a better approximation. The UKF generates sigma points that can be
directly propagated through the nonlinear system, allowing nonlinearities to be captured
more accurately [13,17].

In hybrid modeling, data-driven and knowledge-based approaches are combined to
overcome the limitations and exploit the benefits of each method. For example, when
training data is limited or costly, knowledge-based models can generate data to support
training, reducing the need for extensive experiments. By incorporating mechanistic
knowledge, hybrid models handle noise and nonlinearities more effectively than data-
driven models alone. Additionally, when mechanistic understanding is incomplete, a
hybrid model can fill these gaps, resulting in a more accurate and robust model. In summary,
the advantages of this approach include greater transparency, a broader knowledge base,
and more cost-effective model development [18].

To implement a KF, an accurate process model that sufficiently describes the system
dynamics is necessary. However, developing such a model is often challenging for complex
biological processes. One approach to address this is the use of coarse-grained models
(CGMs). These models abstract cellular processes by grouping functionally related com-
ponents into a reduced number of subsystems [19,20]. A key aspect of CGMs is resource
allocation, which assumes that cells distribute their available resources, like nutrients and
proteins, for optimized growth [21]. By incorporating this approach, it becomes possible
to represent the mass fractions of different protein groups relative to the total biomass of
the cell. This, in turn, enables the coupling of biochemical reactions to the correspond-
ing proteome groups, making them dependent on the underlying resource distribution.
This approach reduces system complexity while still providing a sufficient description of
cellular processes.
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In biotechnological processes, the proteome often plays a crucial role. The desired
product is often a protein itself or requires enzymes for its biosynthesis. Due to the
spatial limitations within a cell, the expression of heterologous proteins necessitates a
redistribution of the cellular proteome [22]. For instance, Basan et al. [23] demonstrated that
the expression of heterologous proteins can lead to acetate formation even at low growth
rates. The observed formation of the unwanted byproduct acetate can be explained by a
more proteome-efficient formation via fermentation compared to respiration. This often-
observed phenomenon of overflow metabolism can be described using CGMs, making
them an interesting tool for optimizing heterologous protein expression to enhance product
synthesis and minimize unwanted byproduct formation.

This study investigates the applicability of a CGM within a hybrid approach com-
bining a UKF and PLS model to describe an L-phenylalanine (L-phe) production process
using a recombinant Escherichia coli strain. The process consists of three different phases:
an initial batch phase, followed by a biomass production phase, and finally an L-phe pro-
duction phase, in which the cells are induced with Isopropyl β-D-1-thiogalactopyranoside
(IPTG). Three experiments are conducted using different inducer concentrations. The first
experiment is carried out with 0.3 mM IPTG (process 1), while for the other two, a lower
concentration of 0.01 mM IPTG (processes 2 and 3) is used. In the first step, PLS models
are trained using standard online process inputs, such as stirrer speed, aeration rate, pO2,
temperature, pH, CO2 concentration in the off-gas, substrate feed rate (mass flow), and
base addition, to predict key process variables, including biomass, glycerol, L-phe, acetate,
and L-tyrosine (L-tyr) concentration, using the data from process 1. The trained models are
then validated on two new processes (processes 2 and 3) and their predictions compared to
offline measurements. Subsequently, the predictions from the PLS models are integrated
into a UKF as measurements, while the system states are estimated using the CGM. In addi-
tion to capturing extracellular variables such as volume, biomass, glycerol, L-phe, acetate,
and L-tyr, the CGM also estimates intracellular states, including protein, metabolite, and
residual biomass concentrations. Measurement and model uncertainties are determined
using the data from process 2, and the complete hybrid model is subsequently validated on
an unseen dataset (process 3). The complete workflow can be seen in Figure 1.
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Figure 1. Process flowchart of the implemented hybrid approach using a CGM in combination with
a UKF and PLSR. In the first step, online process data from a bioreactor are used to estimate the
concentrations of key state variables via PLSR. These estimates are then passed to a UKF as the
measurement vector yk. The CGM predicts the a priori state x̂−k , which is then updated in the UKF
with the measurements from the PLSR to obtain the corrected state estimate x̂+k . This corrected state
includes both the extracellular concentrations in the reactor and the intracellular variables. The dotted
arrows indicate that the CGM was also used during the initial training phase of the PLSR models,
in which offline measurement data were used to fit the model, ensuring that a sufficient number of
response-variable data points were available for training.
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2. Materials and Methods
2.1. Strain

For the L-phenylalanine production process, the recombinant E. coli strain FUS4
(pF81kan) was used [24]. The FUS4 strain is a derivative of the E. coli K-12 W3110 strain
with chromosomal deletions of the genes pheA, aroF, and tyrA, making it a double auxotroph
mutant for L-phe and L-tyr. To produce L-phe, the strain harbors the pF81 plasmid, which
carries the genes aroF, pheA’, aroB, and aroL under an inducible Ptac-promoter. The strain
used in this study also carries four fluorescent reporter proteins, with three integrated into
the chromosome and one encoded on the plasmid, which are not further considered in this
work. Further information about the fluorescent proteins can be found in Hoang et al. [25].

2.2. Media Composition

A minimal medium with glycerol as the sole carbon source was used for cultivation,
using the composition and concentrations described by Weiner et al. [24].

2.3. Preculture

Cells of E. coli FUS4 (pF81kan) were streaked from a cryo vial onto a minimal medium
agar plate containing glycerol as the sole carbon source and incubated at 37 ◦C for at least
66 h. A single colony was then picked and inoculated into a 100 mL shake flask containing
10 mL of minimal medium supplemented with 7 g L−1 glycerol. The culture was incubated
for 24 h at 37 ◦C and 150 rpm in a rotary shaker (MaxQ 8000 Stackable Incubator, Thermo
Fisher Scientific, Waltham, MA, USA). After 24 h, the optical density at 600 nm (OD600) was
measured (Genesys 10UV, Thermo Fisher Scientific, Waltham, MA, USA), and a defined
volume was used to inoculate a second preculture in a 500 mL shake flask containing 100 mL
of minimal medium to a starting OD600 of 0.01. The second preculture was incubated for
at least 24 h at 37 ◦C and 250 rpm. After 24 h, the cultures were centrifuged (Heraeus
Megafuge 16R Centrifuge, Thermo Fisher Scientific, Waltham, MA, USA) at 3200× g for
10 min. The supernatant was discarded, and the cell pellets were resuspended in a minimal
medium without glycerol and amino acids. The resuspended cells were then used to
inoculate the bioreactor to a starting OD600 of 0.05.

2.4. Bioreactor

L-phe production was carried out as a fed-batch process in a 3.6 L stirred-tank bioreac-
tor (Labfors 5, Infors GmbH, Bottmingen, Switzerland). The reactor was equipped with
two six-blade Rushton turbines and three baffles. Prior to inoculation, sterile minimal
medium containing 4 g L−1 glycerol was pumped into the bioreactor to a starting volume
of 1 L. Throughout the process, the temperature was maintained at 37 ◦C, and the pH was
monitored using a two-point calibrated pH probe (EasyFerm Plus PHI Arc 325, Hamilton
Bonaduz AG, Bonaduz, Switzerland) and maintained at pH 7 by the addition of 42% phos-
phoric acid and 25% ammonia. pO2 was measured using a single-point calibrated pO2

probe (VisiFerm DO Arc 325 H0, Hamilton Bonaduz AG, Bonaduz, Switzerland) and kept
above 40% by increasing the stirrer speed (up to a maximum of 1200 rpm) or the aeration
rate (up to 5 L/min). Foam formation was controlled using an antifoam probe and regulated
by the addition of an antifoam solution (AF204, Sigma-Aldrich, Taufkirchen, Germany).
Off-gas oxygen (O2) and carbon dioxide (CO2) concentrations were monitored online using
a gas analyzer (BlueInOne Ferm, BlueSens, Herten, Germany). The process was adapted
and slightly modified from the protocol described by Weiner et al. [24] and consisted of
three distinct phases. It began with an initial batch phase, which ended with the depletion
of glycerol, indicated by a characteristic pO2 peak. Subsequently, the biomass production
phase was initiated, in which a specific growth rate of µset = 0.1 h−1 was maintained. Feed-
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ing during this phase was carried out using a feed medium containing 312.5 g L−1 glycerol,
1.65 g L−1 L-phe, 3.75 g L−1 L-tyr, 40 g L−1 ammonium sulfate, and 0.1 g L−1 kanamycin.
To fully dissolve the L-tyr, the feed medium was titrated with 5 M potassium hydroxide.
After a minimum of 21 h in the biomass production phase, induction was carried out using
either 0.3 mM (process 1) or 0.01 mM IPTG (processes 2 and 3). Simultaneously, a second
feed medium was added at a rate of 0.18 gglycerol g−1

biomass h−1. This second feed consisted of
800 g L−1 glycerol, 8 g L−1 ammonium sulfate, 8 g L−1 ammonium phosphate, and 0.1 g L−1

kanamycin. Additionally, 6.75 mL of four times concentrated minimal medium (without
glycerol or amino acids) was added at the beginning of the biomass production phase, and
13.5 mL of the same medium was added at the start of the production phase.

2.5. Offline Analytics

For determining the biomass, 2 mL of cell suspension was centrifuged at 21,130× g at
4 ◦C for 20 min in dried, pre-weighed (80 ◦C for at least 24 h) 2 mL centrifuge tubes. The
supernatant was filtered (pore size 0.6 µm) and stored at 4 ◦C until the determination of
extracellular metabolites by high-performance liquid chromatography (HPLC). After the
pellet was dried again for 24 h, the tube was weighed again, and the difference was calcu-
lated based on the change in weight. The organic compounds (glycerol and acetate) were
quantified using an HPLC (Prominence-i LC-2030C, Shimadzu, Kyoto, Japan) equipped
with an ion-exchange column (Aminex HPX-87H 300 mm × 7.8 mm, Bio-Rad, Hercules,
CA, USA) and a refractive index detector (RID-20A, Shimadzu, Kyoto, Japan). 10 µL of
sample was measured with an isocratic profile using a 5 mM sulfuric acid solution at
0.6 mL min−1 and 60 ◦C for 30 min. The amino acids L-phe and L-tyr were also quantified
using the same HPLC system, with a sample injection volume of 1 µL. A detailed protocol
for the amino acid determination can be found in [25].

2.6. Coarse-Grained Model

To describe the L-phe production process, a CGM was used. In the model, originally
described by Doan et al. [20], reaction rates depend on proteome fractions, which are
grouped according to their cellular function. The proteome fractions are, therefore, trans-
port and catabolism (ϕT), ribosomes (ϕR), remaining proteins (ϕQ), and L-phe production
proteins (ϕFp ). Besides the states in the bioreactor, namely volume, glycerol, biomass,
L-phe, acetate, and L-tyr (since the strain is L-tyrosine auxotroph), the model also enables
the investigation of intracellular variables such as metabolites, proteins, and remaining
biomass. A detailed description of the adapted model, parameter estimation, confidence
intervals, and error variance can be found in the Supplementary Materials.

2.7. PLSR

PLSR was used to model the relationship between the online process variables and
the offline state variables. The online input variables included stirrer speed, aeration rate,
pO2 concentration, temperature, pH, CO2 concentration in the off-gas, substrate feed rate
(mass flow), and base addition. These inputs were correlated with offline measurements
of the biomass, glycerol, L-phe, acetate, and L-tyr concentrations. To train the PLS model,
input and output data must be available for each time point. In biotechnological processes,
however, offline measurements are typically available only at irregular intervals, as they
require manual and time-consuming sampling. To overcome this limitation and allow for
continuous model training, the output variables were generated using a previously validated
CGM that had already been successfully applied to this process. The simulated outputs were
then linearly interpolated to align with the time points of the online input data. Given that
the process comprises three distinct process phases with different dynamics, separate PLS
models were constructed for each phase. The MATLAB built-in function plsregress, which
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uses the SIMPLS algorithm [26], was used for output variable reduction and parameter
estimation. To ensure consistent starting conditions across each phase, all input data were
mean-centered relative to their values at the start of each respective phase p.

X̃i,p = Xi,p − X0,p i = 1, . . . , n p = 1 − 3 (1)

where X̃i,p is the mean-centered input value at time point i, Xi,p is the original input value
at time point i, and X0,p is the input value at the beginning of phase p.

Model training was performed using data from process 1, in which induction with
0.3 mM IPTG was applied during the production phase. This is referred to as the reference
process. Model validation was carried out using five-fold cross-validation, with the opti-
mal number of LVs determined based on the root mean square error of cross-validation
(RMSECV). Model performance was subsequently tested on data from processes 2 and
3, in which a lower inducer concentration (0.01 mM) during the production phase was
used. Model accuracy was quantified using the root mean square error (RMSE), calculated
based on the interpolated output values for the training data and experimentally measured
values for the tested datasets.

2.8. Unscented Kalman Filter

The UKF was implemented as described in [27,28], with additive process and mea-
surement noise incorporated into the nonlinear system, which is described as follows:

xk = f (xk−1, uk−1) + wk−1 (2)

yk = h(xk) + vk (3)

wk ∼ N (0, Q) (4)

vk ∼ N (0, R) (5)

Here, xk denotes the system state at time step k, yk is the corresponding measurement,
uk is the control input, and wk and vk represent process and measurement noise, respectively.
At time step k = 0, the UKF was initialized with the initial state estimate and error
covariance as follows:

x̂+0 = E[x0] (6)

P+
0 = E

[
(x0 − x̂+0 )(x0 − x̂+0 )⊤

]
(7)

For the prediction step from time k − 1 to k, the sigma points were generated.

χ
(0)
k−1 = x̂+k−1 (8)

χ
(i)
k−1 = x̂+k−1 + x̃(i) i = 1, . . . , 2n (9)

x̃(i) =
(√

(n + λ) P+
k−1

)⊤

i
i = 1, . . . , n (10)

x̃(n+i) = −
(√

(n + λ) P+
k−1

)⊤

i
i = 1, . . . , n (11)

Here, n denotes the size of the state vector, and λ is a scaling parameter that determines
the spread of the sigma points around the mean. Here it is expressed as

λ = α2(n + κ)− n (12)

The parameters α and κ are tuning parameters that influence the spread of the sigma
points around the mean. Specifically, α controls the overall spread, while κ is a secondary
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scaling parameter. The square root of the scaled covariance matrix was computed using
the Cholesky factorization. The resulting sigma points were then propagated through the
nonlinear system f (·):

χ
(i)
k = f (χ(i)

k−1, uk) (13)

Subsequently, the propagated sigma points were combined to compute the a priori
state estimate at time step k, as well as the a priori error covariance, with the additive
process noise Q.

x̂−k =
2n

∑
i=0

W(i)
m χ

(i)
k (14)

P̂−
k =

2n

∑
i=0

W(i)
c (χ

(i)
k − x̂−k )(χ

(i)
k − x̂−k )

T + Q (15)

The weights for the mean Wm and covariance Wc are given by

W(0)
m =

λ

n + λ
(16)

W(0)
c =

λ

n + λ
+ (1 − α2 + β) (17)

W(i)
m = W(i)

c =
λ

2(n + λ)
i = 1, . . . , 2n (18)

where the parameter β improves the approximation by accounting for the higher-order
statistical properties of the state distribution (for Gaussian distributions, β = 2 is consid-
ered optimal).

If a measurement was available at time step k, the correction step was carried out. For
this purpose, the sigma points were propagated through the measurement function h(·):

γ
(i)
k = h(χ(i)

k ) (19)

The propagated sigma points were then again weighted and combined to obtain the
predicted measurement ŷk and its associated covariance Py at time step k.

ŷk =
2n

∑
i=0

W(i)
m γ

(i)
k (20)

Py =
2n

∑
i=0

W(i)
c (γ

(i)
k − ŷk)(γ

(i)
k − ŷk)

T + R (21)

The cross-covariance between the predicted state and the predicted measurement was
then computed as

Pxy =
2n

∑
i=0

W(i)
c (χ

(i)
k − x̂−k )(γ

(i)
k − ŷk)

T (22)

and based on this, the Kalman gain was calculated.

Kk = PxyP−1
y (23)

Finally, the updated state estimate and its error covariance were obtained as

x̂+k = x̂−k + Kk(yk − ŷk) (24)

P+
k = P−

k − KkPyKT
k (25)
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To ensure that the updated state variables did not contain negative concentrations,
an additional correction step was applied, as described in Kraemer and King [13]. If any
state variable exceeded its lower bound after the update, a new set of sigma points was
generated using the updated state estimate x̂+k and covariance P+

k . Sigma points that did
not satisfy the constraint were projected onto the constraint boundary, and with the new
set of sigma points, another prediction step was carried out as described above.

The measurement noise covariance matrix R was constructed using the squared RMSE
values of the PLSR-based state estimates from process 2 as the diagonal entries, as described
in Kraemer and King [13]. The diagonal entries in the process noise covariance Q were
determined by solving a least-squares optimization problem, minimizing the mean squared
error (MSE) between the updated state estimates and the offline measurements using
the function patternsearch in MATLAB, similar to the approach proposed in Narayanan
et al. [29]. All simulations were performed using MATLAB Version 24.1.0.2628055 (R2024a)
Update 4.

In the hybrid approach, the online process variables were used as inputs for the PLS
models to estimate the state variables biomass, glycerol, L-phe, acetate, and L-tyr. These
estimates were then used as the measurement vector yk in the UKF, thereby enabling
correction of the model-based state prediction x̂−k calculated by the CGM. Prediction steps
were performed every 60 s, and measurement updates were available every 120 s. A
detailed overview of the workflow is shown in Figure 1.

3. Results
3.1. PLSR

The PLS models for biomass, glycerol, L-phe, acetate, and L-tyr were generated using
online process data in combination with simulated offline state variables. Process data were
recorded every 120 s, resulting in a total of 2139 data points per input and output variable
in the training dataset. Given that the process is divided into three distinct phases, where
it is assumed that each phase exhibits different dynamics, a separate model was trained
for each phase. For training and validation, data from the reference process (process 1),
in which the cells were induced with 0.3 mM IPTG during the production phase, were
used. Model performance was then tested on separate prediction datasets derived from
processes 2 and 3, in which only 0.01 mM IPTG was applied during the production phase.
To determine the optimal number of LVs and reduce the risk of overfitting, the models were
evaluated using k-fold cross-validation with k = 5. This resulted in three LVs for phase 1,
five LVs for phase 2, and two LVs for phase 3. The results of the cross-validation can be
seen in Figure S4 in the Supplementary Materials.

The results of the PLS models are presented in Figure 2. The calculated RMSEs can be
found in Table 1. The PLS model-predicted biomass demonstrated good agreement with
the training data, with an RMSE of 0.95 g L−1. Up to approximately 45 h of process time,
the prediction aligned well with the training data. However, at the onset of the production
phase, the agreement slightly decreased (Figure 2A). Since the training data were fitted
to the experimental data, it is difficult to evaluate the actual biomass trend during this
period due to a lack of experimental data between 50 and 60 h of process time. The model
also predicted L-phe concentrations with high accuracy (Figure 2C), achieving an RMSE of
0.43 g L−1. Similarly, prediction of the glycerol concentrations also showed good agreement
(Figure 2B), with an RMSE of 0.12 g L−1. In contrast, for the concentrations of acetate,
the PLS models did not perform as well during the production phase. While the onset
of acetate production was experimentally observed at around 60 h, the model predicted
an earlier onset at approximately 50 h, and the final predicted concentration distinctly
underestimated both the experimental and training data (Figure 2D). The RMSE in this
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case was 0.3 g L−1. The prediction of L-tyr concentrations is shown in Figure 2E, with good
agreement up to the production phase, after which model accuracy declined from around
45 h onward, resulting in an RMSE of 0.02 g L−1.

Figure 2. Training of the PLS models on the data from process 1 using online process variables as
inputs. Vertical gray lines indicate the different process phases. The model predictions for the state
variables (biomass (A), glycerol (B), L-phe (C), acetate (D), and L-tyr (E)) are shown as black dotted
lines over process time. The training data for these state variables, generated using the CGM, are
represented by solid blue lines. Orange dots indicate the corresponding offline measurements.

The PLS models generated in the previous step were subsequently applied to the
prediction dataset. In the following, only process 2 is presented and discussed in detail, as
illustrated in Figure 3. Process 3 is provided in the Supplementary Materials (Figure S7),
as both processes exhibited similar model behavior. The biomass concentration, shown
in Figure 3A, was consistently slightly overestimated throughout the entire process. This
overestimation increased with rising biomass concentration over time and is reflected in
the resulting RMSE of 5.59 g L−1. Furthermore, the measured biomass concentrations were
slightly lower than in the reference process. For the glycerol concentrations (Figure 3B),
the model initially showed a slight overestimation. It also predicted complete depletion
at around 14.5 h of process time, approximately three hours before glycerol depletion
was experimentally confirmed. For the remaining process, the glycerol concentration
remained close to 0 g L−1, which was accurately captured by the model, resulting in an
RMSE of 0.26 g L−1. L-phe (Figure 3C) remained at nearly 0 g L−1 during the growth
phase and began to accumulate during the production phase, marked by the second gray
vertical line. The measured concentration reached over 30 g L−1 by the end of the process,
which was approximately 10 g L−1 higher than in the reference process. This increase was
well captured by the model, resulting in an RMSE of 1.81 g L−1. Interestingly, no acetate
formation (Figure 3D) was observed experimentally during the entire process. In contrast,
the model predicted the onset of acetate accumulation at around 45 h, reaching a final
concentration of approximately 3 g L−1 at the end of the process. This discrepancy resulted
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in an RMSE of 1.29 g L−1. For L-tyr concentrations (Figure 3E), the initial concentration
was accurately predicted by the model. However, during the second phase of the process
(first gray vertical line), the concentration was consistently overestimated and remained
above the measured values at all time points. Nevertheless, the model adequately captured
the declining trend during the production phase, resulting in an RMSE of 0.09 g L−1.

Figure 3. Predictions using the trained PLS models on the unseen data from process 2 with online
process variables as inputs. Vertical gray lines indicate the different process phases. Model predictions
for the state variables (biomass (A), glycerol (B), L-phe (C), acetate (D), and L-tyr (E)) are shown as
black dotted lines over process time. Orange dots represent the corresponding offline measurements.

Table 1. RMSEs of the state variables (biomass, glycerol, L-phe, acetate, and L-tyr) from PLSR training
and prediction. The RMSEs for process 1 were calculated based on the model predictions and training
data, while for processes 2 and 3, the RMSEs were computed using offline measurements and the
interpolated model predictions.

State Variables

RMSE

Process 1
(Training)

Process 2
(Prediction)

Process 3
(Prediction)

Biomass [g L−1] 0.95 5.59 5.8
Glycerol [g L−1] 0.12 0.24 0.22
L-phenylalanine [g L−1] 0.43 1.81 0.99
Acetate [g L−1] 0.3 1.29 1.61
L-tyrosine [g L−1] 0.02 0.09 0.04

In summary, it was observed that the PLS models experienced particular difficulty
in accurately estimating biomass and acetate concentrations during the production phase,
as well as L-tyr concentrations during the biomass growth phase. As PLSR depends on
correlations between online process variables and system state variables, reliable prediction
is only possible if changes in the state variables are followed by corresponding variations in
the online process variables. However, many process parameters, such as temperature and
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pH, remained constant throughout the fermentation, aside from minor deviations within
the setpoint tolerance. Particularly during the production phase, most online variables
remained nearly unchanged (Figures S3–S5). Due to the constant feed rate, oxygen uptake
also remained stable, which, in turn, led to steady agitation speed, aeration rate, and pO2

levels. As a result, off-gas CO2 concentrations also showed minimal variations. The only
process variable that changed notably during the production phase was base addition.
L-phe is an ampholyte [30], slightly lowering the pH and thus requiring the addition of base
to maintain the setpoint of pH 7. This correlation explains the relatively good performance
of the PLS models in predicting the L-phe concentrations. Acetate, in contrast, caused a
more pronounced drop in pH, leading to increased base consumption. This was reflected
in a subtle increase in the slope of the base addition curve (Figure S5H). However, since
acetate was only produced in small amounts toward the end of the process, the resulting
change appeared insufficient in the input variables to allow the PLS models to accurately
capture acetate formation. Another crucial factor for building a reliable prediction model is
the availability of high-quality training data. For long, multi-phase bioprocesses, a large
number of offline measurements are typically required to generate a representative dataset.
Alternatively, as done in this study, a model can be used to simulate additional data points.
While this approach enables model training with fewer experimental measurements, it
also introduces a dependency on the accuracy of the underlying model, which may lead to
discrepancies if the model does not predict the biological data correctly.

3.2. Hybrid Approach

The UKF was implemented using the CGM as the state estimator and the predictions
from the PLS models, which were trained on process 1, as measurement inputs. As online
process data were recorded every 120 s, the correction step in the UKF was performed
at that interval, while the prediction step was performed for a time interval of 60 s. The
measurement noise covariance matrix R was defined using the MSE of the PLSR predic-
tions from process 2 as the diagonal entries. The process noise covariance matrix Q was
estimated by minimizing the MSE between the hybrid UKF predictions and the offline
measurements of process 2 (see Materials and Methods). The resulting hybrid approach
was then applied to the unseen data from process 3 using the same set of parameters. To
evaluate model performance, the RMSE was calculated between the offline measurements
and the interpolated predictions from the UKF and the CGM, as shown in Table 2.

The results of the hybrid approach can be seen in Figure 4, which shows the state
variables: biomass (Figure 4A), glycerol (Figure 4B), L-phe (Figure 4C), acetate (Figure 4D),
and L-tyr (Figure 4E). The initial values for the state variables were identical in both
approaches. For glycerol, the UKF predicted a distinctly faster decrease in concentrations.
Similar to the PLSR estimation, the glycerol concentrations were already predicted to
reach 0 g L−1 approximately three hours before glycerol depletion was experimentally
confirmed. For most of the process time, the UKF estimated glycerol concentrations close
to 0 g L−1. However, during the production phase, a slight increase to approximately
0.25 g L−1 was observed. The CGM, in contrast, accurately captured the end of the batch
phase and maintained a glycerol concentration close to 0 g L−1 throughout the process,
closely aligning with the offline measurements. The UKF consistently estimated higher
biomass concentrations than the CGM. Up to approximately 48 h of process time, the UKF
estimates lay just below the actual measurements and outperformed the CGM estimates.
Toward the end of the process, the UKF predicted a slight increase in biomass, which
resulted in an overestimation of the process variable, while the CGM predicted almost
constant biomass concentrations during the production phase. L-tyr was completely
depleted during the batch phase, a trend that was not fully captured by the CGM, while the
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UKF provided a slightly better approximation. In the second process phase, both models
overestimated the L-tyr concentration, with the UKF deviating more strongly, predicting
a concentration of 0.3 g L−1 at the end of the phase, compared to the measured value of
approximately 0.05 g L−1. Nevertheless, the subsequent decline in the production phase
was better captured by the UKF, although the measured concentration reached 0 g L−1

earlier than predicted. The concentration of L-phe was well approximated by the UKF.
In the first two phases, no increase was measured, which was correctly reflected by both
models. Upon the induction and start of the production phase, a rapid increase in L-phe
was measured, which was closely approximated by the UKF. The CGM, however, predicted
a noticeably slower increase. The maximum measured concentration of approximately
33 g L−1 was also accurately estimated by the UKF, while the CGM predicted a lower
maximum of around 20 g L−1 near the end of the process. Acetate concentration was
poorly predicted by the UKF and the CGM. The measured acetate concentrations remained
near 0 g L−1 throughout the process. In contrast, the UKF predicted an increase starting
at around 50 h, reaching just under 4 g L−1 by the end of the process, while the CGM
predicted an increase beginning at approximately 55 h, ending in a final concentration of
around 10 g L−1.

Figure 4. Simulation of process 2 using the UKF with the CGM as the state estimator and measure-
ments from PLSR. The UKF predictions are shown as blue solid lines, while the CGM predictions
are represented by black dotted lines for the state variables: biomass (A), glycerol (B), L-phe (C),
acetate (D), and L-tyr (E). Vertical gray lines indicate the different process phases. Orange dots
represent the corresponding offline measurements. The offline measurement data were used to
estimate the diagonal entries in the process noise covariance matrix Q.

In the next step, the hybrid approach was tested on an unseen dataset (process 3). All
UKF parameters were retained from the previous setup, and the initial values for the state
variables were identical for both the UKF and the CGM. The results of the UKF and the
CGM are shown in Figure 5.
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For glycerol (Figure 5B), both the UKF and the CGM predicted a slightly faster decrease
in concentration than was indicated by the first available measurement at 20 h process time,
showing a concentration of 0 g L−1. At the beginning of the second phase, both models
predicted a slight increase in glycerol concentration. Otherwise, the concentration remained
close to 0 g L−1 for the rest of the process, which was consistently predicted by both the UKF
and the CGM. Biomass (Figure 5A) predictions from the UKF showed some fluctuations
during the first process phase. However, in the second phase, both the UKF and the CGM
provided good approximations of the measured biomass concentration. From around 50 h
process time onward, the UKF predicted a further increase in biomass in the third process
phase, resulting in a final value that distinctly overestimated the measured concentration.
In contrast, the CGM provided a more accurate prediction in this phase. The depletion of
L-tyr (Figure 5E) during the first phase was again not well captured by either model. In
the second phase, both overestimated L-tyr concentrations, although the UKF predictions
were closer to the experimentally measured values. In the production phase, the UKF
predicted a slower decline, estimating the concentration to reach nearly 0 g L−1 only after
approximately 58 h, whereas measurements indicated depletion already at around 48 h. In
contrast, L-phe (Figure 5C) was again well approximated by the UKF. The concentration
increased more slowly in this process compared to the previous process (process 2) and
reached a final concentration of approximately 23 g L−1. The CGM predicted a slightly faster
product formation and a maximum concentration of around 21 g L−1, not approximating
the measured data as accurately as the UKF. Acetate (Figure 5D) concentration was again
poorly predicted by both models. The CGM overestimated acetate production compared to
the measured data, while the UKF underestimated the final acetate concentration.

Figure 5. Simulation of process 3 using the UKF with the CGM as the state estimator and measurements
from PLSR. All parameters were transferred from the simulation of process 2. The UKF predictions are
shown as blue solid lines, while the CGM predictions are represented by black dotted lines for the state
variables: biomass (A), glycerol (B), L-phe (C), acetate (D), and L-tyr (E). Vertical gray lines indicate the
different process phases. Orange dots represent the corresponding offline measurements.
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Table 2. RMSEs of the state variables (biomass, glycerol, L-phe, acetate, and L-tyr) of the CGM and
the UKF for processes 2 and 3. The RMSEs were calculated based on the offline measurements and
the interpolated model predictions.

State Variables

RMSE

Process 2 Process 3
CGM UKF CGM UKF

Biomass [g L−1] 3.15 1.94 1.74 3.43
Glycerol [g L−1] 0.15 0.19 0.18 0.2
L-phenylalanine [g L−1] 5.14 0.76 2.48 0.87
Acetate [g L−1] 3.51 1.47 3.84 1.51
L-tyrosine [g L−1] 0.07 0.1 0.06 0.03

In addition to extracellular concentrations, intracellular state variables are also consid-
ered in the CGM. One of these variables is the total protein content, which can be further
divided into the individual proteome fractions. Figure 6 shows the proteome fractions for
transport and catabolism (ϕT), ribosomes (ϕR), and L-phe production proteins (ϕFp ) over
the course of the process. Figure 6A displays the results for process 2, while Figure 6B
shows the results for process 3. For process 2, a decrease in ϕT and a corresponding increase
in ϕR can be observed toward the end of the batch phase in the UKF prediction, while
the CGM simulation shows a relatively constant proteome distribution. This shift was
likely caused by substrate depletion. During the second phase of the process, the proteome
fractions remained relatively stable in both predictions. Upon induction in the third phase,
ϕFp increased, while both ϕT and ϕR decreased in both the CGM and UKF simulations.
Interestingly, the increase in ϕFp occurred more rapidly in the UKF, reaching its maximum
of approximately 0.08 after just 50 h of process time. Additionally, the decline in ϕR was
more pronounced than that of ϕT . The UKF accurately predicted the L-phe production in
process 2 (Figure 4C), particularly the rapid increase and the peak concentration toward
the end of the process. Since the reaction rates in the CGM are coupled to the proteome
fractions, this may explain the faster increase in the production-related proteome fraction
observed in the UKF. For process 3, a relatively similar trend of the proteome fractions was
observed between the UKF and CGM simulations. Only toward the end of the process
did the UKF predict a slightly lower maximum for ϕFp compared to the CGM. As the
predicted L-phe concentrations in process 3 were closer between the UKF and CGM, this
could explain the similar course of the proteome fractions.

For both process 2 and process 3, it was shown that the filter estimated some state
variables more accurately than others. For example, substrate consumption in the batch
phase was predicted to occur slightly too fast compared to the offline measurements. A closer
look at the substrate concentration profile shows that it closely followed the PLSR prediction
(Figure 3B). This can be explained by the initialization of the covariance matrix P0 and the
diagonal entries of the measurement noise matrix R. The diagonal entries of R are defined
by the RMSE values from the PLSR results. Since the RMSEs for process 2 were calculated
with offline measurements, the amount and time points of the measurements are relevant.
As glycerol was almost immediately taken up by the cells after the batch phase, the offline
measurements for glycerol after the batch phase were typically close to 0 g L−1. Higher glycerol
concentrations were only observed during the batch phase, which were initially around 4 g L−1

and then decreased continuously. However, due to the lack of offline measurements during
the batch phase, this phase did not contribute to the RMSE calculation. As a result, the
RMSE for glycerol was underestimated, since it was calculated over a concentration range
typically close to 0 g L−1. With more offline data during the batch phase, a more accurate
RMSE estimate and, consequently, more realistic values in the diagonal of R might have
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been possible. Additionally, since the initial substrate concentrations varied slightly between
processes, the corresponding diagonal entry in P0 for glycerol was relatively large, causing the
filter to rely more heavily on the measurement input. In the case of biomass, the UKF tended
to overestimate, particularly toward the end of the processes. This again reflects the PLSR
performance, which also consistently overestimated the biomass in both processes (Figure 3A).
Nevertheless, the filter was able to compensate for this to some extent, resulting in relatively
good approximations during the first two process phases. L-tyr concentrations were poorly
estimated by both the UKF and the CGM. In both processes, its concentration remained
consistently low. Since PLSR already overestimated L-tyr, this also carried over into the UKF
predictions. A similar pattern was observed for acetate, which was also not well captured
by the PLSR. As the underlying cause of acetate formation in the process is not entirely
known, it is not well represented in the model, leading to poor predictions from both the
UKF and the CGM. In contrast, the changes in L-phe concentration were predicted distinctly
better with the UKF in both processes compared to the CGM alone. As the mechanism of
product formation is also not as clear and, therefore, not easy to describe mathematically, it
is represented in a simplified manner within the CGM, which limits its predictive capability
under varying process conditions. However, since the PLSR accurately approximated the
product concentration, the UKF was able to correct the CGM’s predictions accordingly.

Figure 6. Time course of the proteome fractions for transport and catabolism (ϕT , green), ribosomes
(ϕR, red), and L-phe production proteins (ϕFp , blue) over the course of the process. The fraction of
the remaining proteins (ϕQ) is not shown. Process 2 (A) can be seen on the left, and process 3 (B)
can be seen on the right. Dashed lines represent predictions from the CGM, while solid lines show
predictions from the UKF. Gray vertical lines indicate the different process phases.

4. Discussion
This study demonstrated that even a limited set of online process data can be suf-

ficient to estimate important offline key variables with reasonable accuracy using PLSR.
By integrating these predictions as measurements into a UKF with a CGM as the state
estimator, the prediction quality could be further improved, providing further insights into
intracellular states.

The training data from process 1 (reference process) was well approximated by the
PLS models. However, the prediction performance for unseen process data (processes 2 and
3) was distinctly poorer. This discrepancy between well-approximated training data and
less accurate predictions for unseen datasets is a common phenomenon for data-driven soft
sensors, particularly in the context of biological processes [7,31]. In such cases, the model
tends to overfit the training data, which often occurs if the training datasets are too small
or not enough training data points are used. Another factor contributing to the reduced
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prediction accuracy is the inherent biological variability, as well as unexpected process
disturbances. For example, in microbial processes, as is the case here, foam formation can
occur. To counteract this, antifoam agents are added, which can influence oxygen transfer
and, consequently, the pO2 in the bioreactor [32]. If the pO2 drops, the agitation speed and
aeration rate are typically increased to maintain the defined pO2 setpoint. If these process
variables are used as input variables for the PLSR, such abrupt changes can result in poor
predictions. One approach for generating a more robust model could be to train it on data
from multiple processes instead of only one [7]. This could improve model robustness
and allow the model to better capture the biological and process variability present in
different datasets.

One advantage of PLSR is its ease of implementation and its suitability for multi-
collinear and high-dimensional datasets. However, a disadvantage of PLSR is that, due
to its linear structure, it often fails to fully capture highly nonlinear biochemical reaction
systems. As an alternative to multivariate regression techniques such as PLSR, ANNs
can be employed in data-driven approaches. Based on their structure, ANNs are capa-
ble of more effectively modeling complex nonlinear relationships, which are frequently
encountered in biological processes [9]. Comparisons in the literature between various
data-driven approaches such as PLSR, SVR, ANNs, and other multivariate regression
methods for the prediction and monitoring of bioprocesses have demonstrated the superior
performance of ANNs over PLSR and other regression techniques [11,33]. An additional
strategy to enhance the predictive capabilities of the data-driven approach is to incorporate
further measurements, thereby increasing the number of input variables. For instance, Lee
et al. [34] demonstrated that L-phe and acetate spectra can be measured in situ by using
Raman spectroscopy. These spectra could serve as additional input variables, potentially
enabling more accurate and robust predictions. Alternatively, NIR spectroscopy could
also be used for in situ determination of acetate and L-phe spectra [35]. In addition to the
measurement of extracellular variables, intracellular quantities such as fluorescent proteins
can also be measured and used as input variables. The strain used in this study expresses
four different fluorescent proteins under various physiological conditions, intended to
reflect specific cellular states such as growth, oxygen availability, general stress, or product
formation [25]. In particular, growth- and product formation-related fluorescence may
represent valuable information that correlates with biomass and product concentrations.
One way to monitor these signals at-line could be through an automated sampling system
coupled with a flow cytometer, which is also planned as future work. This approach is also
referred to as automated real-time flow cytometry (ART-FCM) in the literature and has
already been employed for the monitoring of bioprocesses, for instance, to observe product
formation or cellular stress responses [36,37]. The measurement of these intracellular vari-
ables offers the additional advantage that they can not only be correlated with extracellular
process variables but also be directly integrated into the CGM as measurements in the
hybrid modeling approach.

For the hybrid UKF approach, several challenges remain. Two of the most important
parameters for the KF are the process and measurement noise covariance matrices Q and
R [38]. In practical applications with real sensor or measurement data, the measurement
noise R is often more straightforward to estimate. However, in this approach, where
measurements are derived from PLS models, estimating R is more challenging. Here, the
diagonal entries of R were determined based on the MSE between the PLSR predictions
and the offline measurements. However, if there are insufficient offline measurements
available to reliably estimate the MSE, this can lead to poor correction performance by the
filter. As previously mentioned, no offline measurements are available during the batch
phase, resulting in an unrealistically low MSE for glycerol, since the concentration remains
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near zero after the batch phase. Another limitation is that both R and Q are kept constant
throughout the entire process. Given that the process is divided into three distinct phases,
each characterized by different system dynamics, the prediction accuracy of the PLS models
also varies across each phase. A straightforward improvement would be to define the
measurement noise matrices R for each phase. However, due to the lack of offline data in
the batch phase, the measurement values would need to be estimated or calculated through
simulations. Similarly, the process noise Q is likely to change over time. Here also, the
process noise for each phase or even dynamic Q could improve correction performance.
One way to dynamically estimate Q is to incorporate parameter uncertainty. As shown by
Kraemer and King [39] and Tuveri et al. [28], the process noise covariance matrix Qk can be
defined as

Qk = Gk Qw GT
k (26)

where Gk is the Jacobian of the model with respect to the parameters and Qw is the pa-
rameter covariance matrix. The lower bound of Qw can be approximated using the Fisher
Information Matrix, although it represents only a lower bound, and the true variance may
be higher. An alternative strategy that could be used for dynamically updating R and Q is
based on innovation analysis. Zheng et al. [40] proposed to evaluate the innovations using
a chi-squared distributed test statistic and, if necessary, recalculate the measurement and
process noise covariance matrices R and Q based on the residuals and innovations, as well
as the previous estimates of Q and R. This has the advantage that not much knowledge for
the determination of Q and R is necessary.

Another aspect that should be considered is the observability of the system, which
indicates whether the system states can be reconstructed solely based on the available
measurements. Particularly for future work, the observability of the CGM should be
investigated to determine which variables must be measured to fully reconstruct the
system. Dewasme et al. [41] showed that for an E. coli fermentation, measurements with
only a biomass probe were sufficient to describe both acetate and substrate concentrations.
This would also open up the possibility of only using a single biomass probe with a UKF;
therefore, the correction would be less reliant on the accuracy of the PLSR estimations.
Nevertheless, for industrial-scale processes, such probes are generally less suitable, as they
provide only local measurements and may not accurately represent the entire reactor [11].
Also, when only using a biomass probe, an accurate model capable of reliably representing
the system states is necessary. This is also an additional challenge that is evident in the
results presented here. If the dynamic behavior of the system is poorly represented by the
state estimator, the UKF can only partially compensate for the discrepancy. Similarly, this
can also be seen for the measurements. If the PLS models do not accurately reflect the true
offline values, the UKF can only correct based on the limited information it receives. This is
evident in the case of acetate, where neither the CGM nor the PLS models can adequately
capture the concentration profile, and, consequently, the UKF also fails to provide accurate
estimates. Nevertheless, relatively simple models combined with an EKF or a UKF can be
sufficient to achieve adequate state estimation, provided that the models are sufficiently
parameterized. Additionally, kinetic parameters exhibiting high sensitivity can also be
estimated within the filter framework to improve state estimation accuracy [13,41,42]. To
achieve this, sensitive parameters can be identified through a sensitivity analysis and can
then be incorporated into the extended state vector for estimation [43]. This aspect should
also be taken into account in future work using CGMs, as kinetic parameters often need
to be estimated via regression from experimental data [20]. This was also the case in the
present study, where parameter values were obtained through least-squares minimization
(see Supplementary Materials).
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Another interesting result is the correction of the proteome fractions in the UKF.
Since intracellular states, such as metabolite and protein concentrations, are not measured
directly, the proteome fractions can only be estimated indirectly. Particularly interesting is
the correction of the proteome term for the production proteins ϕFp . For process 2, 0.01 mM
IPTG instead of 0.3 mM was used for induction, which surprisingly led to higher measured
concentrations of L-phe. In fact, a lower production would be expected, as fewer production
proteins should be expressed. One possible explanation for the improved production could
be a reduced metabolic burden due to weaker induction. The strain harbors a medium-
high copy plasmid with a strong promoter [44], and therefore, a full induction may force
the cell to use more resources for protein synthesis, leaving fewer resources for product
formation [45]. Since the effect of the inducer concentration is not included in the CGM, this
effect cannot be explained by the model. Here, more experimental information is necessary,
for example, measurements of the proteome during the production phase, to include this
effect. Currently, the L-phe production rate increases linearly with the proteome fraction
ϕFp . However, a rate-limiting step might occur earlier in the metabolism, which could
impose an upper limit on the amount of production proteins actually required to achieve
maximum product formation. By including such an upper limit in the CGM, a more realistic
description of the system might be possible.

By incorporating additional input variables through ART-FCM and using adapted or
dynamic measurement and process noise covariance matrices, prediction accuracy could
be improved. This, in turn, would allow the CGM to provide more detailed and reliable
information about the process and the intracellular state variables.

5. Conclusions
Real-time information on process variables is essential for process optimization and

control in biotechnological processes. In addition to extracellular variables such as biomass,
substrate, or product concentrations, intracellular factors such as protein concentration and
distribution play an important role in ensuring optimal product formation. In this study, a
hybrid modeling approach combining PLSR and a UKF was applied to estimate the state
variables, namely biomass, glycerol, L-phe, acetate, and L-tyr, in an L-phe production pro-
cess using a recombinant E. coli strain. The PLS models alone achieved accurate predictions
for L-phe; moderate performance for biomass, glycerol, and L-tyr; and limited accuracy for
acetate. Incorporating these predictions as measurements into a UKF, in which a CGM was
used as the state estimator, significantly improved the estimation of L-phe concentrations
compared to the CGM alone, while also enabling the estimation of intracellular variables.

However, further improvement is needed for the reliable estimation of the remaining
state variables. To achieve this, future work will focus on improving the data-driven model
predictions with additional real-time information. This will be achieved through the use of
the four integrated fluorescent proteins in the E. coli strain used here in combination with
ART-FCM. Additionally, ANNs will be applied to evaluate prediction accuracy compared
to PLSR. Also, the CGM will be improved by incorporating real proteome data from the
process, with the goal of gaining a better understanding of the mechanisms for product
and byproduct formation.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/bioengineering12060654/s1, Table S1: Estimated parameters for the
CGM (process 1), along with their values, units, and standard deviations. Figure S1. Simulation of
process 1 with the CGM and the optimal parameter values determined by least-squares minimization
using offline measurements. The CGM simulations are shown as blue solid lines, while the offline
measurements are represented by orange dots for the state variables: biomass (A), glycerol (B),
L-phe (C), acetate (D), and L-tyr (E). The error bars indicate the standard error from the parameter
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estimation. Figure S2. Simulation of process 1 with the CGM and the optimal parameter values
determined by least-squares minimization using offline measurements. The CGM simulations are
shown as blue solid lines, while the offline measurements are represented by orange dots for the
state variables: biomass (A), glycerol (B), L-phe (C), acetate (D), and L-tyr (E). The light-blue areas
represent the 95% confidence intervals of the model predictions. Figure S3. Process data of process 1:
pO2 (A), stirrer (B), air flow (C), off-gas CO2 (D), substrate feed (E), pH (F), temperature (G), and base
addition (H). Figure S4. Process data of process 2: pO2 (A), stirrer (B), air flow (C), off-gas CO2 (D),
substrate feed (E), pH (F), temperature (G), and base addition (H). Figure S5. Process data of process 3:
pO2 (A), stirrer (B), air flow (C), off-gas CO2 (D), substrate feed (E), pH (F), temperature (G), and
base addition (H). Figure S6. Cross-validation with k = 5 for the batch phase (A), biomass production
phase (B), and production phase (C) using the training data from process 1 (reference process).
Figure S7. Predictions using the trained PLS models on the unseen dataset from process 3 with
online process variables as inputs. Vertical gray lines indicate the different process phases. Model
predictions for the state variables (biomass (A), glycerol (B), L-phe (C), acetate (D), and L-tyr (E))
are shown as black dotted lines over process time. Orange dots represent the corresponding offline
measurements. References [20,46] is cited in the Supplementary Materials.
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