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SUMMARY

Although clinical and laboratory data have long been used to guide medical practice, this 

information is rarely integrated with multi-omic data to identify endotypes. We present Merged 

Affinity Network Association Clustering (MANAclust), a coding-free, automated pipeline 

enabling integration of categorical and numeric data spanning clinical and multi-omic profiles for 

unsupervised clustering to identify disease subsets. Using simulations and real-world data from 

The Cancer Genome Atlas, we demonstrate that MANAclust’s feature selection algorithms are 

accurate and outperform competitors. We also apply MANAclust to a clinically and multi-

omically phenotyped asthma cohort. MANAclust identifies clinically and molecularly distinct 

clusters, including heterogeneous groups of “healthy controls” and viral and allergy-driven subsets 

of asthmatic subjects. We also find that subjects with similar clinical presentations have disparate 

molecular profiles, highlighting the need for additional testing to uncover asthma endotypes. This 

work facilitates data-driven personalized medicine through integration of clinical parameters with 

multi-omics. MANAclust is freely available at https://bitbucket.org/scottyler892/manaclust/src/

master/.
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In brief

Clinical data commonly used in medical practice are underutilized in multi-omic analyses to 

identify disease endotypes. Tyler et al. present a python package called Merged Affinity Network 

Association Clustering (MANAclust) that automatically processes and integrates categorical and 

numeric data types, facilitating the inclusion of clinical data in multi-omic endotyping efforts.

INTRODUCTION

Complex diseases have multiple molecular etiologies yet result in concordant pathology 

stemming from multi-dimensional interactions between genetics and the environment (Tyler 

and Bunyavanich, 2019). Quantifying a single “ome” in a particular tissue will likely yield 

insufficiently granular details about a complex disease. To address these shortcomings, 

integrative multi-omics approaches have been developed (Nguyen etal., 2017; Rappoport 

and Shamir, 2018; Wang et al., 2014; Witten and Tibshirani, 2009), yet few allow for the 

additional integration of clinical data (e.g., from medical records, laboratory assays), despite 

the fact that clinical attributes are most often used to distinguish disease subtypes.

One complex disease with disparate underlying causes is asthma. Although airway 

obstruction and inflammation are shared characteristics of asthma, underlying mechanisms 

leading to such pathophysiology are non-uniform. A well-understood subtype of asthma is 

Type 2 asthma, in which genetic susceptibility and allergen exposure lead to skewing toward 

T-helper 2 (TH2) cytokine-related inflammation, which upregulates airway inflammation and 
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airway hyperresponsiveness, causing asthma (Tyler and Bunyavanich, 2019). However, other 

mechanisms of asthma underlie other subtypes. Subtypes of disease with distinct 

pathophysiological mechanisms are called endotypes (Tyler and Bunyavanich, 2019).

Multi-omics can simultaneously characterize several molecular domains that may provide 

orthogonal information on mechanisms of a given endotype (Tyler and Bunyavanich, 2019). 

However, integrating heterogeneous clinical data with multi-omics presents several 

challenges, including differences in statistical properties and distributions, and for some 

clinical attributes, non-numeric features. Unsupervised clustering of categorical data is 

largely under-researched (Sreenivasulu et al., 2017), yet categorical clinical variables such as 

comorbidities and medication use are frequently used to subgroup patients for clinical 

diagnostics and treatment.

Selecting features of a dataset that add structure or patterning is an important step prior to 

unsupervised clustering. Inclusion of unimportant features adds noise, drowning out 

meaningful signal. Feature selection for numeric datasets is effective for reducing 

dimensionality and noise (Andrews and Hemberg, 2018), yet this approach has rarely been 

applied to categorical datasets for unsupervised clustering. Previous approaches to multi-

omic unsupervised clustering often skip feature selection.

Although several algorithms exist for clustering categorical datasets (He et al., 2002; Sharma 

and Gaud, 2015), few exist to perform clustering on mixed categorical/numeric datasets (Ji 

et al., 2013), which are common to medicine. Integration of clinical data with multi-omics 

remains an outstanding challenge. There is need for algorithms designed for integration of 

multi-omics with clinical-categorical or mixed datasets that natively and automatically 

accommodate missing data fields and missing data types at the subject level, given how 

common missing data are in human research. Automated multi-omic approaches that 

perform unsupervised feature selection for both categorical and numeric datasets prior to 

clustering would advance the field.

Given the increasing volume of clinical data being generated and exponential availability of 

omics, we recognized a need to develop an approach that can integrate these rich sources of 

information via a user-friendly pipeline for identifying disease subtypes. We have created an 

open-source package called Merged Affinity Network Association Clustering (MANAclust) 

that: (1) takes numeric or non-numeric datasets as input, allowing for missing subject-level 

categorical data and missing data types; (2) performs information theory-based categorical 

feature selection and numeric feature selection; (3) calculates merged affinity network 

associations across subjects and datasets; (4) identifies final clusters (FCs) using multi-

omics data, as well as consensus groups within each ome or dataset; (5) analyzes differences 

across groups; (6) determines which dataset’s groups are significantly concordant with those 

of other datasets; and (7) creates a collated web display of all results (Figure 1). Using 

simulations and real-world data, we demonstrate that MANAclust’s feature selection 

algorithms are highly accurate, and that MANAclust outperforms competitors in numeric 

multi-omics and categorical clustering. We then used MANAclust to identify endotypes in 

an asthma cohort of subjects who have been clinically phenotyped and undergone multi-

omic profiling of their airways (Do et al., 2021), with the majority characterized in all data 
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dimensions, but with subjects variably missing some data types, as is frequently the case in 

real-world datasets. MANAclust identified 14 clinically and molecularly distinct clusters of 

subjects, including heterogeneous groups of “healthy controls,” and viral and allergy-related 

endotypes. In addition to several algorithmic innovations, these findings lay the groundwork 

for clinically and molecularly tailored personalized medicine for asthma.

RESULTS

MANAclust

To achieve joint clinical/multi-omics unsupervised clustering, we first created an algorithm 

for unsupervised feature selection of categorical data. To our knowledge, no automated 

solution exists for unsupervised categorical feature selection. For our goal—utilizing any 

type of clinical data (categorical or numeric), along with multi-omics for identifying disease 

subsets—we began from the premise that if categorical clinical variables are randomly 

distributed relative to one another, they will have lower relative mutual information 

compared with if they were non-random relative to one another. MANAclust quantifies the 

true amount of mutual information across variable pairs, comparing it with shuffled null 

versions of the dataset (Figures 2A–2C). We then calculate the difference between the 

observed pairwise feature-feature information in the real dataset compared with the shuffled 

datasets, calculating the information difference (Figures 2D and 2E). This enables selection 

of categorical variables that are non-independent and give structure to the dataset (Figure 

2F). Additionally, we implemented a feature selection metric for traditional numeric omes 

(Figure S1; see STAR Methods for details).

To test these approaches, we created synthetic datasets in which subjects belonged to known 

groups with both categorical and numeric datasets containing features that were either 

designed to distinguish these groups or were purely random. Our categorical feature 

selection algorithm captured all real features while filtering out all random features, even 

with 50% missing data and 50% random noise added (Figures S2A–S2E). To benchmark 

numeric feature selection, we created synthetic datasets with 200 real features that 

discriminated groups and 10,000 features that were random noise. Our numeric feature 

selection algorithm captured an average of 95.8% of real features (i.e., recall), while 

consistently removing all random features (Figures S2F–S2J). As a classification problem 

(group-defining versus random features), our categorical feature selection algorithm had 

high accuracy, precision, recall, specificity, and F1 scores (T = 54.2, P = 1.24e–12, paired t 

tests relative to baseline; Figures S2A–S2E). Similarly, our feature selection algorithm for 

numeric datasets demonstrated high performance (P values: accuracy, 8.06e–19; precision, 

7.85e–20; recall, 8.06e–19; specificity, 8.06e–19; F1 score 1.92e–20; paired t tests relative to 

baseline; Figures S2F–S2J). This benchmarking demonstrates that MANAclust’s feature 

selection algorithms accurately select the meaningful features in both categorical and 

numeric datasets to increase the signal-to-noise ratio of the inputs.

We hypothesized that these feature selection algorithms would allow for more discretely 

discernable clusters of subjects. With synthetic data to benchmark, using all features showed 

little distinguishable patterns in subject-to-subject distance (Figures S3A, S3C, and S3E). 

However, the feature selected datasets showed the expected number of groups that were 
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clearly discernable from one another (Figures S3B, S3D, and S3F). This enabled 

significantly more accurate clustering compared with using the whole datasets as measured 

by mutual information and cluster purity (Figures S3G and S3H; T = 84.1 and 215; P = 

2.4e–14 and 5.12e–18, respectively; n = 10; t tests paired by dataset).

Comparison with other multi-omic clustering approaches using real-world and synthetic 
datasets

We aimed to benchmark MANAclust against several others designed for numeric multi-

omics. We used a previously published benchmarking approach applied to 10 different 

cancer types from The Cancer Genome Atlas (TCGA) (Rappoport and Shamir, 2018) where 

performance was assessed by examining differences across clusters in clinical variables and 

differences in survival rates across clusters. We compared MANAclust with two generic 

clustering methods: K-means clustering (elbow rule for K-determination) (Lloyd, 1982), 

spectral clustering (elbow rule for K-determination) (Shi and Malik, 2000), and several 

multi-omics-specialized clustering approaches, including perturbation clustering for data 

integration and disease subtyping (PINS) (Nguyen et al., 2017), PINSPlus (Nguyen et al., 

2019), Similarity Network Fusion (SNF) (Wang et al., 2014), and sparse multiple canonical 

correlation analysis (MCCA) (Witten and Tibshirani, 2009) (Figure 3). MANAclust showed 

the greatest significant differences between the identified clusters, both by difference in 

survival rate and the number of clinical variables that differed significantly across clusters 

when clusters were identified based on all multi-omics data (Figure 3A; Table S1). When 

operating only on the single-best ome per dataset, MANAclust consistently identified either 

the greatest number of differences between groups clinically or by survival time (Figure 3B). 

This demonstrates that even operating without missing or categorical data (which the other 

algorithms cannot accommodate), MANAclust still consistently performs better. 

Furthermore, the competing methods all require custom programming from the user, 

whereas MANAclust is an open-source, hyper-parameter-free method of mixed data-type 

multi-omics unsupervised clustering that accommodates missing data from a command-line 

interface and generates a web-display walk-through of results for users.

Although these results demonstrate that MANAclust provides good results for numeric 

datasets, we next sought to benchmark MANAclust in the purely categorical realm. We 

compared MANAclust with KModes (Huang, 1998) clustering with elbow rule based on 

within-cluster Hamming distances. Although both MANAclust and KModes clustering with 

elbow rule worked well in identifying the correct number of clusters, MANAclust 

significantly outperformed KModes in cluster purity and relative mutual information (F = 

445.3, P = 1.39e–22 and F = 53.78, P = 8.75e–9, respectively; one-way ANOVA; Figure 

3C). Taken together with the multi-omics benchmark, these results demonstrate that 

MANAclust works well in both the numeric and categorical domains.

MANAclust discovers clinically and molecularly distinguishable asthma endotypes

Having demonstrated the accuracy of MANAclust, we applied the pipeline to data for a 

complex human disease known to have multiple mechanistic causes: asthma (Tyler and 

Bunyavanich, 2019). Many individuals with asthma have Type 2 asthma, a subtype of 

asthma mediated by Type 2 T helper (Th2) cells or innate lymphoid cells (ILC2s) (Sugita et 
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al., 2018; Woodruff et al., 2009). Some common clinical characteristics of the Type 2 asthma 

endotype include: allergies, elevated levels of lung and/or peripheral eosinophils, total serum 

IgE, and allergen-specific IgE (sIgE) antibodies (Bunyavanich and Schadt, 2015; Liu et al., 

2015; Nagasaki et al., 2017; Tyler and Bunyavanich, 2019). However, other less understood 

subtypes of asthma also exist (Liu et al., 2017; Ricciardolo et al., 2017; Wisniewski et al., 

2018). To investigate potential mechanisms of asthma pathology in different subtypes, we 

applied MANAclust to data generated from the Airway in Asthma (ARIA) cohort (Do et al., 

2021) of 316 subjects with asthma and healthy controls who underwent clinical phenotyping 

and profiling of airway transcriptome, microbiome, and/or methylome.

MANAclust identified 14 different clusters of asthma and health based on clinical and multi-

omic data. Following identification of these 14 FCs, MANAclust also identified “consensus 

groups” for each input data type. Dataset-level consensus groups define which FCs are 

indistinguishable from one another within the given dataset. For example, two FCs could 

share a similar transcriptome but two distinct microbiomes; these FCs would have the same 

transcriptome consensus group but two different microbiome consensus groups, thus 

separating them into distinct FCs. Each of these FCs can be defined by the unique 

combination of consensus groups defined by MANAclust (Figures 4A–4F).

To test the efficacy of our approach for finding clinically meaningful differences between 

FCs, we tested whether the identified clusters differed significantly by treatment (which was 

excluded from the clinical attributes used for clustering). Indeed, asthma diagnosis (P = 

5.28e–12, χ2 with Benjamini-Hochberg correction), antibiotic usage (P = 1.78e–174, χ2 

with Benjamini-Hochberg correction), and oral steroid use (P = 3.64e–127, χ2 with 

Benjamini-Hochberg correction) were significantly different across FCs, despite being held 

out from clustering. Note that the causal direction of these differences is unknown; for 

example, the treatments may cause changes in the transcriptome or vice versa. Of the 

clinical variables that were used for clustering, ranking among the most significant were 

measures related to atopy, including total serum IgE (P = 1.61e–195, χ2 with Benjamini-

Hochberg correction) and allergen-specific sensitization (defined by sIgE ≥ 0.10 kUA/L) to 

cat and dog dander (P = 1.70e–16, 1.37e–17, χ2 with Benjamini-Hochberg correction), 

mouse urine (P = 1.52e–22, χ2 with Benjamini-Hochberg correction), Blatella germanica 
cockroach (P = 3.11e–8, χ2 with Benjamini-Hochberg correction), and others (Tables S2A 

and S2B). Along with total serum IgE levels, each of these specific allergens has previously 

been implicated in asthma control (Kanchongkittiphon et al., 2015; Rotsides et al., 2010). As 

we will discuss later, however, some subjects who present with nearly identical symptoms 

may respond differently to various medications. It is therefore critical to determine which 

subjects may present the same clinically yet have disparate molecular underpinnings. It is 

also important to fully understand the heterogeneity among “healthy controls.”

Control groups are highly diverse

There was not a single “control” group of healthy individuals. Instead, we observed five 

different FCs that corresponded to low prevalence of asthma and high asthma control test 

(ACT) scores (FCs 3, 7, 8, 9, and 13) (Figure 4F). This finding supports the long-held 

understanding that there is not one single way to be healthy. Considering such disparate, yet 
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healthy subjects as a single control group, rather than recognizing them as a collection of 

different subgroups, may obscure differences that might otherwise be detected if their 

subgroup memberships were recognized.

Understanding each molecular subtype

Although our main goal is to examine how each molecular data type fits with others and 

with clinical attributes, it is important to first develop a biologic understanding of each 

consensus group within each data type. To better understand the differences across 

consensus groups in the transcriptome and methylome, we performed comparisons of 

consensus group-enriched genes, co-expression/-methylation network graphs, module 

analyses, and predicted autocrine-paracrine signaling within each consensus group using 

PyMINEr (Tyler et al., 2019). In the transcriptome, we observed pathway-level differences 

across consensus groups relating to ciliated cells and replication (transcriptome consensus 

group 0) and leukocyte activation (transcriptome consensus group 1) (Figure 4A; Table 

S2C).

Of interest was the significant concordance between the transcriptome consensus group 

corresponding to leukocyte activation (transcriptome consensus group 1) and the methylome 

consensus group characterized by enrichment of the cell adhesion with leukocyte/

lymphocyte activation (methylome consensus group 1) (P ≈ 0; Figures 4B, S4A, and S4B; 

Table S2D). Also pertinent to asthma, we observed enrichment of T cell activation signaling 

by pathway analysis in methylome consensus group 0.

At the microbiome level, consensus groups differed primarily by the four most abundant 

genera (Figure 4C). One microbiome consensus group (2; Figure 4C) had exceptionally high 

levels of Moraxella, with marked reduction in Corynebacteria and other genera resulting in 

low alpha diversity (Figure S4D; one-way ANOVA: Chao1 F = 52.57, P = 9.88e–34; 

Shannon F = 44.0, P = 3.35e–29; microbiome consensus group 2 significance against all 

other groups P ≤ 0.01; Tukey’s Honestly Significant Difference (HSD) post hoc test).

Consensus groups within the clinical dataset differed largely based on allergy-related 

parameters. Additionally, although disease diagnosis and treatments were not included for 

clustering, these variables segregated across clinical consensus groups (Figure 4D). Type 2 

asthma, the best described endotype of asthma, corresponded to clinical consensus groups 0 

and 1, while the healthiest group with little asthma and very few allergies corresponded to 

consensus group 4. Interestingly, subjects in consensus group 5 harbored very few allergies 

but had the highest rates of asthma. Consensus group 5 had significantly more recent upper 

respiratory infections (URIs) compared with other groups (mode: URI within past month; χ2 

= 303.8; P = 2.69e–44, Benjamini-Hochberg corrected; Table S2E). This fits with prior 

reports of viral infection being a well-characterized trigger of asthma exacerbations (Altman 

et al., 2019).

Simply characterizing each dataset’s consensus group provides limited insights into the 

multi-factorial nature of a disease, however; multi-omics enables us to observe how these 

single datasets weave together to form a holistic picture of an individual’s pathobiologic 

type.
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Consensus groups combine to define endotypes

Each FC is derived from the combination of consensus groups from each of the input 

datasets (Figures 4E and 4F). Prior attempts to derive endotypes of disease frequently used 

only a single data type (Howrylak et al., 2016; Kuo et al., 2017; Liang et al., 2015; 

Nicodemus-Johnson et al., 2016). A major outstanding question is whether groups identified 

by one data type are redundant or orthogonal to those identified by another data type. To 

address this question, MANAclust calculates (1) the most frequent chi-square statistics to 

determine if consensus groups across data types provide completely orthogonal or partly 

concordant groups (Figures S4A–S4C), and (2) the Bayesian empirical probability that 

subjects belong to each consensus group of other datasets given that they were members of a 

consensus group from a different data type (Figure 4G). Although these Bayesian 

probabilities have been argued to be related to causality (Williamson, 2009), external 

intervention in the form of clinical trials would be needed to verify causal relationships 

(Pearl, 2009).

We observed that some consensus groups did indeed carry redundant information across data 

types. However, other consensus groups carried orthogonal information that was not 

concordant with consensus groups of other input data types (Figures 4G and S4A–S4C). For 

example, clinical consensus group 4, with the lowest prevalence of asthma and allergy 

markers, was significantly concordant with consensus groups from each other data type 

(Figure 4G), including microbiome consensus group 0, with highest abundance of 

Corynebacterium, which was previously associated with health and protection from asthma 

(Zhou et al., 2019). This combination of consensus groups creates FC 8, with the lowest 

percentage of asthma and highest ACT score (Figure 4F).

Another consensus group that showed strong concordance across data types was the 

microbiome group with extremely low alpha diversity (Figure S4D) dominated by Moraxella 
(Figure 4G). This group was strongly associated with the methylome profile enriched for 

lymphocyte and leukocyte adhesion and activation (methylome consensus 1). This 

methylome profile was further associated with a transcriptional profile related to the immune 

system and leukocyte activation (transcriptome consensus 1; Figure 4A; Table S2D).

Clinically indistinguishable subjects harbor disparate molecular drivers of asthma

There were many cases in which consensus group membership segregated non-randomly 

across datasets, indicating non-orthogonality across these datasets, as represented by all 

edges in Figure 4G. However, two clinical consensus groups shared no significant 

segregation across different datasets, clinical consensus groups 1 and 3. This indicates that 

two subjects may present with similar clinical parameters yet have highly divergent 

underlying molecular signatures. This scenario suggests potential reasons for trial-and-error 

aspects of some asthma treatment (Tesse et al., 2018).

Lastly, although we have focused on selected FCs and consensus groups, several other FCs 

remain that were mixed between asthma and control groups. This may point toward well-

controlled asthma that phenocopies controls, or that sampling additional tissue such as 
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bronchial epithelium closer to the site of pathology may provide orthogonal measures that 

could refine these subgroups more clearly.

Integration of clinical and numeric data improves endotype identification

To assess the impact of the integration of clinical and numeric data in the ARIA cohort, we 

compared the significance of our full analysis with all data to performances using only the 

clinical data, all numeric data, or each numeric data type alone. We quantified the maximum 

significance by −log10(P value) of each clustering run’s held-out clinical variables based on 

either FCs or consensus groups with the noted inputs. Use of all data provided the greatest 

significance in held-out clinical variables (Figure 4H). This was also true when normalizing 

for each hold-out variable’s lowest level of significance (Figure 4I).

DISCUSSION

We have created an open-source tool called MANAclust that enables automated integration 

of clinical datasets and omics for unsupervised clustering. The categorical and numeric 

feature selection algorithms implemented in MANAclust are highly accurate, enabling 

successful stratification of clinically meaningful groups using real-world data from both 

TCGA and the ARIA cohort. We used MANAclust to uncover the heterogeneity of “healthy 

controls,” as well as several endotypes of asthma, including those driven by URIs, allergies, 

and a subset with Moraxella-dominated airway microbiomes. We also observed two sets of 

asthma subjects for whom underlying molecular characteristics were statistically 

independent from their clinical presentation. MANAclust paves the road to data-driven 

personalized medicine through the identification of subject clusters not only by multi-omics 

but also by incorporating clinical parameters that have long been used independently in 

diagnostics and care.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources should be directed to Dr. 

Supinda Bunyavanich (supinda@post.harvard.edu).

Materials availability—This study did not generate new unique reagents other than those 

reported in Data and Code Availability.

Data and code availability—TCGA benchmarking datasets are available at Synapse 

(https://www.synapse.org; https://doi.org/10.7303/syn21301852). Subject-level data for 

ARIA participants have not been made publicly available because subjects did not consent to 

public release of their data. Data to generate figures and tables are available from the 

corresponding author with the appropriate permission from the study team and investigators 

upon reasonable request and institutional review board approval. All code used for this 

project is available at the public repository: https://bitbucket.org/scottyler892/manaclust/src/

master/.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Subjects—All subjects from the AiRway in Asthma (ARIA) study (Do et al., 

2021) provided written informed consent for study participation and the study was approved 

by the Mount Sinai Health System Internal Review Board (IRB). Subjects were recruited at 

the Icahn School of Medicine at Mount Sinai for phenotyping and nasal sampling. Subjects 

with severe asthma were diagnosed as having severe persistent asthma by a pulmonologist 

based on Severe Asthma Research Program criteria (Moore et al., 2007) Subjects with mild/

moderate persistent asthma were diagnosed based on ≥ 2 symptoms per week, use of an 

inhaled bronchodilator ≥ twice weekly or use of daily medication for asthma, and increased 

airway responsiveness to methacholine (PC20 ≤ 12.5 mg/ml). Non-asthmatic controls had no 

personal or family history of asthma in first-degree relatives, normal spirometry, and no 

bronchodilator response). Phenotyping for all subjects included detailed questionnaires on 

asthma-related symptoms, medication use, and spirometry following American Thoracic 

Society guidelines (National Asthma Education and Prevention Program, 2007). The ARIA 

subjects studied comprised individuals age 4 to 60 years, including 158 females and 158 

males.

METHOD DETAILS

Handling numeric datasets in MANAclust

Numeric dataset input: Numeric datasets are fed into MANAclust as tab delimited files in 

which the samples, or subject IDs are organized in columns and the features are organized in 

rows.

Numeric feature selection: Numeric features to be used for clustering are selected using an 

anti-correlation-based metric. The first step of this process is determining what qualifies as a 

‘significant’ negative correlation. Because each dataset has unique data distribution 

characteristics with variable power, we use an empirically determined false positive rate 

generated by a null distribution. This null distribution of Spearman correlations is created 

through bootstrap shuffling of all values within a gene (or numeric attribute); this unpairs all 

X-Y relationships in the original dataset, creating an empirical null dataset (Figure S1A). 

The Spearman correlations are then measured across variables (Figure S1B). Next, the 

negative correlations are subset from this data, and this vector is concatenated to its own 

negative, creating a Gaussian. The cutoff for significance is then determined by taking the 

mean minus 4 standard deviations (Figure S1C). The empirical false positive rate is then 

measured; because these values were created from a bootstrap shuffled version of the 

dataset, all measures over the cutoff are false positives. Next the Spearman correlation 

matrix is calculated on the real, unshuffled dataset. Next, for each variable, the total number 

of observed negative correlations is calculated (Ot) (Figure S1D). For each feature, the 

number of negative correlations is quantified, and the expected number of observations less 

than the negative Rho cutoff (Esig) is calculated from the empiric false positive rate (Figure 

S1E). A feature is considered significantly anti-correlated if it has more significant anti-

correlations than expected by random chance (≥Mult * Esig; Figure S1F). The power in 

detecting these correlations is dependent on the number of samples; we therefore created a 
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dynamic cutoff scaling with the log of the number of samples. This provides a cutoff for 

variable inclusion or exclusion for downstream clustering (Figures S1G and S1H).

Handling categorical datasets in MANAclust

Categorical dataset input: Categorical datasets should be in fed into MANAclust in an m × 

n matrix where (m) subjects are in rows, while the (n) categorical dataset variables are in 

columns. The missing values of all variables must be a standard string that is fed into the 

argument ‘-missing_data’. In the case of our dataset, we used the ‘N/A’ string. Note that per-

variable missing values only pertain to categorical datasets. It is presumed that individual 

variables will not be missing from numeric datasets; for example, a transcriptomic dataset 

would have measures for all genes rather than only for some, and missing values for other 

genes. In all cases however, MANAclust natively handles subject-level missing datasets 

regardless of numeric/categorical status. If a subject has missing data for all variables within 

a dataset, it is treated as if the subject is removed from the dataset entirely given that there 

are no measures.

Numeric values contained within categorical datasets: If MANAclust finds ≥ 10 numeric 

values contained within a categorical dataset, these are digitized linearly into bins. The 

number of bins scales with the number of observed values as follows:

bins = max 2 n
5

Where n = the number of observations for the given variable. In this manner, numeric 

attributes contained within categorical data are turned into categorical class labels. This 

enables a mutual information style integration of numeric values alongside categorical 

values. This equation was used, because to provide meaningful information, at least two bins 

are necessary, and we sought to scale with n, in a manner similar to variance. Hoping to 

capture at least 5 samples in each n scaled bin, we divided by 5, and applied the floor 

operator.

Categorical label encoding: Categorical variables are one-hot-encoded into binary matrices 

representing the category membership using the sklearn functions LabelEncoder and 

OneHotEncoder (Pedregosa et al., 2011). In the case that a subject is missing this feature, no 

entry is added to this matrix, leaving an empty (zero filled) matrix in its stead.

Categorical feature selection: For feature selection, the mutual information is calculated 

for both the real and bootstrap shuffled versions of the dataset (Figure 2A). This creates the 

symmetric mutual information matrix comparing all features to each other for both the real 

dataset and the randomized bootstrap shuffled datasets (Figures 2B and 2C).

The mutual information matrix from the real dataset is then subtracted from the mutual 

information calculated from shuffled datasets, creating R, an n × n × i matrix, where n = the 

number of features in the categorical dataset, while i = the number of iterations used for 

bootstrap shuffling (Figure 2C). The default for the number of iterations is 10. This matrix is 

filled with the measured mutual information of all feature-feature pairs in the randomly 
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shuffled datasets. Next the difference between the mutual information in the real dataset and 

shuffled versions are calculated for each feature-feature pair, creating the information 

difference matrix IDM (n × n × i). Next, the minimum of IDM along the third axis (i) is 

taken to generate the minimum difference matrix MDM (n × n). For each feature-feature 

pair of this matrix, the entry in MDM represents the iteration of the randomized matrices, 

for which the difference between the real dataset and the randomized dataset was the least. 

In other words, given all of the random iterations – what was the worst-case scenario for this 

feature-feature pair compared to the randomized versions. The MDM matrix is then 

flattened, using the maximum function along one of the axes of this symmetric matrix, 

yielding a one-dimensional vector MMD (Maximum of Minimum Difference). In MMD, 

each feature’s best feature-feature pair from MDM is taken, meaning – for each feature, 

what was the pair in which there was the most information relative to the randomized 

datasets. Then, a cutoff is applied to include features that have enough information in their 

best feature-feature pair. The features that pass this metric are then included in the final 

feature selected dataset for categorical datasets.

Affinity matrix calculation with categorical datasets: First, the average log-loss/

categorical cross entropy comparing all subjects to one another is calculated using the one-

hot-encodings described above, including only the variables for which both subjects have 

non-missing values. The log-loss function is implemented in mana_clust.mana_cat.log_loss, 

but were computed using the scikit-learn sklearn.metrics.log_loss function (Pedregosa et al., 

2011). Next, the negative squared Euclidean distance (affinity matrix) is calculated on this 

log-loss matrix. In the event that a subject-subject pair has no mutual measures for a 

categorical dataset, this subject-subject affinity is filled in by the median of all other 

affinities for this dataset. To prevent invariant measures in the affinity matrix, we perform a 

smoothing process in which the affinity matrix has Gaussian noise added with mean 

equivalent to the minimum of the zero masked affinity matrix.

To account for variable distributions in affinity matrices, the affinity matrix is linear 

normalized to be between 0 and −100 where the sample pairs that are the most different 

from each other map to −100 and those that are most similar map to 0. Note that self-

similarities are not considered in the normalization, thus only the most similar two samples 

are normalized to 0 rather than the self-comparison diagonal of the affinity matrix mapping 

to 0. This normalizes the scale of all affinity matrices, enabling their combination with equal 

weight given to each dataset.

Combining all categorical and numeric affinity matrices in MANAclust—Once 

all affinity matrices are calculated, they are concatenated along a third axis, followed by 

taking the missing-value-compatible mean. This process evaluates the average affinity across 

all omes. If two subjects do not have any overlap in the datasets that they have in common, 

this location in the final merged affinity matrix is filled in with the median of affinities for 

all subjects that do have at least one shared dataset.

Clustering in MANAclust—The combined affinity matrix between omes is first fed into 

the affinity propagation algorithm (Frey and Dueck, 2007). However, under some 

circumstances, the affinity propagation algorithm may fail to converge on appropriate 
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exemplars (points central to a cluster, similar to medoids), resulting in singlet clusters. To 

account for this, we employ a secondary step following affinity propagation in which the 

affinities from all singlet clusters are subset, and re-clustered using Louvain modularity of a 

network built from these affinities as follows: A network is created from the subset affinity 

matrix. The weight of all edges with less affinity than the median of the full affinity matrix is 

set to zero. The remaining edges are built from inverse negative affinities from the affinity 

matrices described above; weighted Louvain modularity is then performed on the resultant 

network.

Consensus group identification in MANAclust—To define consensus groups, 

MANAclust takes the members of each of the final clusters and compares their calculated 

affinities for each dataset with the goal of determining whether two final clusters are derived 

from the same distribution of affinities within each input dataset. This is done by sub-setting 

each affinity matrix of an input dataset for each final cluster pair (we will use A and B for 

illustrative reasons). Next, the within dataset affinities for subject-subject pairs within FC A 

and within FC B are taken; these are concatenated into a single vector. Next, the affinities 

across these two FCs are taken (FC A to FC B affinities and reverse); these are then flattened 

into a single vector. These two vectors are compared to each other by t test. All pairwise 

comparisons of each FC to all other FCs are performed, creating a symmetric probability 

matrix that represents the probability that each FC-FC pair came from the same distribution. 

These P values are then Benjamini-Hochberg corrected for multiple comparisons. Lastly, 

these probabilities are modularized through Louvain community detection. The communities 

identified are the consensus groups for each dataset.

Synthetic datasets for benchmarking MANAclust—To test the efficacy of 

MANAclust, we created synthetic datasets that contained one categorical dataset (two 

groups), and two numeric datasets (three groups each). Each dataset’s individual clusters 

were created independently from one another in which each dataset provided orthogonal 

information; this yielded 2*3*3 = 18 FCs that were unique from each other. Categorical 

datasets harbored 15 of the 165 features of this dataset discriminated the two groups from 

each while all others were variables that subjects were randomly assigned a category. 50% of 

the entirety of these datasets was also assigned to a random category to introduce noise to 

the real variables. Lastly, 50% of this dataset was masked with missing values. Numeric 

datasets contained a total of 10,200 features, 200 of which were real features that 

discriminated groups while the remaining variables were random, drawing from a Gaussian 

distribution. Source code for dataset generation and comparisons is contained in the 

simulate_datasets.py and run_simulation_study.py files of the MANAclust distribution 

package.

For benchmarking purely categorical data clustering, we compared MANAclust to the 

KModes (as implemented in the python ‘kmodes’ pip package) using the elbow rule based 

on sum of the within-group Hamming distances as implemented in SciPy’s 

scipy.spatial.distance.hamming function. In this implementation of the elbow rule, we used 

the greatest value from the second derivative of the sum of within-group distances versus 

group number curve. 50 real features, and 100 random features were simulated to create 5, 
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10, 15, and 20 groups from a total of 1000 simulated subjects, with 50% noise added to the 

data. Each scenario was simulated 5 times. Significance for differences in method purity and 

relative mutual information was determined by the stats.f_oneway function from the SciPy 

package.

The Cancer Genome Atlas (TCGA) benchmarking of MANAclust—Our code was 

adapted from a previously published pipeline with several minor differences (Rappoport and 

Shamir, 2018). There were several algorithms that were not included in our analysis either 

because they required a MATLAB license (MultiNMF), were not open source (LRAcluster 

and rMKL-LP), or took prohibitively long to run (iClusterBayes). We allowed each 

algorithm to perform clustering (and any embedded dimension reduction or feature selection 

within each method).

Clinical Datasets

Allergen sensitization: Allergen sensitization as reported in Figure 4D was calculated as the 

percent of allergens (that were tested) with specific sIgE levels (sIgE) ≥ 0.10 kUA/L. 

Specific sIgE levels were measured for the following allergens: Dermatophagoides 
pteronyssinus, Dermatophagoides farinae, cat dander, dog dander, mouse, Blatella 
germanica (cockroach), grass mix, mold yeast mix, tree pollen mix, weed pollen mix (Pham 

et al., 2019). For the 2 subjects who did not have all ten sIgE levels measured, the percent of 

the tested allergens that were above the 0.10 threshold are reported in Figure 4D.

Asthma percentage in consensus groups: The % Asthma reported in Figures 4D and 4F 

was the percentage of subjects from the respective cluster or consensus group who answered 

yes to “Has a doctor ever diagnosed you with asthma”?. This information was not used for 

clustering.

Nasal RNaseq processing and consensus group analysis—Nasal samples were 

collected using a cytology brush and placed in RNAlater (Do et al., 2021). RNA was isolated 

using the QIAGEN RNeasy mini kit. Libraries were prepared with the TruSeq RNA Sample 

Prep Kit v2. Samples were then sequenced on the Illumina HiSeq 2500 platform. Samples 

were aligned to the Ensembl human genome version 38 using the Salmon 0.13.1 aligner and 

sum collated to the gene level (Patro et al., 2017; Zerbino et al., 2018). For all analyses, 

log2(TPM+1) units were used.

Methylation data processing and consensus group analysis—Nasal samples 

were collected from subjects and DNA was isolated using the QIAGEN DNeasy Mini Kit. 

Methylation was quantified using the Illumina Infinium MethylationEPIC v1.0 array with 

processing of the methylation data using the ENmix package (version 1.18.1) in R version 

3.5.1. Two samples were excluded due to with low quality CpG calls (> 10% of loci with 

CpG detection P value > 0.01). CpGs on sex chromosomes were also excluded for 

clustering. Low-quality CpGs, as defined by those with low confidence calls in > 10% of 

samples, or CpGs with distinctly multi-modal distributions were removed. CpGs with known 

SNPs were also removed, as array hybridization could be affected by subject-specific 

mismatches at these loci. Samples were quantile normalized with ENmix (Xu et al., 2016). 

Tyler et al. Page 14

Cell Rep. Author manuscript; available in PMC 2021 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For clustering, percent methylated values were used, while for pathway analyses, percent 

unmethylated was used to provide a presumed correlate with gene expression. For analysis 

with MANAclust, overdispersed loci were used as defined by PyMINEr,(Tyler et al., 2019) 

using a Z-score of > = 2 from the residual from the Lowess fit of mean to variance 

relationship.

For analysis of consensus groups with PyMINEr, only the subset of loci with “promoter 

associated” annotations were used. This matrix was then converted to percent unmethylated 

by subtracting percent methylated from 1; this was done to provide a correlate with 

presumed gene expression where less promoter methylation thought to track with higher 

transcription. Lastly, this matrix was filtered for loci mapping to a gene symbol, then the 

average of each gene symbol was taken.

Microbiome processing and consensus group analysis—The V3V4 16S 

amplicons were amplified from nasal DNA samples using the Illumina “16S Metagenomic 

Sequencing Library Preparation” protocol (Illumina, 2013). Library prep was performed 

using the Nextera XT Index Kit v2. Illumina MiSeq platform with 2×250bp paired-end reads 

were used for sequencing. SEQTK 1.2 was used to trim primer regions and low quality bases 

from the ends of reads. Reads were demultiplexed using Qiime version 1.9.1 and OTUs were 

picked with similarity 97% using the Greengenes database version 13.8 reference (Caporaso 

et al., 2010). To account for differences in read-depth, samples were rarefied to 2048 counts 

total for each sample, thus normalizing for variance in total depth across samples (Chun et 

al., 2020; Weiss et al., 2017). This OTU matrix was then log2 transformed prior to analysis: 

log2(OTU+1).

MicrobiomeAnalyst was used to analyze MANAclust’s defined consensus groups for 

differential abundance and alpha diversity measures as indicated in Figure 4C (Dhariwal et 

al., 2017). Data shown in Figure 4D represents genus level quantifications to show a high-

level view of the microbiome, while the input dataset for clustering was OTU level 

quantifications (Dhariwal et al., 2017). Filtered Chao1 and Shannon alpha diversity 

quantifications (as seen in Figure S4D) were performed on filtered and normalized OTU 

quantifications. Filtering and normalization was performed as follows: Data were filtered for 

abundance for those OTUs that had a minimum total count of 4, or less than 10% total 

abundance in all samples using the ApplyAbundanceFilter function. The OTUs in the lowest 

5% for variance based on the inner-quartile range were then removed using the 

ApplyVarianceFilter function. Lastly, the relative log expression normalization was 

performed PerformNormalization function in MicrobiomeAnalyst. The two most diverse, 

two middle, and least diverse consensus groups are annotated as such in Figure 4C.

PyMINEr analysis of methylome and transcriptome consensus groups—For 

transcriptome and methylome analysis, we used PyMINEr’s -manual_sample_groups 

argument feeding in the consensus group IDs that were identified by MANAclust (Tyler et 

al., 2019).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical differences between groups with categorical datasets—MANAclust 

first determines global statistical differences using chi-square tests; for those that were 

significant after FDR correction, pairwise post-hocs are performed. Chi-square analyses are 

performed to assess for non-independent segregation of categorical variables across the final 

clusters or consensus groups. Global statistics were FDR corrected using the Benjamini-

Hochberg correction. Chi-square analyses were then performed as post-hocs assessing each 

pair of groups for non-independent segregation across groups when the global statistic was 

significant (alpha = 0.001 for FDR q-values). Chi-square analyses are performed using the 

stats.chi2_contingency function in SciPy. To calculate adjusted residuals and convert these to 

cell-wise P values for the contingency table, we implemented a previously published 

approach that had not been previously implemented in python (García-pérez and Núñez-

antón, 2003). The approach is implemented in MANAclust’s 

mana_annotate_results.cont_to_p_independent function. MANAclust does not automatically 

check if each contingency table meets the assumption of n = 5 for each cell, as is assumed 

by χ2 test-of-independence analyses.

Statistical differences between groups with numeric datasets—Following final 

cluster and consensus group identification, global statistical differences for each variable in 

the input datasets are assessed by 1-way ANOVA comparing all groups to each other. P 

values are FDR adjusted using the Benjamini-Hochberg method. Pairwise differences 

between all groups for all variables is performed by first filtering only for significant 

differences by adjusted 1-way ANOVA q-values, for those features that are significantly 

different globally, t tests are performed pairwise between all final clusters and consensus 

groups. These are also Benjamini-Hochberg corrected. ANOVAs are performed using the 

function stats.f_oneway from the SciPy package. t tests are performed using the 

stats.ttest_ind function from SciPy. MANAclust does not automatically check for within-

group normality, as is assumed by these tests.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• MANAclust enables integrated analysis of clinical and multi-omics data

• Inter-variable relative information provides accurate categorical feature 

selection

• MANAclust outperforms competing approaches for multi-omic analysis

• MANAclust identifies clinically and molecularly distinct asthma clusters
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Figure 1. MANAclust pipeline
(A) Clinical data hold key information for defining diseases, yet they are often ignored by 

traditional (multi-)omics studies. MANAclust enables feature selection and merged analyses 

of categorical and continuous clinical data along with traditional multi-omics to enable 

discovery of disease subtypes.

(B) Categorical and numeric datasets are fed into the program, after which feature selection 

is performed (see STAR Methods for details on algorithms). Normalized affinity matrices 

are calculated across all omes; these affinity matrices are then merged by taking their 

missing value compatible average. We combined the strengths of Louvain modularity and 

affinity propagation into a new clustering algorithm that is then used for final cluster (FC) 

assignment on the combined affinity matrix. FCs are then examined within each input 

dataset to determine whether the FCs differ within each given dataset to identify the 

consensus groups. Post-clustering analyses are also performed to identify the significant 

differences across each FC and consensus group for all datasets. Analyses are then collated 

and displayed in a webpage format.
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Figure 2. Categorical feature selection
(A) The observed dataset, which will often consist of both structured, meaningful, real 

features and randomly distributed features, is shuffled for 10 iterations to generate a 

background null distribution for feature selection.

(B) To select real features, each feature is compared with all other features, creating a 

contingency table of all observations for each feature pair.

(C) The mutual information for each feature pair is then calculated. This process is 

performed both with the observed dataset and its iteratively shuffled versions to create an 

accurate background for comparison.

(D) We then calculated a background-corrected stack of information difference matrices, 

having subtracted the null backgrounds from the observed cross-feature mutual information.
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(E) This difference matrix stack is then flattened to a single two-dimensional matrix of 

feature-pairwise mutual information difference by taking the minimum for each feature pair. 

This is essentially the worst-case scenario in which there was the least amount of difference 

between the original dataset and one of the shuffled datasets.

(F) To select meaningful features, we calculated the row-wise maximum from the minimum 

difference matrix. This results in a one-dimensional vector corresponding to the maximum 

amount of relative information contained in all pairwise comparisons for each individual 

feature. A cutoff is then applied to select the high- and low-information features, retaining 

the high-information features for downstream log-loss and affinity matrix calculations.

See Figure S1 for a summary of the mathematical approach to feature selection on numeric 

datasets. See also Figure S2 for a summary of the accuracy of these feature selection 

methods.
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Figure 3. Comparison of MANAclust with other multi-omic clustering algorithms on TCGA data 
and simulated categorical data
We compared MANAclust’s ability to identify clinically distinct clusters with five other 

existing algorithms: two non-multi-omics-specialized algorithms, K-means or spectral 

clustering on concatenated datasets; and four specialized multi-omics algorithms, PINS 

(Nguyen et al., 2017), PINSPlus (Nguyen et al., 2019), Similarity Network Fusion (SNF) 

(Wang et al., 2014), and sparse multiple canonical correlation analysis (MCCA) (Witten and 

Tibshirani, 2009).

(A) MANAclust finds the most significant differences in identified FCs in 10 different 

cancer types taken in aggregate. The clusters identified by each method were compared with 

each other for significant differences for survival rate and group segregation based on 
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clinical attributes. Displayed are the sum of the −log10(P values) for each cancer type and 

the sum of the number of statistically significant differences in clinical attributes for each 

method. See Table S1 for all tabulated results.

(B) All algorithms were also benchmarked using single-omes rather than in a multi-omic 

manner. In the top row of plots, each ome type (gene expression, DNA methylation, miRNA 

expression) denotes the sum across all cancer types for the −log10(P values) for significance 

in survival differences across groups (x axis) and the sum of the total number of enriched 

clinical parameters (y axis) for all cancer types combined. Note that MCCA works only with 

multi-omics data and is therefore not included in the single-omics comparison.

(C) To assess the ability of MANAclust to accurately incorporate categorical data, we 

performed a synthetic dataset benchmark comparing MANAclust’s categorical clustering 

(orange) with KModes clustering using elbow rule on within-group sum of Hamming 

distances. MANAclust was slightly more accurate than KModes elbow rule in selecting the 

appropriate number of clusters. However, MANAclust significantly outperformed KModes 

in clustering purity (F = 445, P = 1.38e–22, one-way ANOVA) and relative mutual 

information (F = 53.7, P = 8.75e–9, one-way ANOVA). Categorical simulations included 5, 

10, 15, and 20 groups with 1,000 subjects per simulation; each scenario was simulated five 

times.

See Figure S3 for benchmarking of MANAclust’s feature selection algorithms.
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Figure 4. Clinical, methylation, transcriptome, and microbiome consensus groups
(A–D) For each input dataset, the large-scale take-home message from the top enriched 

pathways or variables that characterized the given consensus groups is shown. Each 

consensus group has a unique color that maps consistently throughout the figure. A thick 

border is drawn around consensus groups that uniquely map to a single consensus group of 

all other datasets. In other words, if one can determine this given ome, one can universally 

determine the subject’s group membership across other omes.

(A) Pathway analysis was performed for the transcriptome-level consensus groups using 

PyMINEr; selected pathways were prioritized using PyMINEr’s individual class importance 

metric (Table S2C) (Reimand et al., 2007; Tyler et al., 2019).
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(B) For methylome pathway analyses, methylation loci were filtered only for those with 

promoter annotations, using the given promoter as genes for analysis by PyMINEr (Table 

S2D) (Reimand et al., 2007; Tyler et al., 2019).

(C) Relative abundance (by percentage) for the four most prevalent bacterial genera in each 

of the microbiome consensus groups. A note on the consensus group alpha diversity is also 

made beneath genus level quantifications; alpha diversity measures are shown directly in 

Figure S4D.

(D) Each consensus group shows the percent abundance of asthma, proportion of allergen-

specific IgE (a marker of sensitization to specific allergens), and serum total IgE, normalized 

to mean total IgE of the highest group. See STAR Methods for details on quantification of 

the allergen-specific IgE calculation. Bars indicate means and errors are standard error.

(E) A circular graph network showing each data type’s consensus groups and their 

connections to other consensus groups in different data types. All the subjects from within 

that consensus group of a given data type are examined and if at least one subject within the 

given consensus group maps to a consensus group from a different data type, those 

consensus groups are connected. The edges are weighted by the Bayesian probability of 

consensus group membership for the target given the source of the arrow. See Figure S4 for 

more details.

(F) The FCs are characterized by their membership in their given consensus groups for each 

data type. Colors within the table are consistent with those in (A)–(E). For each FC, the 

relative percentage with asthma is shown (gray bars) along with asthma control test (ACT) 

scores (blue bars), a measure of asthma severity. Bars indicate mean ± standard error.

(G) The significant subset of (E); only edges that showed significant concordance between 

the two consensus groups are shown. Edge thickness corresponds to the probability of 

membership in the target consensus group, given that a subject is a member of the source 

consensus group of a different dataset. Consensus group nodes are colorized based on their 

data type only.

(H) A boxplot showing the maximum level of significance (with FCs or consensus groups) 

using all data, clinical data only, all numeric data, or each numeric data type on its own. 

Using all data resulted in the greatest average significance of held-out variables.

(I) This finding was consistent, including when subtracting each variable’s instance of least 

significance to normalize for the different baselines within a variable.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Human nasal brushings and fecal samples Icahn School of Medicine at Mount Sinai N/A

Chemicals, peptides, and recombinant proteins

RNAlater ThermoFisher Scientific AM7020

Critical commercial assays

TruSeq RNA Sample Prep Kit v2 Illumina RS-122–2001
RS-122–2002

RNeasy mini kit QIAGEN 74106

DNeasy Mini Kit QIAGEN 69506

Infinium MethylationEPIC v1.0 Illumina WG-317–1003

TG Nextera® XT Index Kit v2 Set A/B Illumina TG-131–2001
TG-131–2002

Deposited data

Benchmarking datasets The Cancer Genome Atlas (TCGA) syn21301852

Software and algorithms

PyMINEr https://www.sciencescott.com/pyminer N/A

MANAclust This work; N/A

https://bitbucket.org/scottyler892/manaclust/src/master/

Qiime http://qiime.org/ N/A

MicrobiomeAnalyst https://www.microbiomeanalyst.ca/ N/A

ENmix https://bioconductor.org/packages/release/bioc/html/ENmix.html N/A
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